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Improving transportation safety remains the U.S. Department of Transportation’s (USDOT’s) top 
priority. The overarching objective is to reduce transportation-related fatalities and injuries by 
addressing driving behavior and vehicle-related and infrastructure safety issues. USDOT uses a 
data-driven approach to identify risk factors and develop countermeasures and assess their effec-
tiveness. 

The United States and much of the world have made considerable progress in improving safety 
across all modes of transport— strides made possible through technological advances such as 
more effective safety belts, regulatory actions such as vehicle safety standards, effective law en-
forcement, and public outreach. Despite the progress, transportation, including highways and the 
other modes, accounts for about one-third of the accidental deaths in the United States and is the 
leading cause of death for people between the ages of 5 and 24 [USHHS CDC 2012].

Transportation fatalities in 2011 were 34,388, a decline of 22.5% over 2000, while transportation 
injuries were 2,237,029 after a decline of 30.5%. This is in contrast to the preceding 1990-2000 
period when fatalities declined 6.3% and injuries declined 1.6%. 

These decreases in the number of fatalities and injuries were observed despite U.S. Census data 
that show a 24.9% increase in the U.S. population—from 249 million in 1990 to nearly 312 million 
in 2011 [USDOT BTS 2013]. 

The majority of transportation fatalities and injuries occurred on the Nation’s highways, which 
carry most of the passenger and freight traffic in the United States. Even though 2011 was the saf-
est year on the highways since 1949 in terms of the number of traffic fatalities [USDOT NHTSA 
2011], on average 89 people died and over 6,074 per day were injured on the Nation’s highways. 
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While new and emerging technologies like vehicle-to-vehicle communications and next-genera-
tion air traffic control systems offer great promise, no solution would be complete without high-
quality data and robust statistical analysis. Recognizing the importance of data and statistical anal-
ysis in improving transportation safety, Volume 10 of the Journal of Transportation and Statistics 
is focused on safety research. This Special Issue features six compelling studies that explore the 
frontier of applied statistical analysis and modeling to offer potentially life-saving insights for both 
researchers and policymakers. The authors are from some of the leading transportation research 
institutes in the world, and their exemplary work is indicative of the scope and depth of their exper-
tise. Furthermore, the papers featured in this issue are the product of a multidisciplinary approach 
to transportation research—in a world where the lines between academic fields, industries, and 
business sectors are becoming less defined, such a perspective is crucial.

Research published in this Special Issue ranges from assessing crash-risk in roadway corridors 
where the absence of crash-related incidents has skewed the perception of danger, but not the tan-
gible threat to a comprehensive analysis of the National Highway Traffic Safety Administration’s 
Fatality Analysis Reporting System (FARS) data that sought to uncover previously unseen correla-
tions between the different types of crash-related deaths and the factors that led to those deaths. In 
all of these studies, the underlying current driving their research is the idea that somewhere in the 
ever-expanding sea of data are answers capable of saving lives.

This special issue of the Journal includes six papers:

Modeling School Bus Crashes Using Zero-Inflated Model

When a school bus crashes, it is almost always breaking news. While motor-vehicle crashes during 
the morning or evening commute are a relatively common occurrence across much of the country, 
school bus crashes are rare events, and when children are injured or worse, it can be devastating 
for a community. This study explores the potential of the zero-inflated negative binomial (ZINB) 
model to shed light on previously unknown risk factors that could threaten the safe transport of 
children on specific segments of the roadway.

Highway
94.2%

Water 2.4%

Rail 1.6%

Air 1.4%

Transit 0.3%

Pipeline 0.0%

Transportation Fatalities by Mode: 2011
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Crash Injuries in Four Midwestern States: Comparison to Regional Estimates

This study looks into factors that contribute to the most deadly motor-vehicle crashes in Iowa, 
Kansas, Missouri, and Nebraska, and why the magnitude of outcomes associated with factors such 
as adverse weather or seatbelt use in these four states varies so greatly from previous regional 
estimates. The findings raise questions about current methodologies used to guide new safety mea-
sures as well as the absence of a standard framework for crash reporting.

Investigation of the Impact of Corner Clearance on Urban Intersection Crash Occurrence

Signalized intersections contain numerous crash risk factors that have been subject to extensive 
study. However, there has been little research on corner clearance—the distance between a corner 
of two intersecting roads and the first driveway—which poses a unique safety risk to drivers exit-
ing from such driveways. This study analyzed crash count data collected from all major, signalized 
intersections in Las Vegas and North Las Vegas, Nevada, to determine how corner clearance im-
pacts roadway safety. The results provide several key findings that could support future measures 
to reduce risks associated with corner clearance.

Application of the Bayesian Model Averaging in Predicting Motor Vehicle Crashes

Reliable statistical models underpin the validity of roadway safety research. Typically, analysts 
will apply multiple models during a study and then apply the one that provides the single “best fit” 
for the relevant data. This methodology is inherently limited because it does not incorporate the 
uncertainties presented by the disparate models. In this study, the authors explore the efficacy of 
applying Bayesian Model Averaging to account for this problem.

Lane Width Crash Modification Factors for Curb-and-Gutter Asymmetric Multilane Roadways: 
Statistical Modeling

This study is the result of an analysis of crash frequency on multilane, urban roadways and the 
possible correlation of asymmetrical lanes to both frequency and severity. Asymmetric lanes occur 
when then the outside lane is wider than the inside lane. The authors’ conclusions point to simple 
changes in roadway design which could reduce the number and severity of crashes along corridors 
identified as being at-risk.

A Multidimensional Clustering Algorithm for Studying Fatal Road Crashes

Building on existing research on correlative relationships linking fatal crash factors, this study 
applies a specialized theoretical method, called “graph-cuts,” to analyze all fatal car crashes occur-
ring in the prior 2-, 5-, and 10-year spans. This approach searches for clusters that indicate subtle 
correlations that emerge in a comparative analysis of the historical crashes to the 84 enumerated 
parameters that can describe a fatal crash event. Using this method, the authors found strong cor-
relations between certain parameters that had not been reported in prior studies.
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ABSTRACT 2

School bus crashes are rare, but their occur-
rence can have devastating effects on the school 
children involved. Such crashes are infrequent 
and random, and some roadway segments may 
not experience any school bus related crashes 
for a number of years (zero crashes). Despite 
the fact that no crashes may have occurred 
along particular stretches of road, these zero-
crash road segments cannot be termed as safe 
sites, and they cause a dual state of crash expe-
rience (no crashes, but still at risk for crashes) 
compared to a single state of non-zero crash 
prone sections where risk is confirmed. Litera-
ture indicates that for extremely rare and ran-
dom count data, such as school bus crashes, 
Poisson and Negative Binomial (NB) distribu-
tions become more applicable for modeling. 
Apart from Poisson and NB, there exists an 
alternative discrete distributional model that 
is used to model extra-zero discrete data, such 
as school bus crashes,that allows exploration 
of the impact of zero segments. This alterna-
tive modeling approach called zero-inflated 
negative binomial (ZINB) model is introduced 
in this study for evaluation of variables in-
fluencing school bus crashes. Although crash 
data rarely reveal variability, the ZINB model 
provides a more flexible modeling framework 
for school bus crashes. The study found that, 
ZINB yields better prediction (tight standard 
errors and higher z-statistics), compared to NB 
model though same variable coefficient signs. 

KEYWORDS: school bus crashes; zero-inflated model, 
Poisson, Negative Binomial 

Modeling School Bus Crashes Using Zero-Inflated Model
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Presence of median and outside shoulders was 
found to have tendency of reducing school 
bus crashes. On the other end, wider medians, 
outside shoulders, inside shoulders, and lane 
widths were found to reduce the probability 
of these crashes. Presence of curb and gutter 
and two-way left turn lane (TWLTLL, high 
posted speed limits, multilane segments, and 
congested segments were found to increase the 
probability of school bus crashes.

INTRODUCTION

School bus crashes are rare, but their occur-
rence can have devastating effects on the 
school children involved. Limited studies have 
been published on the statistical modeling of 
school bus related crashes. Yang et al. (2009) 
indicated that findings on the few available 
published studies on school bus crashes and 
injuries vary widely depending on the source 
of information and study population. In the 
same study, which was conducted in Iowa, 
they found that the school bus fatality rate was 
0.4 per 100 million miles traveled. The study 
concluded by recommending that safety of 
school bus transportation over other vehicles 
should be a factor in making school transpor-
tation policies. McGeehan et al. (2006) report-
ed that there were an estimated 51,100 school 
bu–-related injuries treated in U.S. emergency 
departments from 2001 to 2003 and that head 
injuries accounted for more than half (52.1%) 
of all injuries among children<under 10 years 
of age, whereas lower extremity injuries pre-
dominated among children 10 to 19 years of 
age (25.5%). In their study, Lapner et al. (2003) 
found that head, neck, and spine are the most 
common injuries when children are involved 
in rollover school bus collisions and that addi-
tional safet, changes to the current school bus 
design are needed.

Based on their dramatic effects, analysis of 

roadway, traffic, human, and environmental 
factors impacting school bus crashes is needed. 
One of the known methodologies in studying 
and analyzing crash data similar to those relat-
ed to school buses is through statistical analy-
sis. Though one of the popular method, statis-
tical evaluation of factors impacting school 
bus crashes becomes more challenging due to 
the rarity of these types of crashes. In connec-
tion to crash statistical analysis, various mod-
eling approaches have been proposed to iden-
tify the genuine relationship between crash (in 
general) occurrences and roadway geometrics, 
traffic characteristics, environmental condi-
tions, and human factors. In contrast, not much 
effort in terms of modeling has been invested 
in school bus related crashes. This might be 
contributed by many factors, one of them be-
ing data availability as many school buses use 
local roads whose crash data may not easily be 
available. Other factor may be unavailability 
of school bus counts as an exposure variable in 
calculating crash rates. Furthermore, adequate 
modeling methodology that takes into consid-
eration extreme rarity of these types of crashes 
may have hindered study progress. 

However, in the past two decades, the Poisson, 
negative binomial (NB, and various model 
extensions, such as zero-inflated, have been 
extensively studied and applied to modeling 
general crash data, Chimba et al. 2010. Fairly 
comprehensive reviews were given by Maher 
and Summergill (1996) and Lord et al. (2005). 
To make necessary connections with the scope 
of work proposed in this paper, though, several 
important milestones in model developments 
and significant progresses made in recent 
years are relevant to the discussion. Jovanis 
and Chang (1986), Joshua and Garber (1990), 
Chimba et al. (2010) and Miaou and Lump 
(1993) compared model fitness using the Pois-
son and multivariate linear regression mod-
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els, concluding that the Poisson outperforms 
the multivariate linear regression model due 
largely to its more appropriate statistical prop-
erties for describing non-negative discrete data 
like crashes. However, they noted that if the 
crash data reveal significant over-dispersion 
around the estimated mean, the Poisson model 
becomes inadequate and more general distri-
butional models, such as the negative binomial 
(NB), are needed. 

Over-dispersion is a phenomenon which oc-
curs when the model is fitted using Poisson or 
negative binomial. Hardin and Hilbe (2001) 
listed the following as the source or over-dis-
persion in the data or model: 

•	 when some important independent vari-
ables are omitted from the model; 

•	 when the data contains a lot of outliers 
resulting either from unreliable data col-
lection or mistake and errors during data 
recording; 

•	 when the model fails to include sufficient 
number of interaction terms; 

•	 when the variable by itself is not appropri-
ate and it needs transformation; 

•	 if the distribution assumed is quite differ-
ent from the real distribution which relates 
the data, e.g., using linear model instead of 
quadratic.

The earliest recognition of this limitation dates 
back to Maycock and Hall (1984) who used 
the NB model for analyzing crashes at junc-
tions. The NB distribution, also known as the 
Poisson-Gamma distribution, is derived by 
conjugating the Poisson distribution with the 
Gamma distribution in which the true mean 
is assumed to account for extra data variabil-
ity (over-dispersion). The over-dispersion pa-
rameter, in an earlier stage, is assumed identi-

cal across all roadway segments, Hauer et al. 
(1989), Bonneson and McCoy (1993), Miaou 
(1994) and Shankar et al. (1997). Inspired by 
Cameron and Trivedi (1986), Maher and Sum-
mersgill (1996) adopted the site-dependent 
(indexed by i) over-dispersion factor (φi) to ac-
count for extra variability around the estimat-
ed mean (µi). The over-dispersion parameter 
is linked with the estimated mean in the form 
of d

ii φµφ = , where d is an additional param-
eter that can be estimated along with all other 
parameters. Hauer (15) demonstrated that, when 
roadway segments differ in length, parameters 
estimated by the maximum likelihood estimation 
(MLE) method will be unduly influenced by very 
short segments if the over-dispersion parameter 
is assumed to be equal across all roadway seg-
ments. The most plausible remedy suggested 
by Hauer is to set the over-dispersion parameter 
in proportion to the segment length (L), i.e., for 
segment i, d

ii Lφφ = , where d=1. When d≠1, the 
sum of crash estimates from su-segments based 
on the empirical Bayes (EB) method will not be 
consistent with the estimates for the roadway 
as a whole. As an alternative to the estimated 
mean function, one could also model the over-
dispersion parameter as a separate function of 
explanatory variables different from the mean 
prediction function (2003). They found that 
the dispersion parameter varies by site (inter-
section) as a function of the approach flows, 
the ratio of the flows from minor and major 
approaches, and geographical locations. Ig-
noring this variation, namely, treating the 
over-dispersion factor as a fixed parameter, 
can significantly undermine the fitness of the 
estimation. However, they found the param-
eter estimates only change slightly with the 
specific crash data used. 

As a plausible extension from the Poisson 
family, the zero-inflated has been applied to 
model the over-dispersion phenomenon due to 
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an excess of zero observations, Miaou (1994), 
Shankar et al. (1997) and Lee and Mannering 
(2002). The concept originated from a mixture 
of distributions, where the split parameter can 
be modeled as a constant (Johnson and Kotz 
(1969) and Washington et al (2002)) or, be-
cause it is bounded between 0 and 1, a logit 
function of the estimated mean (Miaou (1994) 
and Mullahy (2001)). The relative effective-
ness of these two treatments remains to be in-
vestigated although it has been demonstrated 
that both of them could make great contribu-
tions toward enhancing model performance. 

ZERO-INFLATED (ZI) DISTRIBUTION

Recently, zero inflated has surfaced as a plau-
sible approach for use in crash analysis. The 
use of zero-inflated has been justified from 
the fact that Poisson and Negative Binomial 
(NB) models with or without their extensions 
as well as several variations seem to model 
non-negative discrete response variables, with 
over-dispersion and the underlying assump-
tion that the occurrence of crashes observed at 
a given time and space scale follows a Pois-
son process. Lord et al. (2005) challenges this 
assumption by arguing that the occurrence of 
crashes is in fact a binomial process, which can 
be approximated by a Poisson process when 
the number of trials (e.g., traffic exposure) is 
large with a small likelihood (risk) of crashes. 
This argument roots from modeling crashes as 
a dual-state data generation process or a se-
ries of Bernoulli trials, i.e., the outcome of a 
school bus entering into a roadway section is 
either perfectly safe, involving no crashes, or 
unsafe, assuming crashes do take place (Lord 
et al. (2005), Shankar et al. (1997) and Qin et 
al. (2004)). If the probability of independent 
events is the same for all trials, the dual-state 
data generation process will naturally give 
rise to a binomial distribution for describing 

school bus crash frequencies. However, the 
equal probability assumption is questionable 
in reality since the crash-involved probability 
varies across roadway segments as a function 
of drivers, traffic and roadway geometric char-
acteristics among others; for this reason, fur-
ther research into modeling the unequal prob-
ability of independent events is needed. 

As discussed in previous sections, zero-inflated 
models are mainly used for modeling excessive 
zero count data. Zero count may refer to the sit-
uations where the likelihood of an event occur-
ring is extremely rare se.g., school bus crashes) 
in comparison to normal expectatio, (Cameron 
and Trivedi (1986), Lee and Mannering (2002), 
and Mullay (1986)). Zero-inflated (ZI) can be 
modeled as Zero Inflated Poisson (ZIP) or as 
Zero Inflated Negative Binomial (ZINB) mod-
els. Poisson regression model probability func-
tion is given in the following form (14)

 yi = 0, 1, 2… and µ > 0    (1)

 
The mean parameter 

)exp(]/[ βµ iii xxyE == , Variance = µ, 

Where yi = a random variable representing 
number of school bus crashes, 

xi = Parameter related to the occurrence of 
school bus crash (Vector of explanatory vari-
able) 

ß = the coefficient of the corresponding factor 
(vector of estimable parameter).

For the ZIP model, it assumes that the events 
yi=(y1, y2…..yN) are independent and the model is 

, r = 1, 2… n        (2)
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Where φ=proportion of zeros.

Maximum likelihood estimates are used to 
estimate the parameters of the ZIP regression 
model and confidence intervals are construct-
ed by likelihood ratio tests.

The negative binomial (NB) model can be ex-
pressed as:

					                (3)

where the mean ( )βµ XvyE exp)( == . 

The corresponding variance is  
2)( αµµ +=yVar . Similar extensions to the 

NB model are considered, including the ze-
ro-inflated model (ZINB) with constant and 
mean-dependent split parameters, and the 
mean-dependent over-dispersion factor. 

The ZINB model with constant split parameter 
(Shankar et al. (1997) and Washington et al. 
(2002)) can be expressed as: 

					                (4)

Furthermore, appropriateness of using the 
zero inflated model rather than the traditional 
model, Poisson or Negative Binomial can be 
tested. The common known test statistic is 
through Vuong’s Value, estimated as shown 
below, Washington et al. (2002);

				            	
			           (5)

Where f1(yi/Xi) is the probability density 
function for one model, say Zero-Inflated 
Negative Binomial, ZINB) and f2(yi/Xi) is the 
probability density for comparison model, say 
Standard Negative Binomial, NB)

( )
mS
mnV = , where 

,)/1(
1









== ∑

=

n

i
imnMeanm  		           (6)

Sm=Standard Deviation, n=Sample Size, and 
V=Vuong’s Value.

If Absolute(V)<Vcritical(1.96 for 95% Confi-
dence Interval), the test does not support the 
selection of one model over the other. Large 
Positive values of V greater than Vcritical, e.g. 
V> Vcritical favor first model over second model 
whereas large negative values support second 
model. 

DESCRIPTIONS OF DATA AND 
VARIABLES

Data for this study originated from Tennessee 
Department of Transportation (TDOT) through 
Tennessee Roadway Information Management 
System (TRIMS) database system. This data-
base includes crash data comprising attributes 
such as harmful event, contributing causes, in-
jury severities, traffic characteristics and geo-
metric characteristics among others. The data 
have the exact log mile where the crash oc-
curred. Furthermore, crashes are listed if they 
are school bus related or not. Downloaded 
crashes were therefore screened to identify 
only those that were school bus related. School 
bus only crashes occurring on state roadways 
(SR) in Davidson and Shelby counties were 
considered in this study (Davidson and Shelby 
are the most populous counties in the state of 
Tennessee, hosting the largest two cities of 
Nashville and Memphis, respectively). Local 
streets ann non-state roads were not included 
in the analysis due to unavailability of the traf-
fic counts, an essential element in crash mod-
eling. A total of 493 school bus crashes for the 
span of eight years from 2002 to 2009 with an 




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average of 61.6 crashes per year were gath-
ered for the study as shown below. It should 
be noted that the data for year 2002 were not 
complete; hence, if taken out of consideration, 
the average crash frequency per year becomes 
67.7 crashes per year.

Apart from crash data, roadway geometrics 
of the analyzed roadway segments were also 
downloaded from the TRIMS database. Road-
way geometry is defined by the beginning and 
end log miles. Utilizing the county and route 
number which are present in both crash and 
geometric data, total number of crashes for 
each segment were tallied utilizing a small 
written computer program in Stata software. 
The written program had the capability of 
searching the route ID and segment boundar-
ies (beginning and end log miles) in the geo-
metric data, then matching and tallying the 
corresponding number of crashes by counting 
log miles within that particular segment. It 
then merges the two data into a single dataset. 
Overall, 1903 roadway segments ranging from 
53 ft (0.01 mile) to 6.508 miles were identified 
for the study. As expected, most of the seg-
ments had zero school bus crashes (83.8%), 
followed by one crash (11.8%) and 2.89% for 
two crashes. Only 1.54% of the segments had 
more than two school bus crashes for the ana-
lyzed eight years span. The presence of exces-
sive zero crash segments supports the use of 
zero inflated model as a modeling distribution 
for this study. 

Table 1 summarizes the statistics on crash, 
roadway features, and categorical variables 
created as a derivative of other variables. For 
estimation purposes, some variables were 

modeled as indicator (categorical) variables as 
listed in table 1such as posted speed limit 
(35 mph or below, 40 mph to 45 mph, and 50 
mph to 55 mph) and so forth. In addition, a 
new variable called directional peak hour vol-
ume (DPHV) per lane was created to represent 
the traffic intensity during rush hours, which is 
computed as the product of AADT, directional 
split, and K-factor divided by number of lanes. 
Note that DPHV might be correlated with 
AADT to some extent but the causal effects 
are different from AADT. The former char-
acterizes the effect of congestion on crashes, 
while the latter represents an exposure mea-
sure for crashes. Another variable created was 
vehicle miles of travel (VMT) as the product 
of AADT and length of the segment. 

EMPIRICAL DISTRIBUTIONS OF 
CRASHES

The crash frequency distributions (line and his-
togram) were first analyzed and fitted with the 
over-dispersed distributional models, including 
Poisson, NB, and their zero-inflated versions, 
to determine if the data was over-dispersed. As 
can be seen in Figure 1, NB and ZINB models 
closely follow the observed crash distribution 
compared to Poisson and ZIP. The over-disper-
sion factor tested highly significant, indicating 
the school bus crash data was over-dispersed. 
This was furthermore confirmed by alpha log-
likelihood ratio test (in table 2). 

In comparison, data were fitted with the non-
over-dispersed models, including, Poisson, 
and zero-inflated Poisson (ZIP). In contrast, 
the Poisson gave the least desirable results. 
The ZIP model yielded good fit to the zero 

Year 2002 2003 2004 2005 2006 2007 2008 2009 Total

Average/Year 

(without 2002 data)

Crashes 19 72 67 69 85 69 59 53 493 67.7
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TABLE 1  Study Data Summary
Numerical variables

Mean Min Max
Number of crashes 0.2 0 7
Segment length 0.2 0.01 6.508
Daily volume (AADT) 23,062 1,190 61,230
Percent of peak hour volume 9.0 4 14
Directional split 61.6 50 100
VMT 4,693 24 70,265
DPHV 370 46 1,234
Number of through lanes 4 2 8
Median width 5.8 0 60
Lane width 11.6 9 15
TWLTL width 4.3 0 24
Outside shoulder width 4.3 0 32
Inside shoulder width 0.3 0 24
Posted speed limit 40 15 55
School speed limit 16.9 15 30

Categorical variables
Street lights 0-No lights, 1-Lights present

Posted speed limit categories

0-No posted speed limit up 35 mph, 1-(40-45 mph Posted Speed and 

2-(50-55 mph posted speed)
Presence/absence of school speed limit 0-No school speed limit, 1- School speed limit 
Terrain 0-Flat, 1-Rolling or Mountain
Land use 0-Commercial, 1-Mixed residential & commercial, and 2-Residential
Presence or absence of median 0-No median, 0-There is a median
Median composition 0-No median, 1-Concrete, 2-Grass plot, 3-Painted
Presence or absence of TWLTL 0-No TWLTL, 1-There is TWLTL
Presence or absence of outside shoulder 0--No outside shoulder, 1-There is outside shoulder
Outside shoulder composition 0-Ditch, 1-Asphalt, 2-Gravel and dirt, and 3-Concrete
Presence or absence of inside shoulder 0-No inside shoulder, 1-There is inside shoulder
Presence or absence of curb & gutter 0-No curb & gutter, 1-There is curve and gutter
Presence or absence of sidewalk 0-No sidewalk, 1-There is a sidewalk

observation, but fitted the rest of observations 
rather poorly. This indicates that mixing the 
nonover-dispersed model with a simple spike 
mass function at zero-crash observations is not 
sufficient to produce a satisfactory fit when the 
distribution is highly skewed. Apart from the 
probability plots, decision of whether to use 
a Poisson or Negative Binomial can also be 
based on the dispersion parameter, σd by Pois-
son error structure (23) given as;

pn
Pearson

d −
=

2χσ
, where n is the number of 

observations, p is the number of model param-
eters, and Pearsonχ2 is defined as 

 ∑
=

−
=

n

i i

ii

yVar
yEy

Pearson
1

2
2

)(
)(ˆ

χ

			 
	          (7)

Where yi is the observed number of accidents 
on section i, E(yi) is the predicted accident fre-
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quency for section i, and Var(yi) is the variance 
of accident frequency for section i. If σd turns 
out to be significantly greater than 1.0, then the 
data has greater dispersion than is explained 
by Poisson distribution, and Negative Binomi-
al regression model is fitted to the data, Hardin 
and Hilbe (2001). The crash over-dispersion 
parameter was found to be 3.06 favoring NB 
over Poisson regression. The following distri-
butions were therefore retained for final model 
estimation:

•	 Standard NB 

•	 Zero Inflated Negative Binomial

RESULTS ON MODEL ESTIMATION

Based on the findings from fitting the empiri-
cal distributions, the NB and its zero-inflated 
version were therefore utilized for model es-
timation. Estimations were performed using 
Stata (Stata Corp LP (2008)) software. The z-
statistic was used to assess the statistical sig-
nificance of the variables. As expected, not all 
variables were statistically significant. The ad-
equacy of individual models and effectiveness 

of the model extensions were evaluated based 
on the log-likelihood test. Beyond that, the 
corrected R2, reasonableness of the fitted val-
ues, such as their mean and maximum, were 
also monitored. Finally, the normalized Bayes-
ian Information Criterion (BIC) was used to 
assess the most appropriate model. The BIC 
can be defined as:

Normalized BIC = 
N
NP

N
)ln(

2
  likelihood-Log
−  (8)

Where P and N are the number of parameters 
and samples, respectively. Although the distri-
butional models under consideration may have 
different scales for the log-likelihood function 
value, this criterion provides a preliminary 
model assessment within the same distribu-
tional model family.

ZINB AND NB MODEL FITNESS 
PERFORMANCES

Model performance results are summarized in 
table 2. As shown in the results

1.	 Vuong test of ZINB vs. standard NB was 
found to be 2.31 favoring ZINB over NB

FIGURE 1  Probability Histogram Plots of the Poisson, NB and Zero-Inflated Models
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2.	 Sign and magnitude of the variable coeffi-
cients were almost identical in both the NB 
and ZINB models, but differed in standard 
error and z-statistics.

3.	 The ZINB standard errors were observed 
to be slightly lower (tighter) compared to 
those in NB indicating ZINB was well fit-
ted compared to the later.

The results clearly suggested that the zero-in-
flated model with mean-dependent over-disper-
sion factor performed better for school bus crash 
data modeling compared to other models tested. 
On the other end, comparing the two models, 
one can argue that it requires more computa-
tional time for ZINB than the NB model pri-
marily due to the necessary intensive computa-
tion of the proportion of zeros. In addition, the 
Hessian matrix for determining the z-test values 
is much more complicated in the ZINB model. 

From the “inflate” part of the ZINB model in 
table 2, the probability of being in zero school 
bus crash segments “φ” is determined as 
shown in equation 9. The inflate model is used 
to calculate the probability of zero crashes 

which inflates the number of zeroes then used 
in equation 10.

The ZINB first estimates the effects of the 
independent variables on the crash frequency; 
these coefficients are interpreted just like 
standard NB coefficients. Secondly it esti-
mates the equivalent of a binary logit model 
where the outcome variable is the log odds 
of being in the zero-school bus crash seg-
ment compared to being in the non-zero crash 
segments. The coefficients in the inflate part; 

labeled “INFLATE” (table 2) correspond 
to the binary model predicting group which 
considers probability of zero crashes. It speci-
fies the model that determines whether the 
observed count is zero. These coefficients are 
interpreted just as the coefficients for a binary 
logit model. A positive coefficient means 
the independent variable has the effect of 
increasing the odds that the dependent vari-
able equals a given value, usually 1 for binary 
dependents. A negative coefficient means 
that the independent variable has the effect 
of decreasing the odds that the dependent 
variable equals the given value. Utilizing the 
probability of zero crash model “inflate” in 
equation 9, school bus crash frequency are 
then predicted as follows; 

ANALYSIS OF THE MODEL  
RESULTS WITH RESPECT TO 
CRASH ATTRIBUTES

As stated earlier, the primary objective of this 
modeling effort was to evaluate school bus 
crash frequency as a function of explanatory 
variables. The school bus crash frequency 
here is defined as the number of crashes per 
year. The model performs reasonably well in 
term of the reasonableness of the model co-
efficients with respect to school bus crashes. 
As expected, roadway segments with posted 
school zone speed limit (PSSL) has negative 
coefficient with strong z-value showing its sig-
nificance in reducing school bus crashes. Some 
literatures have pointed out traffic volume as 
surrogate for congestion and characteristics 
of increasing crash. As a common wisdom, 
AADT showed positive coefficient which sup-
ports previous findings (though not necessarily 
for school bus crashes) by Miaou and Lump 
(1993), Miaou (1994), Garber and Ehrhart 

( ) 





+−++++
++−

= 0.556POS-0.135PCC0.367PM0.249PSSL20.285SL10.207SL0.434TWLTL
0.059ISW-0.004OSW-0.008LW-0.146LW-0.026NLADT0.0000026A0.66

e*i-1Cashes Bus School ϕ
(10)

(9)
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(2000), Chimba et al. (2010) and others. As 
the number of vehicles per lane increases on 
the highway, fewer gaps allow lane changing, 
turning movements, or merging, which even-
tually increase likelihood of crashes. The ana-
lyzed segments ranged between a minimum of 
1,190 vpd to 61,230 vpd AADT. Though not 
directly found from this study, a slight change 
in traffic characteristics can have noticeable 
impact to school bus operations which eventu-
ally can lead to risk of accident. Most often the 
school buses operate during peak hours (espe-
cially morning rush hours) where interaction 
with congested passenger cars becomes very 
common and may lead to scenario or likeli-
hood of crashes.

The coefficient of the percentage of peak hour 
volumes (PPHV) is positive in the inflated 
portion, which is consistent with some previ-
ous research findings, Shankar et al. (1997) 
and Ivan et al. (1999). This suggests that as the 
percentage of peak hour volumes increases, 
the likelihood of school bus crashes increases 
too. Number of lanes (NL) appears in “crash” 
portion only of the ZINB with a significant 
positive coefficient indicating increasing like-
lihood of school bus crashes if the segments 
have more lanes. Most of the previous stud-
ies also concluded with the same findings that 
the higher the number of lanes, the higher the 
crash rate, Noland and Oh (2004), Aty and 
Radwan (2000), Chimba et al. (2010) and Gar-
ber and Ehrhart (2000). As a general rule more 
lanes roadway sections are associated with 
more flow per lane which can be unsuitable for 
school bus safety. 

Posted speed limit appeared to be significant 
only on the crash model portion and non-sig-
nificant in the “inflate” portion. Both 40–45 
mph (SL1) and 50–55 mph (SL2) posted speed 
limit categories have positive coefficients in-
dicating the tendency to increase the probabil-

ity of school bus crashes compared to lower 
15–35 mph speed segments or no speed limit 
sections. However, the coefficient of 50–55 
mph speed limit is slightly larger than that of 
40–45 mph, denoting the higher the posted 
speed limit, the riskier are the school buses to 
be involved in a crash. The conclusion which 
can be drawn from the speed limit to school 
bus safety is school buses should avoid high 
speed routes. 

Lane width (LW) was found to be significant 
only to the crash part of the developed ZINB 
model and not to the “inflate” portion. The 
variable was incorporated with the intention of 
evaluating how lane width affects school bus 
crash frequency. The coefficient of lane width 
is negative in the model with z-value of -1.84 
which approximately 93% significant level. 
This means wider lanes are likely to reduce 
school bus crashes compared to narrow lanes. 
One can suggest that wider the lane provide 
extra separation between the vehicles which 
can give school bus buffer deviation in case 
of crash leading incidents. In addition, the buf-
fer between vehicles can provide a room for 
the driver to correct before the crash. Wider 
lanes can as well give the driver more driving 
comfortability then reduce delays and improve 
capacity. On the other part, the study used me-
dian under two scenarios; median width (MW) 
and presence or absence of the median (PM). 
Median width was found to be a significant 
variable in both crash and inflate portions of 
the ZINB. Presence of median has a negative 
coefficient, the depiction that the school bus 
passing on the segments with medians will 
have low probability of being involved in 
crash compared to “no-median” (undivided) 
segments. Furthermore, roadway segments 
with wider medians according to model out-
puts are shown to be safer (negative coeffi-
cient) compared to narrow median segments. 
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TABLE 2  Modeling Results Using the ZINB and NB Models

  ZINB

 

Negative Binomial (NB)

CRASHES Coef. Std error Z-Value Coef. Std error Z-Value

AADT 2.6E-05 6.29E-06 4.2 2.9E-05 6.38E-06 4.5

Number of lanes (NL) 0.026 0.0139 1.89 0.028 0.0175 1.59

Lane width (LW) -0.146 0.0794 -1.84 -0.144 0.0809 -1.78

Median width (MW) -0.008 0.0041 -1.89 -0.008 0.0043 -1.75

Outside shoulder width (OSW) -0.004 0.0021 -1.99 -0.002 0.0021 -1.13

Inside shoulder width (ISW) -0.059 0.0309 -1.92 -0.055 0.0314 -1.75

Presence of TWLTL 0.434 0.1497 2.9 0.484 0.1509 3.21

Speed limit 40-45 mph (SL1) 0.207 0.1100 1.88 0.206 0.1115 1.85

Speed limit 50-55 mph (SL2) 0.285 0.0993 2.87 0.262 0.1323 1.98

Presence of school speed limit (PSSL) -0.249 0.064 -3.92 -0.265 0.07 -3.77

Presence of median (PM) -0.367 0.1954 -1.88 -0.344 0.2058 -1.67

Presence of curb & gutter (PCG) 0.135 0.0708 1.9 0.191 0.1028 1.86

Presence of outside shoulder (POS) -0.556 0.1890 -2.94 -0.579 0.1937 -2.99

Constant -0.660 0.8916 -0.74 -0.832 0.9138 -0.91

Length (offset) (offset)

INFLATE      

NA

Median width (MW) -0.207 0.136 -1.52

Percent of peak hour volume (PPHV) 3.454 1.229 2.81

Presence of curb & gutter (PCG) -16.901 8.326 -2.03

Presence or absence of TWLTL -31.127 15.486 -2.01

Constant -45.535 15.488 -2.94

Length (offset)

Alpha 1.376     1.524    

Likelihood-ratio test of alpha=0   18.52     121.78

Vuong test of ZINB vs. standard NB   2.31 NA

As stated, median (MW and PM), outside 
shoulder widths (OSW) and presence of out-
side shoulder (POS) both have negative coeffi-
cients. For the school bus safety point of view, 
these cross-sectional elements can be used for 
emergency stops, hence the wider they are 
the better for the driver correction and for bus 
safety in general. Inside shoulder width (ISW) 
is significant with a negative coefficient, indi-
cating likelihood of bus crashes decreases as 
shoulder width increases. These findings are 
consistent with some previous studies on gen-
eral crashes, Chimba et al. (2010), Milton and 
Mannering (1998), Aty and Radwan (2000), 

and Lee and Mannering (2002). From a high-
way safety standpoint, shoulder can be used 
for vehicle stopping in an emergency or during 
an incident, and drivers can take advantage of 
wider shoulders to avoid hitting roadside ob-
stacles. Besides that, wider shoulders can also 
be used for deceleration to avoid a crash. 

Median composition (no median, concrete 
barrier, planted grass or painted) does not ap-
pear in the final model due to insignificancy. 
Though not appearing in final model, they are 
still considered very crucial factors with re-
spect to school bus crash. Painted and grass/
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lawn median (without concrete barrier) can al-
low the school bus to accelerate further from 
the main travel way which can help avoid a 
crash. As shown in table 2, two-way left turn 
lane (TWLTL) median generated mixed re-
sults. In the crash portion of the ZINB, this 
variable has positive coefficient, the sign that 
presence of TWLTL creates safety concerns 
for school bus crashes. As raised median play 
a very vital part in separating opposing traffic 
streams and reduces access from the mainline, 
TWLTL does the opposite. The environment 
in which vehicles use the TWLTL for making 
U-turns or for left turns access is seen as a gen-
erator of conflict points especially for school 
buses. However TWLTL is negative in the “in-
flate” part of the model.

Apart from drainage purposes, presence of curb 
and gutter (PCG) can be considered to prevent 
vehicles from accelerating beyond the travel 
lane. Table 2 shows PCG to be significant in 
both “crash” and “inflate” parts of the ZINB. 
The variable is positive in the “crash” portion 
but negative in the “inflate” portion. The com-
mon wisdom could have considered the pres-
ence of curb and gutter to reduce probability of 
school bus crashes, but in most cases segments 
with curb and gutter also have sidewalks which 
may skew the expectations. As sidewalks ac-
commodate pedestrians, one could expect seg-
ments with curb and gutter to be associated with 
minor crashes resulting from hitting the curb 
walls. The positive coefficient might have been 
caused by the effect of population which also do 
influence crash frequency. Roadway segments 
in densely populated areas and which have high 
density of school buses often have curb and gut-
ter compared to low population areas. Effect of 
curb and gutter as well as sidewalks can further-
more be linked with adjacent land uses. 

Finally, it should be noted that school buses 
usually run in a designed route and mostly dur-

ing peak hours to pick up and drop off students. 
Most of the bus drivers are familiar with the 
hazards along the route with the exception of 
new drivers. That means, some of bus crashes 
may therefore have nothing to do with road 
characteristics as found in modeling results dis-
cussed.

CONCLUSIONS

Based on the postulation that crashes follow a 
Bernoulli process with an unequal probability 
of independent events, the authors applied the 
zero-inflated negative binomial (ZINB) dis-
tributional model to analyze school bus crash 
data. The ZINB model is derived in Bayesian 
statistics by conjugating the negative binomial 
model. Statistically, the ZINB model could ex-
plain extra zero variability beyond the standard 
negative binomial model and is therefore ca-
pable of modeling a wider range of data vari-
ability especially for school bus crashes which 
are very rare than the Poisson and NB models. 
Comparison of ZINB and NB variable coeffi-
cients yielded almost similar sign (negative or 
positive coefficients) but ZINB resulted with 
slightly tighter standard errors hence slightly 
stronger z-values compared to NB. This re-
caps that for crash data such as those related to 
school buses, the use of zero inflated models is 
more applicable in lieu of standard count mod-
els. The results show that the ZINB model with 
a mean-dependent over-dispersion factor yields 
better performance and is recommended for use 
in school bus crash data modeling, with the ca-
veat that the model may slightly over estimate 
the mean of crash frequency. This implies that, 
in high-risk roadway segments with low traffic 
exposure, the occurrence of school bus crashes 
will possibly deviate from the Poisson or NB 
process. In this case, the ZINB becomes more 
appropriate and provide more flexible modeling 
framework. 
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During the modeling process, some of the ex-
planatory variables showed inconsistent signs 
and significance levels. The study found that 
high traffic volume (AADT), more number of 
through lanes (multilane section), presence of 
two-way left turn lanes, high posted speed lim-
it sections, presence of curb and gutter have 
positive effect in increasing the probability of 
school bus related crashes. On the other hand, 
wider lanes, median, outside shoulder, inside 
shoulder, presence of posted school speed lim-
its, presence of median (divided roadways), 
and presence of outside shoulders both have 
negative coefficients describing their effect 
in reducing the chances of school bus related 
crashes. 

The study analyzed factors to consider when 
planning for school bus routes. Minimiza-
tion of school bus crashes will be achieved 
by avoiding routes with roadway cross-sec-
tion features found to influence probability of 
crashes. For instance, as found in the study, a 
school bus route planned through a multilane 
roadway with congested traffic volume, higher 
posted speed limits, TWLTL will have higher 
probability of being involved in a crash com-
pared to section with opposite characteristics. 

As stated in previous sections, local streets and 
non-state roads were not included in the analy-
sis due to unavailability of the traffic counts, 
an essential element in crash modeling. Future 
studies should evaluate school bus crashes 
on these roadway classes, the findings might 
vary due to low traffic volumes, low operating 
speed as high volume of pedestrians. 
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ABSTRACT

This study used binary logit models to exam-
ine the crash factors that contribute to severe 
injuries to the drivers across four Midwestern 
states: Iowa, Kansas, Missouri, and Nebraska. 
The findings regarding the association between 
many crash factors (e.g., driver’s age, gender, 
seat belt use, and alcohol use) and severe inju-
ries are consistent with previous studies. How-
ever, the magnitude of the associations varies 
greatly with some outcomes not even signifi-
cant in some states (e.g., adverse weather). 
Findings were then compared to those from 
regional crash estimates using the General Es-
timates System (GES) and differences were 
obtained for rural road crashes. The outcomes 
bring up issues on the appropriateness of im-
plementing safety countermeasures based on 
geographical regions and underscore the need 
for standard crash reporting procedures.2

INTRODUCTION

Many traffic regulations and countermeasures 
are aimed at reducing the risk of driver fatali-
ties and injuries. However, traffic safety is still 
a major concern in the United States. U.S. 
crash data from the year 2008 show that over 
37,000 people were killed and about 2.5 mil-
lion were injured from motor vehicle crashes 
(NHTSA 2009). In one study, highway crashes 
were estimated to be about 3.2% of the total 
medical cost in the United States, and over 
14% for those in the 15–24 years range (Mill-
er, Lestina, and Spicer 1998). Although sev-
eral studies have provided some insights on 

KEYWORDS: injury severity, crash data, General Estimates 
System (GES), Midwestern crashes, rural areas, crash type

Crash Injuries in Four Midwestern States: Comparison to 
Regional Estimates 
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the driver, vehicle, and road and environmen-
tal factors associated with these motor vehicle 
crash injuries and fatalities (e.g., Bedard et 
al. 2002; Connor et al. 2004; Evans and Frick 
1994; Huelke and Compton 1995; Kim et al. 
1995; O’Donnell and Connor 1996), there are 
differences that exist across states and many of 
these differences correspond to the data used 
as well as the analytic techniques employed. 

Driver characteristics related to elevated crash 
risks include age and experience (Zhang et al. 
1998; Kweon and Kockelman 2003), weath-
er conditions (Khattak, Kantor, and Council 
1998; Khattak and Knapp 2001), alcohol im-
pairment (Zador, Krawchuk, and Voas 2000; 
Keall, Frith, and Patterson 2004), and driver 
distraction (Klauer et al. 2006; Neyens and 
Boyle 2008; Violanti 1998). However, the pat-
terns of injury risk do differ across regions. For 
example, a model of injury severity based on 
data from Hawaii showed no significance dif-
ferences for age and gender (Kim et al. 1995), 
while studies on Wisconsin (Tavris, Kuhn, and 
Layde 2001) and Iowa do reveal differences 
in age and gender. Estimates from the Iowa 
crash data also differed from the national es-
timates (Hill and Boyle 2005). These findings 
demonstrate the impact of aggregating data to 
too high a level. That is, a model based on na-
tional data may not be able to capture patterns 
specific to a state or region.

The Midwestern states in the United States 
do have common characteristics, including 
many rural roads and sparsely populated areas. 
These rural areas also contribute to a large pro-
portion of crash fatalities in the United States 
(NHTSA 2008b). A study on four Midwestern 
states, Kansas, Nebraska, South Dakota, and 
North Dakota, showed that there is an inverse 
relationship between motor vehicle crash fatal-
ity rates (per 100,000 persons) and population 
density (Muelleman and Mueller 1996). That 

is, the more sparse the population in these ru-
ral areas, the higher the fatality rates. A 5-mph 
increase in roadway speed limit increases the 
odds of fatalities and injuries (Baum, Lund, 
and Wells 1989; Renski, Khattak, and Council 
1999). Although many studies tend to group 
this region into one cluster, there may be dif-
ferences between these states with respect to 
traffic patterns.

The present study examines different factors 
surrounding traffic crashes and the severity of 
driver injuries within four Midwestern states: 
Iowa, Kansas, Missouri, and Nebraska. The 
analyses attempt to estimate the likelihood of 
severe injuries, given a crash has occurred. In 
other words, exposure data is not incorporated 
into the analysis, as the goal is not to estimate 
the general crash likelihood of driver groups 
or driving conditions, but instead to estimate 
the odds of severe outcomes when a crash oc-
curs. Each state is examined individually and 
then compared to estimates from the regional 
model. It is hypothesized that the injury trends 
will be similar to those previously observed 
in other studies using Midwestern states, but 
the magnitude of such associations may differ. 
Comparisons will then be made to the repre-
sentative sample at the region level of all 12 
Midwestern states, extracted from the General 
Estimates System (GES) (NHTSA 2008a). 
Conclusions and the impacts on policies are 
then considered relative to the results of the 
analyses and comparisons.

METHODS

Data 

Data for this study was obtained from the De-
partments of Transportation and Roads for 
Iowa, Kansas, Missouri, and Nebraska. The 
four databases contained information on crash-
es for the years 2001 to 2006. The scope of this 
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study was limited to passenger vehicles, so data 
from other vehicle types (e.g., buses, trucks, 
and motorcycles) were eliminated prior to 
analyses. Moreover, only data related to drivers 
(not passengers or pedestrians) were included in 
the analysis in order to achieve consistency for 
model comparisons. That is, passengers could 
be situated in different locations within the ve-
hicle, but the driver is always in the driver seat. 
Each state also had different formats for their 
crash data. Hence, the databases were standard-
ized and reformatted to facilitate comparisons. 
The usable crash records available for analysis 
(i.e., records with sufficient crash information) 
encompassed 78.33% of Iowa, 84.49% of Kan-
sas, 85.68% of Missouri, and 70.53% of Ne-
braska’s reported crashes. The differences noted 
are based on the amount of available informa-
tion extracted from each state’s database. 

A model of the Midwestern region of the United 
States based on data from the National Auto-
motive Sampling System (NASS)-GES for the 
same years (2001 to 2006) was then used as a 
comparison to the individual findings (NHTSA 
2008a). The GES data is a stratified sample of 
crashes weighted to represent national crash 
patterns. The GES obtains its data from a na-
tional representative probability sample that is 
extracted from police accident reports (PARs). 
The sampling from PARs is accomplished in 
three stages: 1) sampling of geographic areas, 
which provides the Primary Sampling Units 
(PSUs), 2) sampling of police jurisdiction with-
in each PSU, and 3) selection of crashes within 
the sampled police jurisdictions (NHTSA 2005).

Injury Level Classification in Crash 
Data

The classification of injury level in crash reports 
is based on the KABCO scale, which was intro-
duced by the National Safety Council in the late 
1960s (Compton 2005). This rating system, also 

used in GES (NHTSA 2005), categorizes oc-
cupant injuries into five groups: fatal (K), inca-
pacitating (A), non-incapacitating (B), possible 
injuries or complaint of pain (C), and not injured 
(O). In addition, categories such as “unknown” 
and “not reported” are included for some states 
because discerning the level of injury may not al-
ways be possible. All four states examined in this 
study employ the KABCO scale; although there 
were some differences in definitions (table 1). 

Statistical Analysis

Four separate models were developed to ex-
amine the factors that may increase the likeli-
hood of a severe injury for each state. Although 
an ordering to the severity level may initially 
seem obvious, there are two general problems 
with employing ordered models in the context 
of crash injury severity as noted by Savolainen 
and Mannering (2007): 1) non-injury crashes 
may be underreported in crash data and this 
can lead to biased coefficient estimation by the 
model, and 2) ordered models restrict variable 
influences. In other words, the hypothesis that 
the parameters from an ordered logit model 
are equal across all the levels of the dependent 
variable was rejected. Rather, many researchers 
have used multinomial logit models to exam-
ine the severity of occupant injuries (Awadzi et 
al. 2008; Bedard et al. 2002; Khorashadi et al. 
2005; Watt et al. 2006). 

The primary goal of this study was to compare 
outcomes across multiple states and the use of 
the “KABCO” scale was different in each one 
(see table 1). Hence, a more simplistic binary 
logistic regression model (or logit model), as 
used by Al-Ghamdi (2002), is employed to 
provide insights on injuries while also allow-
ing a clear comparison across the four states, 
which can then be generalized to the regional 
level. The injury severity levels were therefore 
grouped into two general categories of “severe” 
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TABLE 1  Detailed KABCO Injury Categories in Crash Databases

Crash  

database Iowa Kansas Missouri Nebraska

GES national 

sampled data

KABCO 

injury 

levels

K Fatal Fatal injury Fatal Fatal Fatal injury

A Incapacitating

Disabled  

(incapacitating) Disabling injury Disabling

Incapacitating 

injury

B Non-incapacitating

Injury, not  

incapacitating

Evident injury  

(not disabling) Visible

Non-incapacitating 

injury

C Possible Possible injury

Probable injury  

(not apparent) Possible Possible injury

O Uninjured Not injured Not apparent No injury No injury

Augmenting 

categories

Unknown Unknown Unknown na Died prior to crash

Not reported na na na Unknown if injured

na na na na na

KEY: na = not available

(including codes K and A) and “non-severe” 
injuries (including codes B, C, and O) and ex-
amined using simultaneous binary logit mod-
els developed with SAS (Statistical Analysis 
System) version 9.1 and the CATMOD proce-
dure (Allison 1999). The CATMOD procedure 
is used to estimate the likelihood of a driver 
sustaining severe injuries when compared to 
non-severe injuries. The model is represented 
in equation 1.

Where Xir is the value of the explanatory vari-
able r for driver i, and βjr is the coefficient as-
sociated with the rth variable (r = 1, …, R) 
for the jth injury severity level. Yi is a random 
variable whose value (j = 1 or 2) indicates 
the severity level of the injuries sustained by 
driver i. The CATMOD procedure uses maxi-
mum likelihood estimation (MLE) and outputs 
logarithmic ratio estimates of the likelihood 
of severe (versus non-severe) injuries, based 
on the levels of each explanatory variable. By 
exponentiating the logarithmic ratio estimates, 
odds ratios for sustaining severe (versus non-
severe) injuries were obtained. The adjusted 
odds ratios [AORs] are odds ratios that have 

been adjusted for the other explanatory vari-
ables in the model because they are calculated 
based on a multivariate model that controls for 
other factors. Wherever the logarithmic ratio 
estimate is positive, exponentiating this esti-
mate will give a value greater than 1, and thus 
the odds of sustaining severe injuries are high-
er than non-severe injuries. Conversely, when 
this estimate is negative, exponentiating will 
give a value less than 1, and the odds of hav-
ing a severe injury are less than a non-severe 
injury. The likelihood ratio test was used to 
compare the goodness of fit (Cochran 1952) 
of the fitted model to a saturated model (i.e., 
backward elimination) (Ananth and Klein-
baum 1997). A high p-value would suggest 
that the fitted model was a good fit and that no 
significant terms were omitted.

Explanatory Variables

The statistical models included explanatory 
variables shown to have an impact on the 

(1)
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likelihood of a crash or a severe injury in a 
crash. Drivers were categorized into three age 
groups: 24 years old and younger (younger 
drivers), aged between 25 and 65 (reference 
group), and drivers older than 65 (older driv-
ers) as similarly done in other studies (Zhang et 
al. 1998; Khattak, Kantor, and Council 1998; 
Farmer, Braver, and Mitter 1997). Weather 
conditions were divided into two categories, 
normal and adverse. The adverse weather 
category encompassed situations where rain, 
snow, freezing rain, fog/smoke, mist, sleet, 
severe winds, blowing sand/soil/dirt, or com-
binations of these conditions were present. If 
none of the above conditions were present, 
then weather was labeled as normal. Lighting 
was considered in two categories, daylight and 
non-daylight situations with the latter consist-
ing of night, dawn, and dusk. Roadway speed 
limit was set up into three groups: less than 35 
mph, between 35 and 55 mph, and higher than 
55 mph. The categories used for weather and 
lighting conditions are consistent with those 
used in similar studies (Khattak, Kantor, and 
Council 1998; Zhang et al. 1998; Abdel-Aty 
2003). The point of impact variable (the first 
point that produced damage or injury) was 
examined using five categories; front, driver 
side, passenger side, top/under, and rear of the 
car.

Five crash types were considered: rear-end, 
head-on, angular, sideswipe, and single-ve-
hicle crashes. Angular, rear-end, sideswipe, 
and head-on crashes are the four categories 
of “collision with motor vehicle in transport” 
used by US DOT, while single-vehicle crashes 
correspond to “collisions with fixed object” 
and “collision with object not fixed” (NHTSA 
2009). In addition to crash type, the (initial) 
crash point of impact was included for states 
whose crash database supported this variable 
(i.e., Iowa and Nebraska).

Two driver-related factors were also of interest 
given the abundance of literature demonstrat-
ing increase crash risk, driver distraction and 
blood-alcohol content (BAC). However, the 
crash databases did not include sufficient in-
formation regarding these two factors for the 
years examined. More specifically, the propor-
tion of crashes that included any details about 
the distraction-related factors encompass only 
1.27% in Iowa, 1.33% in Kansas, 1.18% in 
Missouri, and 0.81% in Nebraska. Surprising-
ly, driver BAC information was not available 
in any of the states’ databases. Those states 
that did include this variable had a large pro-
portion of non-reporting (e.g., about 51% of 
Iowa crashes with drivers under the influence 
of alcohol lacked BAC level). Considering 
these limitations, only the more general fac-
tor of “being under the influence of alcohol or 
drugs” (yes or no) was used in the analyses. It 
should be noted that several other factors could 
contribute to the severity of injuries sustained 
by driver. For example, vehicle size and mass 
are known to influence driver fatality (Evans 
and Frick 1992, 1994). However, this informa-
tion was not available in the datasets that were 
used for this study.

RESULTS 

State Level

A separate model was developed for each 
state, with each state’s databases including 
the majority of variables of interest. The Iowa 
crash database included all variables of inter-
est. Kansas did not have sufficient information 
regarding point of impact, while Nebraska 
lacked data on air bag deployment. Missouri 
did not have information on drug use, air bag 
deployment, and point of impact. All models 
fitted well based on the likelihood ratio test. 
The significance level was set to 0.0001.
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There were similar demographic patterns 
across the four states (table 2). Drivers’ mean 
age ranged from 36.64 (in Nebraska) to 37.90 
(in Missouri). The proportion of female driv-
ers ranged from 43.23% (Kansas) to 45.09% 
(Nebraska). Among crash types, angular and 
rear-end crashes were the most common in 
each of the five databases, comprising 65–85% 
of crashes (table 3). 

Driver and Vehicle Characteristics

The four binary logit models are shown in ta-
ble 4, with a general finding that female driv-
ers were more susceptible to serious injuries 
in the four Midwestern states examined. There 
were similar estimates between Iowa and Kan-
sas (adjusted odds ratios [AORs] = 1.07 and 
1.08, respectively) and between Missouri and 

Nebraska (AORs = 1.21 and 1.24, respective-
ly). With respect to driver age, younger drivers 
(younger than 25) were less likely to sustain 
serious injuries when compared to the middle-
aged group (aged 25-65). Older drivers were 
more likely to be severely injured. There was 
also an age and gender interaction in Missouri 
only, with young females being less likely to 
sustain severe injuries compared to middle-
aged male drivers (AOR = 0.96).

Passengers were shown to have a protective 
effect in Iowa and Kansas, with drivers being 
less severely injured driving with passengers 
when compared to driving alone. In contrast, 
drivers with passengers in Missouri were more 
likely to sustain severe injuries. No significant 
association was observed between injury se-
verity and passengers in Nebraska. 

TABLE 2  Descriptive Statistics of State Crash Data

State Number of crashes Mean age (SD)

Gender (%)

Seat belt use (%) Drug/alcohol use (%)Male Female

Iowa 370,428 37.85 (18.46) 55.82 44.18 57.82 4.01

Kansas 598,070 36.66 (17.34) 56.77 43.23 83.84 5.68

Missouri 1,465,219 37.90 (17.91) 56.43 43.57 82.25 2.91

Nebraska 271,445 36.64 (17.23) 54.91 45.09 79.1 1.52

TABLE 3  Frequencies of Crash Types in Crash Databases

Crash type

Iowa Kansas Missouri Nebraska GES (Midwest)

Count % Count % Count % Count % Count %

Angular 137,687 37.17 196,864 32.9 487,583 33.28 104,099 38.35 4,424,740 36.11

Rear-end 114,150 30.82 190,377 31.8 573,904 39.17 125,349 46.18 4,446,780 36.29

Sideswipe 48,569 13.11 42,100 7.04 145,999 9.96 39,316 14.48 1,062,281 8.67

Head-on 8,951 2.42 11,005 1.84 41,184 2.81 2,053 0.76 239,021 1.95

Single-vehicle 48,569 16.49 157,724 26.4 216,549 14.78 628 0.23 2,079,440 16.97

All crashes 370,428 598,070 1,465,219 271,445 12,252,262*

*Based on weighted observations
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As expected, there was a higher likelihood of 
a severe injury when the driver did not use a 
seat belt, and this was consistently observed 
in all four states with Nebraska and Missouri 
being more similar in odds (AORs = 2.70 and 
2.74, respectively) and Iowa and Kansas hav-
ing higher odds ratios (3.59 and 4.24, respec-
tively). Air bag deployment data was available 
in Iowa and Kansas only, and drivers in these 
two states were more likely to be severely in-
jured with an airbag deployment. In each state, 
drivers under the influence of alcohol or drug 
were significantly more likely to sustain se-
vere injuries compared to sober drivers. The 
magnitude of this effect varied slightly from 
1.32 (Kansas) to 1.74 (Nebraska).

Crash Types and Points of Impact

The odds of sustaining severe injuries were 
higher for head-on crashes when compared to 
rear-end crashes, and ranged from 3.18 in Iowa 
to 4.92 in Kansas. Drivers in sideswipes were 
less likely to sustain severe injuries in all four 
states, with quite similar odds ratios (from 0.38 
to 0.50). Observations for single-vehicle crash-
es were consistent for Iowa and Missouri, in-
dicating higher likelihoods of serious injuries 
(AORs = 1.29 and 1.93, in Iowa and Missouri, 
respectively). However, the odds of having se-
vere injuries were not significantly different 
between single-vehicle and rear-end crashes in 
Kansas and Nebraska. No significant difference 
was observed between angular and rear-end 
crashes in any of the states in terms of severe 
injury odds. In Iowa and Nebraska, drivers in 
crashes with impacts on the driver side were 
1.16 and 1.82 times, respectively, more likely 
to sustain severe injuries compared to those 
whose vehicles were impacted on the rear side. 
No other significant differences were observed 
with respect to crash types and points of impact.

Environmental Conditions

In all four states, drivers involved in crashes 
in rural settings were more likely to sustain se-
vere injuries when compared to those having 
crashes in urban areas (AORs ranged from 1.71 
(Iowa) to 2.55 (Missouri)). Non-dry surfaces 
were associated with lower likelihoods of se-
vere crashes in all four states, i.e., the odds of 
sustaining severe injuries on non-dry surfaces 
were between 0.81 (for Nebraska) and 0.92 (for 
Missouri) compared to dry surfaces. There was 
an interaction effect between crash location and 
crash type, with drivers more likely to be se-
verely injured if they were involved in head-on 
crashes in rural settings (AORs = 1.26, 1.48, 
and 1.20 in Iowa, Kansas, and Missouri, respec-
tively), compared to those involved in rear-end 
crashes in urban settings. By contrast, drivers in 
single-vehicle crashes in rural settings were less 
likely to sustain severe injuries (AORs = 0.72, 
0.48, and 0.83 in Iowa, Kansas, and Missouri, 
respectively). In Missouri, two additional con-
trasts were significant as well; drivers in angu-
lar crashes in rural settings were 0.88 times less 
likely and those in sideswipes were 1.22 times 
more likely to have severe injuries.

Findings regarding lighting conditions were not 
consistent across the states. In Iowa and Kan-
sas, drivers were slightly less likely to sustain 
severe injuries in crashes occurring in non-day-
light situations, i.e., during night, dawn, or dusk 
(AORs = 0.94 and 0.92, respectively). In Ne-
braska, contrary to Iowa and Kansas, the odds 
of sustaining severe injuries were higher in day-
light hours (AOR = 1.11). The Missouri model 
showed no significant association between 
lighting and injury severity. Weather condi-
tion at the time of crash was a significant factor 
only in Missouri, where drivers were slightly 
less likely to be severely injured in crashes oc-
curring in adverse weather conditions (AOR = 
0.94).
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TABLE 4  State Models for the Likelihood of Severe Injuries
Iowa Kansas

Parameter Estimate SE χ2

Adjusted 

OR Estimate SE χ2

Adjusted 

OR
Intercept -2.21 0.03 4012.3 0.11 -3.33 0.04 5816.6 0.04

Head-on crashes 1.16 0.04 1049.6 3.18 1.59 0.04 1517.2 4.92

Angular crashes 0.07 0.02 ns 1.08 0.10 0.03 ns 1.10

Sideswipes -0.70 0.04 346.8 0.5 -0.89 0.05 271.1 0.41

Single-vehicle crashes 0.26 0.02 114.9 1.29 0.09 0.03 ns. 1.10

Rural settings 0.54 0.02 1097.4 1.71 0.65 0.03 575.1 1.92

Female drivers 0.07 0.01 22.9 1.07 0.08 0.01 43.2 1.08

Age < 25 -0.36 0.02 346.3 0.7 -0.26 0.02 180.5 0.77

Age > 65 0.40 0.02 279.7 1.49 0.33 0.03 164.7 1.39

Passenger(s) present in the car -0.10 0.01 64.0 0.9 -0.07 0.01 30.3 0.93

Adverse weather 0.02 0.02 ns 1.02 0.05 0.03 ns 1.05

No daylight -0.07 0.01 23.8 0.94 -0.09 0.01 42.4 0.92

Non-dry surface -0.17 0.02 87.8 0.85 -0.18 0.02 52.9 0.84

Under influence of alcohol/drug 0.50 0.02 753.7 1.64 0.28 0.02 250.9 1.32

No seat belt in use 1.28 0.02 2813.8 3.59 1.44 0.03 2105.1 4.24

Air bag deployed 0.76 0.02 1254.0 2.13 0.27 0.03 115.7 1.32

Speed limit < 35 mph -0.48 0.03 361.5 0.62 -0.93 0.03 1348.6 0.39

Speed limit > 55 mph 0.29 0.03 110.5 1.34 0.79 0.03 837.6 2.20

Point of impact: front -0.03 0.02 ns 0.97 na na na na 

Point of impact: driver side 0.15 0.03 30.0 1.16 na na na na 

Point of impact: passenger side -0.11 0.03 ns 0.9 na na na na 

Point of impact: top/under 0.10 0.06 ns 1.1 na na na na 

Head-on crashes in rural settings 0.23 0.03 44.6 1.26 0.39 0.05 57.1 1.48

Angular crashes in rural settings 0.04 0.02 ns 1.04 0.01 0.04 ns 1.01

Sideswipes in rural settings 0.07 0.04 ns 1.07 0.14 0.07 ns 1.15

Single-vehicle crashes in rural settings -0.33 0.02 217.9 0.72 -0.73 0.03 546.5 0.48

Female drivers younger than 25 na na na na na na na na 

Female drivers older than 65 na na na na na na na na 

Likelihood ratio 19,894.74 9,361.05

Number of observations 370,428 598,070

NOTE: All parameters are significant at p ≤ 0.0001 unless otherwise noted (ns). For variables not found statistically significant, no contrast estimate 
is reported. 
KEY: na = not applicable; ns = not significant

Continued, next page
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TABLE 4  State Models for the Likelihood of Severe Injuries (continued)
Missouri Nebraska

Parameter Estimate SE χ2

Adjusted 

OR Estimate SE χ2

Adjusted 

OR

Intercept -3.03 0.02 18146.8 0.05 -2.69 0.10 738.2 0.07

Head-on crashes 1.24 0.02 2759.4 3.44 1.45 0.09 277.6 4.26

Angular crashes -0.06 0.02 ns 0.95 0.18 0.06 ns 1.20

Sideswipes -0.96 0.04 641.7 0.38 -0.68 0.07 90.4 0.50

Single-vehicle crashes 0.66 0.02 1529.0 1.93 -0.22 0.23 ns 0.80

Rural settings 0.94 0.01 4211.4 2.55 0.76 0.02 1325.1 2.15

Female drivers 0.19 0.01 618.1 1.21 0.21 0.02 143.4 1.24

Age < 25 -0.21 0.01 420.0 0.81 -0.31 0.03 120.1 0.73

Age > 65 0.25 0.01 336.2 1.28 0.35 0.04 101.0 1.42

Passenger(s) present in the car 0.49 0.01 4606.2 1.64 -0.01 0.02 ns 0.99

Adverse weather -0.06 0.01 20.1 0.94 0.07 0.04 ns 1.07

No daylight 0.00 0.01 ns 1.00 0.11 0.02 26.9 1.11

Non-dry surface -0.09 0.01 78.6 0.92 -0.21 0.03 51.6 0.81

Under influence of alcohol 0.31 0.01 927.4 1.36 0.56 0.04 226.3 1.74

No seat belt in use 1.01 0.02 4020.4 2.74 0.99 0.04 550.3 2.70

Air bag deployed na na na na na na na na

Speed limit < 35 mph -0.59 0.01 1833.5 0.56 -0.54 0.04 191.6 0.58

Speed limit > 55 mph 0.47 0.01 1969.0 1.60 0.74 0.04 351.8 2.09

Point of impact: front na na na na -0.08 0.07 ns 0.92

Point of impact: driver side na na na na 0.60 0.07 68.8 1.82

Point of impact: passenger side na na na na 0.15 0.08 ns 1.16

Point of impact: top/under na na na na 0.01 0.24 ns 1.01

Head-on crashes in rural settings 0.19 0.03 48.8 1.20 na na na na 

Angular crashes in rural settings -0.12 0.02 39.5 0.88 na na na na 

Sideswipes in rural settings 0.20 0.04 22.1 1.22 na na na na 

Single-vehicle crashes in rural settings -0.19 0.02 109.7 0.83 na na na na 

Female drivers younger than 25 -0.05 0.01 21.0 0.96 na na na na 

Female drivers older than 65 0.04 0.01 ns 1.04 na na na na 

Likelihood ratio 14,845.97 7,880.31

Number of observations 1,465,219 271,445
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The likelihood of driver’s sustaining severe 
injuries also increased on roads with higher 
posted speed limits. The odds ratios for severe 
injuries on roads with lower speed limits (less 
than 35 mph) compared to the reference speed 
limit (35–55 mph) were very similar for Iowa, 
Missouri, and Nebraska (0.62, 0.56, and 0.58, 
respectively), while Kansas revealed a slightly 
lower odds ratio (0.39). For roads with higher 
speed limits, the odds ratios ranged from 1.34 
in Iowa to 2.20 in Kansas.

Comparisons Across States

There were some common and consistent 
findings across all four Midwestern states for 
various driver characteristics (gender, age, al-
cohol and drug use, and seat belt use), as well 
as environmental conditions including surface 
condition, posted speed limit, and rural/urban 
settings. However, differences were observed 
for crash type. Single-vehicle crashes signifi-
cantly impacted the likelihood of a severe in-
jury in Iowa and Missouri, but in Kansas and 
Nebraska, there was no difference between 
single-vehicle and rear-end crashes. 

Similarly, the interaction between crash type 
and location (rural/urban) was significant for 
all states but Nebraska. The interaction be-
tween age and gender, on the other hand, was 
only significant in Missouri. Results pertain-
ing to weather condition showed significant 
differences only in Missouri. Driving in non-
daylight conditions was associated with a de-
crease in injuries in both Iowa and Kansas, but 
increased injuries in Nebraska. No significant 
difference was observed in Missouri. Pas-
sengers were found to be similarly associated 
with a protective effect for drivers in Iowa and 
Kansas, but an increase in severe injuries in 
Missouri. No significance was observed in Ne-
braska. 

Point of impact information was only avail-
able for Iowa and Nebraska, where it produced 
patterns in the same direction (although the 
magnitude was different). Air bag deployment 
information was also available in Iowa and 
Nebraska only. Here again, results indicated 
associations in the same direction but different 
magnitude.

Figure 1 summarizes the results (point esti-
mates and confidence intervals) for variables 
that showed a significant association with se-
vere injuries across the four states examined. 
Note that in many cases, the confidence inter-
vals overlap heavily (e.g., age, under the in-
fluence of alcohol/drug) which indicates great 
similarities across the four states examined. In 
other cases, however, the estimates are more 
diverse (e.g., seat belt use, head-on crashes) 
which indicates considerable differences 
among the states. These findings motivate de-
veloping a Midwestern crash injury severity 
model, extract driver injury patterns from it, 
and compare them to the four state models to 
assess the extent to which sampled crash da-
tabases can describe injury patterns across the 
region. 

Regional Level 

The Midwestern region of the United States was 
examined using the sampling region established 
by the National Automotive Sampling System 
(NASS) and collected as part of the GES data 
(NHTSA 2005). This region consisted of 12 
states (i.e., Ohio, Indiana, Illinois, Michigan, 
Wisconsin, Minnesota, North Dakota, South 
Dakota, Nebraska, Iowa, Missouri, and Kan-
sas). The goal of this analysis was to assess the 
level of agreement between the outcomes ob-
served from the states’ crash databases and the 
outcomes from a sample of crashes in the same 
region (GES). 
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Midwestern crash data used in the injury sever-
ity model included 97,070 weighted records, 
representing 12,252,262 crashes. The binary 
logit model demonstrated a good fit (based on 
the likelihood ratio test). Results obtained from 
this regional model are summarized in table 5 
(only estimates pertaining to significant factors 
are included in the table) and discussed in the 
forthcoming section. 

Driver and Vehicle Characteristics

Driver gender was found significant in the re-
gional model with female drivers being 8% more 
susceptible to severe injuries than males (AOR = 
1.08). Driver age was a significant factor as well. 
Younger drivers were less likely to be severely 
injured while older drivers were more likely to 
sustain severe injuries when compared to those 
aged between 25 and 65 (AORs = 0.71 and 1.47, 
respectively). The interaction between age and 

gender was also significant; younger female 
drivers were less and female drivers aged more 
than 65 were more likely to be severely injured 
in car crashes (AORs = 0.95 and 1.03).

Restraint use was also significant. The likeli-
hood of having severe injuries for drivers with 
no restraint was 5.29 times more than drivers 
wearing seatbelts. As expected, air bag deploy-
ment was associated with severe injuries (AOR 
= 3.42). Drivers under the influence of alco-
hol or drugs were found to be 2.47 times more 
likely to have severe injuries compared to sober 
drivers. Conversely, drivers with passengers in 
their cars were slightly less likely to be seri-
ously injured compared to drivers who traveled 
alone (AOR = 0.97). 

Crash Types and Points of Impact

Drivers involved in head-on crashes were 2.82 
times more likely to have severe injuries com-

FIGURE 1  State Estimates and Confidence Intervals for the Association Between  
           Crash Variables and Severe Injuries
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pared to those in rear-end crashes. Drivers in 
single-vehicle and angular crashes were also 
more likely to sustain severe injuries (AORs = 
1.86 and 1.10, respectively). As expected, side-
swipes were mainly associated with minor or 
no injuries (AOR = 0.34).

Vehicles impacted on the driver side were more 
likely to have a severely injured occupant than 
those vehicles impacted on the back (AOR = 
1.82). Other areas of the vehicle (i.e., front, pas-
senger side, top, or undercarriage) were associ-
ated with lower likelihoods of severe injuries, 
compared to rear of the vehicle (AORs = 0.92, 
0.90, and 0.75, respectively).

Environmental Conditions

The regional model revealed that drivers were 
more likely to sustain severe injuries in crash-
es occurring in non-daylight (i.e., dark, dawn, 
or dusk) conditions compared to crashes dur-
ing daylight hours (AOR = 1.08). By contrast, 
crashes on non-dry surfaces (e.g., snow cov-
ered, icy, wet, dirty) were associated with less 
likelihood of severe injuries (AOR = 0.82). 
Weather conditions (i.e., adverse versus normal 
weather) were found insignificant.

Crashes in rural settings were significantly less 
injurious for drivers (AOR = 0.92). The inter-
action between crash type and rural or urban 
setting was also significant; drivers who had 
been in angular and single-vehicle crashes in 
rural settings were more likely to be seriously 
injured (AORs = 1.08 and 1.09), and those in 
sideswipes were less likely to have severe in-
juries (AOR = 0.71). This interaction was in-
significant for head-on crashes.

Roadway speed limit was found significant: 
drivers involved in crashes on roadways with 
speed limits lower than 35 mph were 0.55 
times less likely to have severe injuries com-

pared to those in crashes on roads with a 35 to 
55 mph speed limit. Crashes on roadways with 
posted speed limits higher than 55 mph were 
1.47 times more likely to result in severe inju-
ries than those on roadways with speed limits 
between 35 and 55 mph.

State and Regional Level  
Comparison

The goal of comparing the state outcomes with 
the sampled data collected as part of GES is 
to assess the capability of gaining insights 
on the Midwestern states when aggregated 
to the regional level. It should be noted that 
the GES data for the Midwest does cover 12 
states within the region. The additional eight 
Midwestern states are Ohio, Indiana, Illinois, 
Michigan, Wisconsin, Minnesota, North Da-
kota, and South Dakota. GES does not provide 
data at the state level and as such, it was not 
possible to isolate the four states for which the 
individual analyses had been done. 

The odds ratios (and corresponding confidence 
intervals) for the parameter estimates com-
mon across the four states and at the regional 
level are listed in table 6 and are graphically 
depicted in figure 2. The greatest similarities 
are for driver age and roadway surface con-
dition, where the odds ratios estimated by the 
four state models are close and the odds ra-
tios calculated by the GES-based model fall in 
their range. The same pattern is evident for the 
contrast between lower (less than 35 mph) and 
reference (35–55 mph) speed limits. For driver 
gender, the odds ratio calculated for the con-
trast between female and male drivers (1.08) is 
equal to the odds ratio for the same contrast in 
Kansas and very close to that of Iowa (1.07); 
however, the value of the odds ratio for this 
contrast is higher for Missouri and Nebraska 
(1.21 and 1.24, respectively). For higher speed 
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TABLE 5  Regional Model for the Likelihood of Severe Injuries

Parameter Estimate SE χ2 Adjusted OR
Intercept -3.36 0.017 37,015.7 0.03
Head-on crashes 1.04 0.011 8,500.3 2.82
Angular crashes 0.09 0.007 197.7 1.1
Sideswipes -1.09 0.017 4,261.2 0.34
Single-vehicle crashes 0.62 0.007 7,491.5 1.86
Rural settings -0.09 0.005 286.3 0.92
Female drivers 0.07 0.004 310.8 1.08
Age < 25 years old -0.34 0.006 3,820.6 0.71
Age > 65 years old 0.38 0.007 2,809.7 1.47
Passenger(s) present in the car -0.03 0.004 62.5 0.97
Adverse weather 0.01 0.006 1.1 1.01
No daylight 0.08 0.003 480.6 1.08
Non-dry surface -0.19 0.005 1,423.6 0.82
Under influence of alcohol/drug 0.91 0.023 1,557.2 2.47
No restraint in use 1.67 0.009 32,223.5 5.29
Air bag deployed 1.23 0.005 62,029.3 3.42
Speed limit < 35 mph -0.59 0.006 10,441.2 0.55
Speed limit > 55 mph 0.39 0.007 2,872.1 1.47
Point of impact: front -0.09 0.009 93.5 0.92
Point of impact: driver side 0.6 0.01 3,307.1 1.82
Point of impact: passenger side -0.11 0.011 97.3 0.9
Point of impact: top/under -0.29 0.032 82 0.75
Head-on crashes in rural settings -0.03 0.011 9.1 0.97
Angular crashes in rural settings 0.08 0.006 151.1 1.08
Sideswipes in rural settings -0.35 0.016 465.6 0.71
Single-vehicle crashes in rural settings 0.08 0.007 155.5 1.09
Female drivers aged less than 25 -0.05 0.005 89.9 0.95

Female drivers aged more than 65 0.03 0.007 17.8 1.03
Likelihood ratio 438,835.9
Number of unweighted observations 97,070

Number of weighted observations       12,252,262

limits (above 55 mph), the odds of sustaining 
severe injuries is 1.47 based on the GES mod-
el, which is between the odds ratios calculated 
for the states of Iowa and Missouri (1.34 and 
1.60, respectively). However, the odds ratios 
estimated for the same contrast in Kansas and 
Nebraska are considerably higher (2.20 and 
2.09, respectively).

In many cases, there was general agreement 
among the state models and the GES-based 
model on the association between certain 
levels of a factor (e.g., no restraint in use by 
driver) and severe injuries, but as expected, 
the strength of such association was not al-
ways similar. For crash type, the likelihood 
of a head-on crash sustaining greater injuries 
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TABLE 6  Parameters Related to the Findings Across the Four Midwestern States and  
           the Region

Parameter
Logit models (AOR and confidence intervals)

Iowa Kansas Missouri Nebraska Midwest

Crash type Head-on 

crashes

3.18

(2.83, 3.58)

4.92

(4.30, 5.63)

3.44

(3.18, 3.72)

4.26

(3.20, 5.67)

2.82

(2.72, 2.92)

Sideswipes 0.50

(0.44, 0.56)

0.41

(0.34, 0.49)

0.38

(0.34, 0.43)

0.50

(0.40, .64)

0.34

(0.32, 0.36)

(compared to rear-end) 

Rural setting

(compared to urban)

1.71

(1.62, 1.80)

1.92

(1.75, 2.10)

2.55

(2.43, 2.67)

2.15

(2.00, 2.30)

0.92

(0.90, 0.93)

Females

(compared to males)

1.07

(1.02, 1.12)

1.08

(1.04, 1.13)

1.21

(1.18, 1.25)

1.24

(1.17, 1.31)

1.08

(1.06, 1.09)

Driver age < 25 years 0.70 

(0.65, 0.74)

0.77

(0.73, 0.82)

0.81

(0.79, 0.84)

0.73

(0.66, 0.80)

0.71

(0.70, 0.72)

> 65 years 1.49

(1.38, 1.61)

1.39

(1.27, 1.51)

1.28

(1.23, 1.34)

1.42

(1.27, 1.60)

1.47

(1.43, 1.50)

(compared to 25-65)

Non-dry surface

(compared to dry surface)

0.85

(080, 0.90)

0.84

(0.77, 0.91)

0.92

(0.89, 0.95)

0.81

(0.74, 0.89)

0.82

(0.81, 0.84)

Alcohol/ drug impairment

(compared to sober driving)

1.64

(1.55, 1.74)

1.32

(1.25, 1.40)

1.36

(1.31, 1.40)

1.74

(1.54, 1.97)

2.47

(2.29, 2.67)

No restraint in use

(compared to seat belt in use)

3.59

(3.31, 3.88)

4.24

(3.82, 4.70)

2.74

(2.60, 2.89)

2.70

(2.35, 3.10)

5.29

(5.13, 5.45)

Speed limit < 35 mph 0.62

(0.57, 0.67)

0.39

(0.36, 0.43)

0.56

(0.53, 0.58)

0.58

(0.51, 0.66)

0.55

(0.54, 0.56)

> 55 mph 1.34

(1.22, 1.47)

2.20

(2.01, 2.41)

1.60

(1.55, 1.66)

2.09

(1.84, 2.38)

1.47

(1.44, 1.51)

(compared to 35-55 mph)

Air bag deployed

(compared to no air bag deployment)

2.13

(1.99, 2.29)

1.32

(1.21, 1.43)

NA NA 3.42

(3.36, 3.47)

Point of impact: Driver side

(compared to rear side)

1.16

(1.06, 1.27)

NA NA 1.82

(1.44, 2.31)

1.82

(1.76, 1.89)



GHAZIZADEH & BOYLE  29

when compared injuries associated with rear-
end crashes (OR = 2.82) was lower at the re-
gional level than at the state level. The same is 
observed for sideswipes where the odds ratio 
of sustaining serious injuries (0.34) is lower at 
the regional level than at the individual states’ 
models (range of 0.38 to 0.50). On the con-
trary, the GES-based odds ratios for alcohol 
and drug use and restraint use are higher than 
the highest odds ratios found in the individual 
states’ models, indicating stronger associa-
tions between being under the influence of al-
cohol or drugs and having no restraint in use, 
and sustaining severe injuries by drivers. No 
confidence interval overlap is evident between 
the GES-based Midwestern model and the in-
dividual states models.

The air bag deployment factor could only be 
incorporated in the models of Iowa and Kansas 
due to the unavailability of precise data for the 
other two states. The odds of having serious 
injuries for cases in which air bags had been 
deployed were 3.42 times the cases without air 
bag deployment, based on the GES Midwest-
ern model. Iowa and Kansas models showed 
weaker incompatible contrasts; i.e., odds ratios 
of 2.13 and 1.32, respectively. The comparison 
of confidence intervals revealed no overlap be-
tween the results of the three models. There-
fore, the observations for air bag deployment 
yield no consensus for the Midwestern states 
considered in this study.

As noted earlier, point of impact was only 
available in for Iowa and Nebraska. The con-
trast between driver side and rear side of the 
vehicle was significant in predicting driver in-
jury severity for both states, indicating high-
er likelihoods of serious injuries for drivers 
whose cars were impacted on driver side ver-
sus those involved in crashes in which the rear 
of the car was affected (odds ratios of 1.16 for 
Iowa and 1.82 for Nebraska). While the pat-

tern observed in Nebraska was exactly the 
same as that calculated based on the GES data 
(with a wider confidence intervals for Nebras-
ka), the contrast was smaller for Iowa, depict-
ing a weaker difference between the levels of 
injury sustained by drivers for the two points 
of impact.

For rural versus urban settings, the direc-
tions of findings were completely opposite. 
The GES Midwestern model depicted slightly 
lower likelihoods of severe injuries for driv-
ers in crashes occurring in rural settings (odds 
ratio of 0.92), whereas all the individual state 
models predicted higher likelihoods of such 
injuries in rural regions compared to urban 
settings, with odds ratios in the range of 1.71 
to 2.55. This is the only contradiction between 
the states data and GES data-based models.

DISCUSSION

The goal of this paper was to investigate the 
factors associated with severe (fatal or inca-
pacitating) injuries sustained by drivers in 
crashes, with a focus on the Midwestern states 
in the central part of the United States. The 
majority of the findings from each state were 
consistent with the literature. For example, our 
findings showed that females and older drivers 
were more susceptible to severe injuries in car 
crashes, and this has been observed in previous 
studies (O’Donnell and Connor 1996; Bedard 
et al. 2002). Seat belt use had an even great-
er effectiveness at the state level when com-
pared to estimates from other studies (Martin, 
Crandall, and Pilkey 2000; Malliaris, Digges, 
and DeBlois 1995; Evans 1993; Bedard et al. 
2002). Alcohol and drug use is another explan-
atory variable in our model that has consistent-
ly shown to increase the likelihood of severe 
injuries (Evans and Frick 1993; Evans 1990; 
Keall, Frith, and Patterson 2004; Mayhew et 
al. 1986; Sjogren et al. 1997; Zador, Kraw-
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FIGURE 2  Comparison Between State and Regional Estimates  
           (Lines Indicate Confidence Intervals of the Estimates)
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chuk, and Voas 2000). Head-on crashes were 
associated with the highest odds of sustaining 
severe injuries, and this is consistent with the 
findings of O’Donnell and Connor (1996).

There were differences that are worth noting. 
The four Midwestern states were not consis-
tent with respect to crash type, with severe 
injuries more likely in single-vehicle crashes 
compared to rear-end crashes in Iowa and 
Missouri, and equally likely in the two crash 
types in Kansas and Nebraska. Crashes in ru-
ral settings were more likely to cause severe 
injuries than those occurring in urban crashes 
at the state level. However, the opposite was 
observed at the regional level, underscoring 
the impact of potential information loss when 
aggregating to the general region. Although 

this study had crash data for only four states, 
it clearly demonstrates that differences do ex-
ist from the state to regional level. Popula-
tion distribution differences and geographical 
properties of different regions of the Midwest 
are influential in the disparity observed, even 
though the same modeling technique was used 
in all the models developed.

The four states examined may also have more 
rural characteristics when compared to other 
Midwestern states such as Illinois, Michigan, 
and even Indiana, with much larger metropoli-
tan areas (e.g., Chicago, Detroit, and India-
napolis). Research has shown that differences 
in injury patterns in rural and urban settings 
may be due to the variations in availability of 
trauma care systems and distance from these 
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facilities (Brodsky and Hakkert 1988; Ben-
tham 1986). Therefore, with more crashes oc-
curring in areas with access to advanced medi-
cal facilities, these differences may lessen with 
other factors influencing urban crashes, e.g., 
roadway geometry, type of vehicle, distrac-
tions, etc., playing a larger role in the severity 
of injuries.

There are many data quality issues with us-
ing crash data at the state and national level 
related to underreporting, misclassification, 
and omitted data. At the national level, crashes 
are sampled and reported as four separate re-
gions: Northwest, Midwest, South, and West. 
There is no information to the analyst to con-
nect the data back to a specific state. Given 
that GES data is a weighted sample, it is not 
actually possible to have a direct comparison 
of the models developed at the state level to 
the sampled data state using GES data.

The state crash databases used in this study had 
several shortcomings that resulted in the need 
to exclude many crash records from the data 
used in statistical analyses. There were also 
missing crash, vehicle, and driver attributes 
for some state models (i.e., point of impact in 
Kansas, air bag deployment, point of impact, 
and drug use in Missouri, and air bag deploy-
ment in Nebraska). The same problem was 
identified by Ghazizadeh and Boyle (2009) in 
their study of driver distraction. Crash factors 
were not as comprehensive at the state level 
as initially expected. Missouri had the highest 
percentage (over 85%) of reported crashes that 
included the explanatory variables needed for 
the statistical model. 

The crash report forms for each state for the 
years studied provide some insights on the 
relatively low numbers for some explanatory 
factors. In all four states, there was no specific 
callout for the various types of distraction, but 

instead all four states had “contributing cir-
cumstances” as a variable with distraction or 
inattention as a category. The Missouri and 
Nebraska forms did include distraction as a 
check box, whereas in Iowa and Kansas, cat-
egories of distraction were to be entered under 
a generic contributing circumstances area. The 
form used in Missouri included check-boxes 
for factors with several potential categories, 
which eliminated the need to refer to code 
sheets (as was the case in Iowa). Standardiza-
tion of information could provide researchers 
better insights on safety issues and also allow 
better comparisons across states, which can 
have implications at the regional and national 
level. It is recognized that some improvements 
may actually lengthen the already cumbersome 
task of data entry, but could actually decrease 
the chance of non-reporting and even misclas-
sification. Prioritizing information based on 
the findings in the literature of injury severity 
may also help officers in collecting the most 
critical information surrounding a crash.

Non-reporting and misclassification of condi-
tions surrounding a crash is another potential 
issue that can impact the reliability of the esti-
mates. However, past studies have shown that 
even though the crash reporting systems might 
not be ideal, estimates driven based solely on 
crash databases still offer valuable insights. 
For example, Cummings (2002) compared es-
timates of fatalities based on seat belt use for 
police-reported data and data based on trained 
crash investigators’ reports and found no sub-
stantial difference, and Guo, Eskridge, Chris-
tensen, Qu, and Safranek (2007) showed that 
misclassifications of seat belt and alcohol use 
in Nebraska biased the odds ratio estimates of 
injury only slightly.

Recent studies have explored more rigorous sta-
tistical methods to predict crash injury severity 
outcomes (for a recent review of the methodol-
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ogies, see Savolainen et al. 2011). For example, 
Anastasopoulos and Mannering (2002) exam-
ined the utility of the random-parameter logit 
model that used a less detailed crash profile (in-
cluding injury outcomes, roadway geometrics, 
pavement condition, general weather, and traf-
fic characteristics only) relative to the fixed-
parameter model. Although the models based 
on individual crash-data provide better fit, their 
findings suggest that these models would be dif-
ficult to use for assessing the changes in injury 
severities caused by safety countermeasures be-
cause of the large number of variables that need 
to be determined for each crash. The random-
parameter model, on the other hand, provides 
reasonable accuracy while also being easier to 
build. In other studies, Chang and colleagues 
used a non-parametric classification tree model 
in analyzing traffic injury severity (Chang and 
Chien 2013; Chang and Wang 2006). These 
methods and others can aid researchers in ap-
propriately connecting the right model to the 
data being examined.

Crash data clearly has limitations in terms of 
exposure and standardization of information, 
but they do provide useful information on traf-
fic, vehicle, and environmental factors that 
can be examined further in other test settings 
(e.g., simulator, test track, naturalistic studies). 
However, it is important to recognize the dif-
ferences that exist, even within states in one 
geographic region. Future studies should ex-
amine the differences in rural/urban areas and 
crash type over a larger portion of the Mid-
west, and over a longer time period. It would 
also be of great interest to examine the un-
derlying reasons for the disparity observed in 
injury trends across various states. Research 
in this direction can help provide insights for 
more effective crash countermeasures that can 
guide safer driver behaviors and driving envi-
ronments.
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ABSTRACT1

Corner clearance is defined as the distance be-
tween the corner of an intersection of two road-
ways and the first driveway. Vehicles turning 
into a driveway adjacent to an intersection or 
vehicles merging into the mainline from such 
a driveway may pose a safety hazard to other 
traffic. Adequate corner clearance is important 
to effectively separate conflict points and allow 
drivers enough time to make safe maneuvers. 
Although previous studies have investigated 
and identified factors influencing crash frequen-
cy at intersections, corner clearance has not 
been well studied. In this study, we used crash 
count data collected from all signalized inter-
sections of major roadways in the cities of Las 
Vegas and North Las Vegas, Nevada, to inves-
tigate the impact of corner clearance on crash 
frequency. We estimated and compared results 
from four models: Poisson, Negative Binomial, 
and Zero-Inflated (Poisson and Negative Bino-
mial). Model comparison test results indicated 
that the Zero-Inflated Negative Binomial was 
the best fitted model for the data at hand. As ex-
pected, it was revealed that longer corner clear-
ance tends to reduce the number of crashes oc-
curring at an urban intersection. In addition to 
corner clearance, the results indicated that lan-
duse type, entering volume, number of left-turn 
lanes, as well as number of through lanes, have 
significant impact on the number of crashes 
occurring at an intersection. Sensitivity results 
revealed that adequate corner clearances have 
greater potential of improving safety at signal-
ized intersections when compared to other fac-
tors considered in this study.

KEYWORDS: corner clearance, urban intersection safety

Investigation of the Impact of Corner Clearance on Urban 
Intersection Crash Occurrence
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BACKGROUND AND MOTIVATION

Corner clearance is defined as the distance 
between the corner of an intersection of two 
roadways and the first driveway. Vehicles turn-
ing into a driveway adjacent to an intersection 
or vehicles merging into the mainline from 
a driveway may pose a safety hazard to other 
traffic. Adequate corner clearance is important 
to effectively separate conflict points and allow 
drivers enough time to make safe maneuvers. 
Although many studies (e.g., Oh et al. 2004; 
Guo et al. 2009; Wang and Abdel-Aty 2007; 
Poch and Mannering 2007; and Kumara and 
Chin 2010) have investigated the impact of 
roadway and traffic characteristics on intersec-
tion safety, corner clearance has not been fully 
investigated. Most studies have primarily eval-
uated the impact of corner clearance on other 
intersection performance aspects, while treating 
the impact of corner clearance on intersection 
safety as secondary. For example, McCoy and 
Heimann (1990) evaluated the impact of corner 
clearance on saturation flow rates at signalized 
intersections in Lincoln, Nebraska. Similarly, 
Long and Gan (2007) developed a model for 
minimum driveway corner clearances at sig-
nalized intersections by considering saturation 
flow rates. Long and Gan (1993) and Gluck et 
al. (1999) focused on how to specify the cor-
ner clearance criteria for practical implementa-
tion. Although the above studies did not explic-
itly address the impact of corner clearance on 
safety of signalized intersections, their findings 
suggested the importance of corner clearance 
as well as driveway density at signalized inter-
sections. For example, a finding by Long and 
Gan (1997) that corner clearance has signifi-
cant impact on saturation flow rates implies that 
this could lead to some types of crashes, such 
as rear-end crashes due to interruption of traf-
fic flow resulting from vehicles entering and/or 
exiting driveways. 

Very often, roadway designers ask themselves 
which design feature has greater potential to 
improve safety at a signalized intersection. Al-
though it is clear that longer corner clearances 
may result in improved safety of a signalized 
intersection, quantification of their impacts is 
lacking in the literature. Also, the relative im-
pact of corner clearances on safety of signal-
ized intersections is not well documented. As 
a result, the main objective of this study is to 
investigate the impact of corner clearance and 
other variables on the number of crashes oc-
curring at urban signalized intersections. Data 
from signalized intersections in the Las Vegas 
and North Las Vegas urban areas were used 
to conduct the analyses. Count models were 
developed to investigate the impact of corner 
clearance and other variables on the number of 
crashes occurring at such intersections.

LITERATURE ON MODELING  
INTERSECTION SAFETY

Proper design of roadway features around 
signalized intersection can result in increased 
intersection safety. To achieve such a good 
design, safety studies are required to identify 
high risk factors related to these features. Guo 
et al. (2009) utilized five full Bayesian mod-
els on 170 signalized intersections of Orange 
and Hillsborough counties in central Florida 
to show that intersections in close proxim-
ity along a corridor are correlated and proper 
signal coordination has significant impact on 
safety. In addition to spatial correlation be-
tween intersections, it was found that Average 
Daily Traffic (ADT) per through-lane and left-
turn traffic, landuse, speed limits, intersection 
size, and exposure have a significant impact 
on the safety of signalized intersections. It was 
also shown that larger intersections are more 
dangerous than smaller intersections. How-
ever, this study did not investigate the impact 
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of corner clearance on signalized intersection 
safety. Different severity levels of crash in-
cidents at signalized intersections have been 
studied. Wong et al. (2007) used Poisson and 
negative binomial regression models on 262 
signalized intersections features from Hong 
Kong to quantify the influence of various fac-
tors on fatal and severe injury, and slightly in-
jury crashes. The negative binomial regression 
model indicated that an increase in curvature 
and the presence of tram stops significantly in-
creased the incidence of slightly injury crash-
es. Also, the marginal increase of the incidence 
of slightly injury crashes diminished under 
high traffic flow conditions. With the Poisson 
regression model it was found that the pres-
ence of tram stops, the increase in the propor-
tional of commercial vehicles, the increase in 
the number of pedestrian streams, and the de-
crease in the average lane width significantly 
increased the incidence of killed and severe in-
jury crashes. Similar to the study by Guo et al. 
(2009), this study did not incorporate corner 
clearance in the models. 

Although Poisson and traditional negative bi-
nomial regression models are widely used in 
crash frequency analysis (Yaacob et al, 2011; 
Zlatoper, 1989; Lord, 2006; Chin and Qud-
dus, 2003; Miaou and Lum, 1993; and Noland 
and Quddus, 2004), they may lead to biased 
estimators and invalid statistics when applied 
to longitudinal crash data. The correlation 
features in longitudinal data for signalized 
intersections require a different modeling ap-
proach leading to consistent estimates. Wang 
et al. (2006) applied generalized estimating 
equations (GEEs) to identify significant fac-
tors and their temporal correlation effect on 
crashes at signalized intersections. Using 208 
signalized intersections in central Florida from 
Brevard and Seminole Counties in suburban 
areas, they modeled the relationship between 

crash frequencies and other variables at sig-
nalized intersections. Speed limits, traffic vol-
ume (ADT), intersection size (indicated by 
total number of lanes), and intersection within 
highly populated areas were found to be as-
sociated with high crash frequency. Using the 
same model of GEEs but with different link 
functions, Wang and Abdel-Aty (2007) inves-
tigated the relationship between different pat-
terns of left-turn crash occurrence and intersec-
tion features using 197 four-legged signalized 
intersections from Orange and Hillsborough 
counties in the central Florida area. Selection 
of the particular link function in the GEEs for 
modeling different functions was a function of 
the number of crashes and the proportion of 
zero crashes and one crashes recorded. GEEs 
with binomial logit link function were applied 
to crash patterns with a higher proportion of 
zeros and one crashes. Negative binomial link 
function was used to model crash frequency 
for patterns with fewer crashes. The modeling 
results showed that the amount of conflicting 
flows (traffic volumes), the type of left-turn 
phasing, crossing distance (indicated by the 
number of through lanes), and speed limit are 
significant in influencing the crash occurrence 
frequency.

Other researchers have used negative binomial 
and zero-inflated negative binomial regression 
in modeling crashes at signalized intersections. 
Using 104 three-legged signalized intersections 
from Singapore, Kumara, and Chin (2010) in-
dicated that right-turn channelization, accel-
eration section on the left-turning lane, median 
railing, and existence of more than a 5% gradi-
ent may reduce accident occurrence. Although 
surprising, the finding that existence of more 
than a 5% gradient may reduce accident occur-
rences may be attributed to possible proper sig-
nage and extra carefulness by drivers resulting 
from existence of such steep grade. The same 
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research team indicated that traffic volumes 
(total and left-turn), an uncontrolled left-turn 
slip road, signal phases per cycle, existence 
of horizontal curve, and permissive right-turn 
phase may increase accident occurrence. Poch 
and Mannering (2007) used negative binomial 
regression modeling on 64 intersections from 
Bellevue in Washington to show that traffic 
volumes (separated according to traffic move-
ments), number of lanes, sight distance restric-
tion, and speed limit have a negative effect on 
intersection safety while signal controlled in-
tersections and protected left turn movements 
have a positive effect on intersection safety. A 
study by Oh et al. (2004) was aimed at devel-
oping macrolevel crash prediction models that 
can be used to understand and identify effective 
countermeasures for improving signalized high-
way intersections and multilane stop-controlled 
highway intersections in rural areas. The results 
indicated that traffic flow variables significantly 
affected the overall safety performance of the 
intersections regardless of intersection type and 
that the geometric features of intersections var-
ied across intersection type and also influenced 
crash type.

There are many issues related with modeling 
crash counts. Lord and Mannering (2010) pro-
vides a detailed review of the key issues asso-
ciated with crash-frequency data as well as the 
strengths and weaknesses of the various meth-
odological approaches that researchers have 
used to address these problems. Among the 
issues discussed include dispersion (over- or 
under-), temporal and spatial correlations, en-
dogeneity, low sample mean, underreporting, 
etc. Different model types designed to handle 
these issues were also discussed. The authors 
identified Zero-Inflated models (Poisson or 
Negative Binomial) as models that can handle 
datasets that have a large number of zero-crash 
observations. However, the authors cautioned 

that the zero-inflated negative binomial can be 
adversely influenced by the low sample-mean 
and small sample size bias. 

Despite all the efforts to investigate different 
factors contributing to intersection crash fre-
quencies using different modeling approaches, 
other important factors have not been included 
in the previous researches. In this study, inves-
tigation of the impact of corner clearance on 
urban intersection crash occurrence using data 
from the cities of Las Vegas and North Las Ve-
gas, Nevada, is performed. Crashes considered 
in the model were those that happened within 
a 250 ft radius measured from the center of 
a signalized intersection. Crashes occurring 
within 250 ft of the intersection have tradition-
ally been considered to be influenced by inter-
section performance (e.g., Oh et al. 2004; and 
Ye et al 2009) 

METHODOLOGY

When modeling crash counts, Poisson regres-
sion analysis or Negative Binomial (NB) re-
gression analysis can be used (Yaacob et al, 
2011; Zlatoper, 1989; Lord, 2006; Chin and 
Quddus, 2003; Miaou and Lum, 1993; and No-
land and Quddus, 2004). The choice between 
the two model types depends on the relation-
ship between the mean and the variance of the 
data. If the mean is equal to the variance, the 
data is assumed to follow a Poisson distribu-
tion, and hence the Poisson regression analysis 
can be performed. However, as a result of pos-
sible positive correlation between observed 
accident frequencies, overdispersion may oc-
cur (Hilbe, 2011). Accident frequency obser-
vations are said to be overdispersed if their 
variance is greater than their mean. If over-
dispersion is detected in the data, NB regres-
sion analysis should be used. Another issue 
arising with modeling accident frequencies is 
presence of sites with zero counts. Hurdle and 



KWIGIZILE, MULOKOZI, XU, TENG & MA  39

zero-inflated Poisson or NB regression mod-
els are the two foremost methods used to deal 
with count data (e.g., accident frequencies) 
having zero counts (Hilbe, 2011). This study 
explored the suitability of Poisson, NB, and 
zero-inflated (Poisson and NB) models.

Standard textbooks (e.g., Hilbe 2011; Greene 
2012; and Washington et al 2011) present clear 
derivation of the Poisson, Negative Binomial 
(NB), and zero-inflated models (Poisson (ZIP) 
or Negative Binomial (ZINB)). According to 
Poisson distribution, the probability ( )iyP  of 
intersection i having iy  crashes in a given 
time period (usually one year) can be written 
as: 

( )
!
)(

i

y
i

i y
EXPyP

iλλ ⋅−
=                 	 (1)

where iλ  denotes the Poisson parameter for 
intersection i. By definition, iλ  is equal to the 
expected number of crashes in a given time 
period for intersection i, E[yi]. According to 
Washington et al. (2011), the expected num-
ber of crash occurrences iλ , can be related to a 
vector of explanatory variables, X i as follows:

λi=EXP(βXi)  	                                               (2)

where β represents a vector of estimable param-
eters. Under Poisson assumption, the mean and 
variance of crashes occurring at an intersection 
in a year are equal (i.e., [ ] [ ]ii yVaryE = ,). With 
N observations, the parameters of the Poisson 
model can be estimated by maximum likeli-
hood method with a function that can be shown 
to be as follows:

                  				                (3)

The Poisson assumption of equal mean and 
variance of the observed crash occurrences is 
not always true. To handle the cases where the 
mean and variance of crashes are not equal, 

the Poisson model is generalized by introduc-
ing an individual, unobserved effect, εi, in the 
function relating crash occurrences and ex-
planatory variables (equation 2) as follows: 

λi=EXP(βXi+εi)			              (4)

in which ( )iEXP ε  is a gamma-distributed er-
ror term with mean one and variance 2α . With 
such a modification, the mean iλ  becomes a 
variable that follows binomial distribution. 
The mean-variance relationship becomes:

[ ] ( ) ( )[ ] [ ] ( )21 iiiii yEyEyEyEyVar αα +=+⋅=

					            (5)

If α is equal to zero, the negative binomial dis-
tribution reduces to Poisson distribution. If α 
is significantly different from zero, the crash 
data are said to be overdispersed (positive 
value) or underdispersed (negative value). As 
stated earlier, overdispersion is a result of pos-
sible positive correlation between observed 
accident frequencies. When α is significantly 
different from zero, the resulting negative bi-
nomial probability distribution is:

              		                               (6)

where Γ(x) is a value of the gamma function, 
iy  is the number of crashes for intersection 

i and α  is an overdispersion parameter. Be-
cause crash counts involve intersections with 
zero observations, possible remedies include 
the estimation of models such as zero-inflated 
(ZIP or ZINB) and hurdle models. The zero-
inflated models have two parts: a binary part 
for distinguishing the intersections that will 
always have zero counts from those that, al-
though they now have zero counts, will not al-
ways have zero counts, and a Poisson regres-
sion model (for ZIP) or Negative Binomial 
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model (for ZINB), which models the intersec-
tions with zero or positive counts. Washington 
et al, 2011, shows that with the ZINB regres-
sion model the probability of an intersection 
having zero crash counts can be estimated as:

                                                                                        (7)

and the probability of having positive crash 
counts (y = 1, 2, 3,…) can be estimated as:

                                                                           (8)

in which.

It is imperative to test whether using the ze-
ro-inflated model is necessary. This can be 
achieved by conducting the Vuong test (Vuong 
1989). Although alternative tests have been 
developed to improve model selection reli-
ability, the Vuong test is commonly used. The 
Vuong test is far more conservative than al-
ternative tests such as the distribution-free test 
and therefore does a better job of protecting 
against an incorrect decision (Clarke 2007). 
Given two models, model 1 with P1(yi/x) as 
the probability of observing y crashes on the 
basis of variable x, and model 2 with the prob-
ability denoted as P2(yi/x), the log ratio of the 
sum of probabilities for each observation can 
be computed as:

                                                                                                                    (9)

and the Vuong test statistic can be computed 
as:

                                                                                                                                    (10)

in which  is the average of the log ratios and  
 is the standard deviation of the log ra-

tios. The Vuong test statistic has been proved 
to follow a normal distribution. Greene (2012) 
states that if |V| is less than 1.96, then the test 
does not favor one model over the other. If V is 
greater than 1.96, model one is favored while 
if V is less than -1.96, model two is favored. 
In addition to comparing the models using the 
Vuong test statistic, the Akaike Information 
Criterion (AIC) and the Bayesian Information 
Criterion (BIC) were calculated for each mod-
el and compared. Standard statistical software 
such as Stata (2008) can be used to estimate 
the models and statistics described above.

To better interpret the results of a count data 
models, elasticities can be computed. Elasticity 
of a continuous variable is used to quantify the 
effect of a small change (1%) in the mean of the 
variable on the outcome (expected crash occur-
rences iλ ). Elasticity of a kth continuous variable 
x for observation i (xik), can be estimated as:

                                                                                                            (11)

For indicator variables (which strictly take on 
values of 0 or 1), such a small change is mean-
ingless. As a result, the “pseudo-elasticity” 
can be used to accommodate such variables. 
It shows the difference in the outcome (crash 
occurrence) with a specific variable taking the 
value of 1 versus 0. It can be computed as:

                                                                                                                          (12)

DATA DESCRIPTION

Data used in this study were collected from 
all signalized intersections in the cities of 
Las Vegas and North Las Vegas, Nevada, in 
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the USA. With the Geographic Information 
System (GIS) and aerial images from Google 
Earth, we located the identified signalized in-
tersections. The roadway network map for Las 
Vegas and North Las Vegas area was used as 
the base layer in the ArcGIS. The geographic 
coordinates of each intersection obtained from 
Google Maps were used to geo-code the in-
tersections to create a GIS layer. The Safety 
and Traffic Engineering Division of the Ne-
vada Department of Transportation (NDOT) 
maintains a database of all crashes occurring 
in the state. From this database, North Las Ve-
gas and Las Vegas crashes were selected. The 
crash data were mapped with ArcGIS to iden-
tify crashes that occurred at signalized inter-
sections. This was accomplished by creating 
a buffer with a radius of 250 ft around each 
signalized intersection in Las Vegas and North 
Las Vegas and counting the number of crashes 
within that buffer. These crashes were deemed 
to be influenced by the intersection. Although 
the 250-ft buffer around an intersection may 
omit some intersection crashes and/or include 
some nonintersection crashes, it is commonly 
used in the United States as it is a nonarbitrary 
criterion that is easily repeatable and general-
izable across jurisdictions (Ye et al. 2009). The 
number of corner clearances was obtained by 
counting the number of driveways within the 
intersection area (a circle with a radius of 250 
ft) and the corner clearances were measured as 
shown in figure 1. For example, the intersec-
tion depicted in figure 1 has five corner clear-
ances.

Traffic volume is a very important determinant 
of crash occurrence at intersections. This data 
item was obtained from a database maintained 
by the Southern Nevada Regional Transporta-
tion Commission (RTC). For the intersections 
selected, the RTC database contained com-
plete traffic volume data for year 2004 only. 

Therefore, this study used crash data for year 
2004 only. In addition, landuse type for each 
intersection was collected. 

For each approach, functional classification 
was obtained from the GIS database provided 
by the Regional Transportation Commission 
(RTC) of Southern Nevada. From the same 
database, the number of lanes on both direc-
tions and the posted speed limit were also ex-
tracted. The number of lanes was confirmed 
using the Google map. To designate major 
and minor approaches, the AADT volumes 
were used. The opposing approaches with the 
highest sum of AADT were designated major 
while the ones with the lowest were labeled 
minor. In addition to AADT data, other road-
way attributes were extracted. After cleaning 
data to remove intersections with incomplete 
information, only 170 intersections remained. 
Table 1 presents the descriptive statistics for 
the selected variables.

Table 1 indicates that on average, over 22 
crashes occurred at signalized intersections in 
Las Vegas and North Las Vegas during 2004. 

FIGURE 1  Corner Clearance  
           Measurements and Counting

Corner Clearance
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The results also show that the abutting land on 
about 53% of the signalized intersections was 
commercial landuse. On average, major ap-
proaches had about five lanes (in both direc-
tions) while minor approaches had about three 
lanes (in both directions). Both major and mi-
nor approaches had an average of one left-turn 
lane and one right-turn lane. Corner clearance 
for each driveway was measured all averaged 
to determine the average corner clearance. On 
average, the observed average corner clearance 
was 134.85 ft. The average AADT on major 
approaches was 13,242 vehicles/day while for 
minor approaches it was 6,316 vehicles/day. 
There was an average of six corner clearances 
(equivalent to driveways) at the intersections 
observed.

The extracted variables were to derive ex-
planatory variables used in the models. Only 
significant variables were retained and are pre-
sented in the next section. In modeling, num-
ber of left turn lanes and right turn lanes were 
combined into one category of “turning lanes” 

for each approach. The “turning lanes” were 
used distinctively from “through lanes”. Com-
mercial landuse was another significant vari-
able used in modeling. The AADT on minor 
approach was divided by the AADT on major 
approach to generate “flow ratio.” Average 
corner clearance was transformed by taking 
natural logarithm before using it in modeling. 
Also, the number of corner clearances was 
used in modeling. Table 2 presents summary 
statistics for variables used in the model.

MODELING RESULTS AND  
DISCUSSION

Using commercially available software, Stata 
(2008), we estimated and compared results 
from four models: Poisson, Negative Bino-
mial, Zero-Inflated Poisson, and Zero-Inflated 
Negative Binomial. Table 3 presents the coeffi-
cient estimates from these models. As it can be 
seen, all models (Poisson, Negative Binomial, 
Zero-Inflated Poisson ZIP) and Zero-Inflated 
Negative Binomial (ZINB)) produced results 
consistent with intuition in terms of the impact 
of the variables on crash count. The models 
were compared to identify the “best” fitted 

TABLE 1  Descriptive Statistics of all Extracted Variables
Variable Average Std. dev. Minimum Maximum

2004 crash count 22.71 19.89 0 96

Commercial landuse 0.53 0 1

No. of lanes on major approach 4.77 1.12 1 7

No. of left turn lanes on major approach 1.29 0.51 0 4

No. of right turn lanes on major approach 1.01 0.10 1 2

No. of lanes on minor approach 3.15 1.56 1 8

No. of left turn lanes on minor approach 1.20 0.44 1 3

No. of right turn lanes on minor approach 1.03 0.17 1 2

No. of corner clearances 6.24 1.79 2 8

Average corner clearance (ft) 134.85 69.28 43.63 250.00

AADT on major approach 13241.19 29936.59 554 153896

AADT on minor approach 6315.17 14929.43 469 99890

Average speed on major approach 41.22 4.93 25 50

Average speed on minor approach 33.84 7.28 15 45
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TABLE 2  Descriptive Statistics of Modeling Variables
Variable Average Std. dev. Minimum Maximum

Commercial landuse 0.53 0.50 0 1

Flow ratio 1.30 1.55 0.05 11.00

Natural log. of average corner clearance 4.97 0.35 3.78 5.75

Left turning lanes 2.49 0.74 1 5

Through lanes 7.95 2.18 2 13

Number of corner clearance 6.25 1.79 2 8

model. The resulting test statistic of 1,153.64 
with a p-value of 0.0000 for the likelihood- 
ratio test of zero overdispersion (α=0) indi-
cates that the Negative Binomial model is pre-
ferred to the Poisson model. Even the Akaike 
Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC) support this asser-
tion. As shown in figure 2, both the AIC and 
the BIC for the Negative Binomial model are 
less than those of the Poisson model, signify-
ing superiority of the Negative Binomial mod-
el over the Poisson model. Furthermore, the 

Vuong test statistics of 2.90 (with p-value of 
0.002) and 2.58 (with p-value of 0.004) from 
the Zero-Inflated Poisson (ZIP) and the Zero-
Inflated Negative Binomial (ZINB) models, 
respectively, indicate that the zero-inflated 
models (ZIP and ZINB) are preferred to their 
respective standard models (Poisson and Neg-
ative Binomial).

Comparing the AIC and the BIC for the ZIP 
and the ZINB indicates that the ZINB has 
slightly lower values (figure 2), which signi-

TABLE 3  Model Estimation Results

Explanatory variables 

Poisson Negative binomial ZIP ZINB

Coef. Statistic Coef. Statistic Coef. Statistic Coef. Statistic

Regression part

Commercial landuse 0.511 14.31 0.463 3.72 0.394 11.05 0.377 3.59

Flow (AADT) ratio (minor/major) 0.065 8.33 0.074 1.9 0.062 7.84 0.063 2.00

Natural log. of avg. corner clearance -0.210 -6.46 -0.193 -1.14 -0.404 -9.00 -0.509 -3.26

Number of left turning lanes 0.096 4.24 0.094 1.02 0.185 7.32 0.208 2.60

Number of through Lanes 0.147 15.49 0.147 4.28 0.110 11.35 0.112 3.80

Constant 2.304 13.36 2.242 2.49 3.479 12.78 3.929 4.74

Inflation part

No. of corner clearance -0.551 -2.67 -0.564 -2.57

Natural log. of avg. corner clearance -0.845 -1.59 -0.873 -1.57

Constant 4.237 1.49 4.375 1.48

Auxiliary statistics

Alpha (α) 0.528 8.07 0.338 7.61

Number of observations 170 170 170 170

Final log-likelihood -1262.20 -685.38 -1101.62 -665.18

Likelihood-ratio test of α=0 (p-value) - 1153.64 (0.000) - 872.89 (0.000)

Vuong statistic (p-value) - - 2.90 (0.002) 2.58 (0.004)
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fies slight preference of the ZINB over the ZIP. 
However, the Vuong test statistic for compar-
ing ZINB to ZIP was 0.84, signifying that nei-
ther of the two models is preferable over the 
other for the data at hand. Table 4 presents the 
model selection results.

It should be recalled that the test on alpha (test-
ing equality of mean and variance) indicated 
that alpha is significantly different from zero, 
which indicates that Poisson is not the clos-
est estimation of the distribution for the data 
at hand. Therefore, the Zero-Inflated Negative 
Binomial (ZINB) model was identified as the 
“best” fitted model for the data at hand.

The results from the ZINB model estimates (ta-
ble 3) indicate that increased length of corner 
clearance leads to decreased crash frequency. 
This is because a driveway that is far from the 
intersection allows sufficient distance for driv-
ers exiting the businesses (whether they are fa-

miliar or unfamiliar with the area) to perform 
the desired maneuver. Also, with longer corner 
clearance, the drivers of through traffic could 
perceive and respond more quickly and safely 
to the maneuvers by traffic leaving or enter-
ing the adjacent lands because their attention 
is not already preoccupied by the maneuver 
they desire to perform at the intersection. In 
other words, with longer corner clearances, the 
maneuver needed at the intersection has less 
influence on decisions by through-traffic driv-
ers and those leaving or entering businesses. 
Also, shorter corner clearances imply more 
driveways at intersections, which increase the 
chance of conflicts to occur between turning 
and through traffic.

The results also show that an intersection sur-
rounded by commercial landuse is more likely 
to experience more crashes compared to an in-
tersection surrounded by residential landuse. 
Reasons for this finding might include the 
fact that drivers entering or exiting businesses 
around an intersection may include those who 
are unfamiliar with the roadway (noncommut-
ers). Such drivers who are unfamiliar with the 
roadway are more likely to perform unpredict-
able maneuvers that increase the chance of 
crash occurrence. 

The results also show that signalized intersec-
tions with traffic volume on minor street close 
to the traffic on major street (high ratio) tend 
to have higher crashes. In previous studies 
such as Chin and Quddus (2003), traffic flow 
was also found to be an important predictor 

TABLE 4  Model selection results

Model

Test Statistic

“Best” Model

Vuong Statistic  

for ZINB vs. ZIP ConclusionBIC AIC Vuong

NB 1407 1385

2.58 ZINB
0.84

Neither ZINB nor ZIP is 

superior over the other

ZINB 1382 1350

Poisson 2555 2536

2.90 ZIPZIP 2249 2221

FIGURE 2  Selection of the “Best”  
           Fitted Model
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of crashes at intersections. Some studies have 
used total entering traffic volume (e.g., Greibe 
(2003) and Chin and Quddus (2003)) while 
others have separated traffic volume on minor 
street from that on major street (e.g., Lord and 
Persaud 2000). Other studies have used traf-
fic volume per lane (e.g., Wang et al 2006). 
The finding in this study indicates that with 
higher traffic on the minor approach, there is 
an increased probability of higher conflicts 
and therefore higher crashes. Although not ex-
amined in this study, this could be associated 
with permitted right-turn and left-turn move-
ments. This study examined the separate im-
pact of turning lanes and through lanes at sig-
nalized intersections. Left-turning lanes and 
right-turning lanes as well as through lanes 
were counted for each intersection. The mod-
eling results also indicated that crash increases 
with increase in number of both left-turning 
lanes and through lanes. However, the num-
ber of through lanes has the highest impact on 
the number of crashes (higher elasticity pre-
sented in table 5). With left-turning lanes, ve-
hicles exiting adjacent businesses around the 
intersection and desiring to make left turn may 
experience relatively higher difficulty in per-
forming their maneuvers.   

Extra care is needed when interpreting the re-
sults of the “inflation” part of the model. This 
is a binary process with a prediction of suc-
cess being a prediction that the response will 
certainly be a zero. The negative coefficients 
associated with both the number of corner 

clearances and the natural logarithm of corner 
clearance signify that an increase in these vari-
ables reduces the chance of having zero crash-
es at signalized intersections. In other words, 
increase in these variables could potentially 
lead to crash occurrence at intersections.

To better investigate the impact of corner 
clearance and other variables on the number 
of crashes occurring at signalized intersections 
we calculated their elasticities presented in ta-
ble 4. Elasticity of a continuous variable is used 
to quantify the effect of a small change (1%) in 
the mean of the variable on the outcome (ex-
pected crash occurrences iλ ). Because a small 
change is meaningless for indicator variables 
(which strictly take on values of 0 or 1), the 
“pseudo-elasticity” was calculated. Again, the 
results indicate that corner clearance is very 
sensitive to the number of crashes occurring 
at signalized intersections. There could be an 
83% reduction in the number of crashes by 
increasing the natural logarithm of average 
corner clearance by 1%. However, an increase 
of 1% on the number of left-turn lanes would 
increase the number of crashes by about 16%. 
Compared to the number of left turn lanes, an 
increase of 1% in the number of through lanes 
would result into a 29% increase on the num-
ber of crashes. Flow ratio and landuse have the 
lowest sensitivity to the number of crashes. An 
intersection being surrounded by commercial 
landuse would result into a 7% increase on 
number of crashes while a 1% increase on the 
flow ratio would result into just 3% increase 

Table 5  Estimated Elasticities
Variable Elasticity Std. Err. z-statistic p-value

Commercial landuse 0.07 0.02 3.75 0.000

Flow (AADT) ratio (minor/major) 0.03 0.01 2.06 0.039

Natural log. of avg. corner clearance -0.83 0.26 -3.22 0.001

Number of left turning lanes 0.16 0.06 2.62 0.009

Number of through Lanes 0.29 0.08 3.81 0.000
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on the number of crashes. This indicates that 
intersections with higher traffic volumes on 
minor approaches (i.e., ratio close to 1) may 
experience relatively more crashes. Large 
number of left-turn lanes may be an indication 
of higher left-turn traffic, making maneuver-
ability more difficult and dangerous.

CONCLUSIONS AND  
RECOMMENDATIONS

Adequate corner clearance is important to ef-
fectively separate conflict points and allow 
drivers enough time to make safe maneuvers. 
Although most studies have investigated the 
impact of roadway and traffic characteristics 
on intersection safety, corner clearance has 
not been fully investigated. The main objec-
tive of this study was to investigate the impact 
of corner clearance and other variables on the 
number of crashes occurring at urban signal-
ized intersections. Data from all signalized 
intersections in the Las Vegas and North Las 
Vegas urban areas were used to conduct the 
analyses. This study explored the suitability 
of Poisson, Negative Binomial (NB), Zero-In-
flated Poisson (ZIP) and Zero-Inflated Nega-
tive Binomial (ZINB) models. Statistical tests 
such as the Vuong test, Akaike Information 
Criterion (AIC), and the Bayesian Information 
Criterion (BIC) were calculated to identify the 
best model. Also, the accuracy of the Negative 
Binomial (NB) and the Zero-Inflated Negative 
Binomial (ZINB) models in predicting crash 
occurrence was compared by computing the 
difference between predicted probability and 
observed probability for each model. With all 
comparison tests, the ZINB outperformed oth-
er models and was selected as the best fitted 
model for the data at hand. It was revealed that 
the ZINB is very accurate in predicting zero 
crash occurrences when compared with the 
regular NB but their difference fades away for 

high crash occurrences. To better interpret the 
results of a count data models, elasticities can 
be computed.

The results from the ZINB model estimates 
indicated that increased length of corner clear-
ance leads to decreased crash frequency. This 
finding is consistent with intuition because 
shorter corner clearances imply more drive-
ways at intersections, which increase the 
chance of conflicts to occur between turning 
and through traffic. The sensitivity results (ta-
ble 4) indicated that corner clearance is very 
sensitive to the number of crashes occurring 
at signalized intersections. The results also 
showed that an intersection surrounded by 
commercial landuse is more likely to experi-
ence more crashes compared to an intersection 
surrounded by residential landuse. Reasons for 
this finding might include the fact that drivers 
entering or exiting businesses around an inter-
section may include those who are unfamiliar 
with the roadway (noncommuters). The results 
indicated that 65% of the driveways with cor-
ner clearance less than 150 ft are from inter-
sections surrounded by commercial landuse 
and 78% of the driveways with corner clear-
ance less than 100 ft are from intersections 
surrounded by commercial landuse. The re-
sults also showed that signalized intersections 
with traffic volume on minor street close to the 
traffic on major street (high flow ratio) tend to 
have higher crashes. With higher traffic on the 
minor approach, there is an increased prob-
ability of higher conflicts and therefore higher 
crashes. Although not examined in this study, 
this could be associated with permitted right-
turn and left-turn movements. The modeling 
results also indicated that, generally, crash in-
creases with increase in number of both left-
turning lanes and through lanes. However, the 
number of through lanes has the highest im-
pact on the number of crashes (higher elastic-
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ity presented in table 4). With turning lanes, 
vehicles leaving or entering businesses around 
the intersection make their maneuvers from 
low speed lanes (turning lanes). In addition 
to confirming the impact of corner clearance 
on safety of signalized intersections, the find-
ings of this study also reveal the importance of 
properly designed corner clearances at signal-
ized intersections when compared with other 
geometrics. For example, compared to the 
number of left turn lanes at signalized inter-
sections, adequate corner clearances may pro-
duce higher safety gains by reducing number 
of crashes. Such an understanding is important 
to access managers and roadway designers as 
they consider potential geometric design pa-
rameters with potential to improving safety.

Intersections located on a given urban arterials 
may share common but unobserved attributes 
such as similar traffic volume patterns. Such 
unobserved common attributes may influence 
statistical inferences. One way to addressing 
this issue is to develop panel count models. 
Such modeling consideration is relatively 
complex especially with zero-inflated models. 
It is recommended that future research con-
sider incorporate panel structure to address the 
possible problem of unobserved common at-
tributes. 

REFERENCES
Chin, H. C., and M. A. Quddus. 2003. Applying the 
Random Effect Negative Binomial Model to Examine 
Traffic Accident Occurrence at Signalized Intersections. 
Accident Analysis & Prevention 35: 253–259.

Clarke, K. A. 2007. A Simple Distribution-Free Test for 
Non-nested Hypotheses. Published by Oxford Univer-
sity Press on behalf of the Society for Political Method-
ology. Doi:10.1093/pan/mpm004.

Gluck, J., H. S. Levinson, and V. Stover. 1999. Impact 
of Access Management Techniques, NCHRP Report 
420, Transportation Research Record, National Re-
search Council, Washington, D. C.

Greene, W. H. 2012. Econometric Analysis, 7th Edition, 
Prentice Hall, Upper Saddle River, New Jersey, United 
States of America.

Greibe, P. 2003. Accident Prediction Models for Urban 
Roads. Accident Analysis & Prevention 35: 273–285.

Guo, F., X. Wang, and M. Abdel-Aty. 2010. Modeling 
signalized intersection safety with corridor-level spa-
tial correlations. Accident Analysis and Prevention 42: 
84–92.

Hilbe, J.M. 2011. Negative Binomial Regression, Sec-
ond Edition, Cambridge University Press, United King-
dom.

Kumara, S. P., and H. C. Chin. 2010. Modeling Acci-
dent Occurrence at Signalized Tee Intersections with 
Special Emphasis on Excess Zeros. Traffic Injury Pre-
vention 4(1): 53-57.

Long, G., and C. Gan. 1993. Driveway Impact on Satu-
rated Traffic Flow. Transportation Research Center, 
University of Florida, Gainesville, FL.

Long, G., and C. Gan. 1997. Model for Minimum 
Driveway Corner Clearances at Signalized Intersec-
tions. Transportation Research Record: Journal of the 
Transportation Research Board 1579: 53-62.

Lord, D., 2006. Modeling motor vehicle crashes us-
ing Poisson-gamma models: Examining the effects of 
low sample mean values and small sample size on the 
estimation of the fixed dispersion parameter. Accident 
Analysis and Prevention 38: 751-766.

Lord, D., and B. N. Persaud. 2000. Accident Prediction 
Models With and Without Trend: Application of the 
Generalized Estimating Equations Procedure. Trans-
portation Research Record: Journal of the Transporta-
tion Research Board 1717: 102–108.

Lord, D. and F. L. Mannering. 2010. The statistical 
analysis of crash-frequency data: A review and assess-
ment of methodological alternatives. Transportation 
Research Part A 44: 291–305.

McCoy, P.T., and J. E. Heimann. 1994. Effect of Drive-
way Traffic on Saturation Flow Rates at Signalized In-
tersections. ITE Journal February 1990: 12-15.

Miaou, S.P., and H. Lum. 1993. Modeling vehicle acci-
dents and highway geometric design relationships. Ac-
cident Analysis and Prevention 25: 689-709.

Noland, R.B., and M. A. Quddus. 2004. Analysis of pe-
destrian and bicycle casualties with regional panel data. 
Transportation Research Record: Journal of the Trans-
portation Research Board 1897: 28-33.



48  JOURNAL OF TRANSPORTATION STATISTICS  V10, N1 2013

Oh, J., S. Washington, and K. Choi. 2004. Development 
of accident prediction models for rural highway inter-
sections. Transportation Research Record: Journal of 
the Transportation Research Board 1897: 18–27.

Poch, M., and F. Mannering. 2007. Negative Binomial 
Analysis of intersection accident frequencies. Journal 
of Transportation Engineering 122(2): 105-113.

StataCorp LP. Data Analysis and Statistical Software. 
College Station, Texas, 2011.

Vuong, Q.H. 1989. Likelihood ratio tests for model se-
lection and non-nested hypothesis. Econometrica 57(2): 
307–333.

Wang, X., and M. Abdel-Aty. 2007. Right-angle crash 
occurrence at signalized-intersections.” Transportation 
Research Record: Journal of the Transportation Re-
search Board 2019: 156-168.

Wang, X., and M. Abdel-Aty. 2008. Modeling left-turn 
crash occurrence at signalized intersections by conflict-
ing patterns. Accident Analysis and Prevention 40: 76-
88.

Wang, X., M. Abdel-Aty, and P. Brady. 2006. Crash Es-
timation at Signalized Intersections: Significant Factors 
and Temporal Effect. Transportation Research Record: 
Journal of the Transportation Research Board 1953: 
10–20.

Washington, P. S., G. M. Karlaftis, and F. L. Mannering. 
2011. Statistical and Econometric Methods for Trans-
portation Data Analysis. 2nd Edition. Chapman & Hall/
CRC, United States of America.

Wong, S. C., N. N. Sze, and Y. C. Li. 2007. Contribu-
tory factors to traffic crashes at signalized intersections 
in Hong Kong. Accident Analysis and Prevention 39: 
1107–1113.

Yaacob, W. F. W., M. A. Lazim, and Y. B. Wah. 2011. 
Applying Fixed Effects Panel Count Model to Examine 
Road Accident Occurrence. Journal of Applied Sciences 
11: 1185-1191.

Ye, X., R. M. Pendyala, S. P. Washington, K. Konduri, 
and J. Oh. 2009. A simultaneous equations model of 
crash frequency by collision type for rural intersections. 
Safety Science 47(3): 443–452.

Zlatoper, T.J. 1989. Models explaining motor vehicle 
death rates in the United States. Accident Analysis and 
Prevention 21: 125-154.



49

Application of the Bayesian Model Averaging in  
Predicting Motor Vehicle Crashes

YAJIE ZOU
DOMINIQUE LORD, PH.D.
YUNLONG ZHANG, PH.D.
YICHUAN PENG

Zachry Department of Civil Engineering 
Texas A&M University, 3136 TAMU 
College Station, TX 77843-3136 
Phone: 979/595-5985,  
Fax: 979/845-6481 
Email: yajiezou@tamu.edu

ABSTRACT1

Developing reliable statistical models is criti-
cal for predicting motor vehicle crashes in 
highway safety studies. However, the conven-
tional statistical method ignores model uncer-
tainty. Transportation safety analysts typically 
select a single “best” model from a series of 
candidate models (called model space) and 
proceed as if the selected model is the true 
model. This paper proposes a new approach 
for deriving more reliable and robust crash 
prediction models than the conventional statis-
tical modeling method. This approach uses the 
Bayesian model averaging (BMA) to account 
for model uncertainty. The derived BMA crash 
model is an average of the candidate models 
included in the model space weighted by their 
posterior model probabilities. To examine the 
applicability of BMA to the Poisson and nega-
tive binomial (NB) regression models, the ap-
proach is applied to the crash data collected 
on 338 rural interstate road sections in Indiana 
over a five-year period (1995 to 1999). The re-
sults show that BMA was successfully applied 
to Poisson and NB regression models. More 
importantly, in the presence of model uncer-
tainty, the proposed approach can provide bet-
ter prediction performance than single models 
selected by conventional statistical techniques. 
Thus, this paper provides transportation safety 
analysts with an alternative methodology to 
predict motor vehicle crashes when model un-
certainty is suspected to exist.

KEYWORDS: crash model, Poisson, negative binomial, 
Bayesian model averaging, prediction
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INTRODUCTION

In highway safety analysis, regression mod-
els play a significant role in identifying rela-
tionships between motor vehicle crashes and 
different explanatory variables, predicting ac-
cident frequency and screening variables. Up 
to now, a large number of analysis tools and 
models for analyzing crash data have been pro-
posed by transportation safety analysts (Lord 
and Mannering 2010). Among these models, 
the negative binomial (NB) model remains the 
most frequently used tool for crash-frequency 
modeling (e.g., Lord and Mannering 2010; 
Miaou 1994; Miaou and Lord 2003; Malysh-
kina et al. 2009). Recently, some new meth-
odologies and models have been proposed for 
the purpose of modeling and predicting motor 
vehicle crashes. For example, artificial neural 
networks (ANN) have been suggested as an al-
ternative method for analyzing and predicting 
accident frequency (e.g., Abdelwahab and Ab-
del-Aty 2002; Chang 2005). However, these 
models can sometimes overfit the data. To 
overcome this problem, a few researchers (Xie 
et al. 2007) have examined the Bayesian neural 
networks (BNN) and concluded that BNN are 
more efficient than NB models for predicting 
crashes. The support vector machine (SVM) 
model (Li et al. 2008) was recently applied to 
crash data collected in Texas and was found to 
predict crashes more accurately than both NB 
and BNN models. Haleem et al. (2010) used 
the multivariate adaptive regression splines 
(MARS) technique to predict motor vehicle 
crashes and showed that the MARS predicts 
crashes almost as effectively as the traditional 
NB models, and its goodness-of-fit perfor-
mance seems to show promise for adequately 
predicting crashes.

Despite extensive efforts on modeling and 
predicting crash data, the conventional sta-
tistical approach faces a few important chal-

lenges. The selection of subsets of explanatory 
variables is a basic part for building a crash 
prediction model. Given the dependent vari-
able accident frequency iy  and the candidate 
explanatory variables 1,..., kX X , the general 
routine is to find the “best” regression model 
based on a selected number of variables to de-
scribe the crash frequency. In highway safety 
research, one typical approach is often to se-
lect a single “best” model based on some mod-
el selection criteria, such as log-likelihood, 
Akaike information criterion (AIC), Bayes-
ian information criterion (BIC), Deviance in-
formation criterion (DIC), etc. (e.g., Park and 
Lord 2009; Pei et al. 2011). After the model 
is selected, further inferences are made with 
the assumption that the selected model is the 
true model. However, this approach neglects 
the uncertainty associated with the choice of 
models, especially those from the same cat-
egory (e.g., Poisson model, NB or Poisson-
lognormal model) but with different combina-
tions of explanatory variables. The uncertainty 
between models may be important in making 
inference particularly in the cases where more 
than one models are considered plausible but 
differ in predictions (Li and Shi 2010). If the 
uncertainty about the model is ignored, the 
quantities of interest (accident frequency) may 
be underestimated. BMA combines and aver-
ages all possible models (models with different 
combinations of explanatory variables) when 
making inferences about the quantities of in-
terest (crash frequency) (Raftery et al. 1997). 
By computing the average over many different 
competing models, BMA incorporates model 
uncertainty into modeling output related to 
the parameter estimation and prediction. BMA 
has been applied successfully in various fields 
including engineering (Li and Shi 2010), me-
teorology (Raftery et al. 2005), epidemiology 
(Viallefont et al. 2001), water resources (Duan 
et al. 2007), etc., and in most cases, BMA can 
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improve the prediction performance. In this 
study, we have two objectives: the first objec-
tive is to examine the applicability of BMA 
to the Poisson and NB regression models for 
traffic accident analysis (the most basic mod-
els for count data); the second objective is to 
compare the model prediction performance 
between BMA and the conventional statistical 
approach used in transportation safety analy-
sis. To accomplish these two objectives, BMA 
is examined using accident data collected on 
338 rural interstate road sections in Indiana.

The next section outlines the methodology 
used in this study.

METHODOLOGY

This section describes the characteristics of 
the NB regression and BMA, as well as the 
Occam’s Window Method. This latter meth-
od is used for discarding models that predict 
much more poorly than their competitors in 
the model space.

Negative Binomial Regression

Because the crash-frequency data on a high-
way section are non-negative and discrete 
integers, the most basic model for modeling 
crash data is the Poisson regression model. 
The advantage of Poisson regression model 
is that it is easy to estimate the parameters. 
However, past studies (Lord and Mannering 
2010) have indicated that the Poisson regres-
sion model cannot accommodate observed 
over-dispersion in crash data. Moreover, this 
model (and its sister the NB model described 
below) can be adversely influenced by the 
low sample-mean and small sample size bias 
(Lord, 2006). The NB regression model is an 
extension of the Poisson regression model and 
is used for handling the over-dispersion often 
observed in crash data. The derivation of the 

NB regression model is as follows: the number 
of crashes yi at roadway entity i during some 
time period is assumed to be Poisson distrib-
uted and independent over all entities, which 
is defined by:

					             
(1)

where iP(y )  is the probability of roadway en-
tity i  having iy  crashes for a given time pe-
riod and iλ  is the expected accident frequency 

iE[y ]  for roadway entity i . The expected ac-
cident frequency iλ  is structured as a function 
of explanatory variables, 

exp( )i iXλ β=
			           

(2)

where iX  is a vector of explanatory variables 
and β  is a vector of estimable coefficients. 

The NB regression model arises if we assume 
that the parameter iλ  follows a gamma dis-
tribution. A gamma-distributed error term is 
added to the parameter iλ  and equation (2) is 
rewritten as follows:

exp( )i i iXλ β ε= +
			            

(3)

where exp( )  is the added error term with 
mean 1 and variance α , and α  is the disper-
sion parameter. With this new structure, the 
mean is allowed to differ from the variance such 
that 2[ ] [ ][1 [ ]] [ ] [ ]i i i i iVAR y E y E y E y E yα α= + = + . 
Despite the documented limitations (Lord 
and Mannering 2010; Hilbe 2011; Zou et al., 
2012), the NB model is popular for modeling 
crash data for several reasons. First, most sta-
tistical software programs have built-in func-
tions that can handle such models. Second, two 
types of analysis commonly used in highway 
safety are available within the NB modeling 
framework. The first type of analysis is Em-
pirical Bayesian method, and the second one 
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is related to the estimation of confidence and 
prediction intervals for NB models (see Lord 
2006). Besides, Hauer (1997) also concluded 
that the NB model is the most common distri-
bution used for modeling crash data because 
its marginal distribution has a closed form and 
this mixture results in a conjugate model.

Bayesian Model Averaging

When describing BMA, consider a model 
space M  of K  models kM  (k=1, 2,..., K)  and 
let y  denote the quantity of interest (a future 
observation of the accident frequency using 
new input data). The posterior distribution of 
y  given the observed data D , is

1
( | ) ( | , ) ( | )

K

k k
k

p y D p y M D p M D
=

=∑
	         

(4)

where ( | , )kp y M D  is the posterior distribu-
tion of y  under model kM  given data D  
and ( | )kp M D  is the likelihood of kM  be-
ing the correct prediction model given the ob-
servational data D , which is also known as 
the posterior model probability (PMP). The 
output of BMA method is an average of the 
posterior distribution ( | , )kp y M D , weighted 
by the corresponding posterior probabilities, 

( | )k kw p M D= . For any model space, the 
sum of kw  equals 1. The posterior model 
probability is given by:

					     (5)

where ( )kp M  is the prior probability that 
kM  

is the true model and ( | )kp D M  is the corre-
sponding marginal model likelihood. In this 
study, the model space M  is initially con-
sidered to be equal to the set of all possible 
combinations of explanatory variables. For a 
given set of N  models, the results of the BMA 

approach depend on the specification of prior 
probability. When there is little prior informa-
tion about the relative plausibility of the mod-
els considered, the assumption that all mod-
els are equally likely a priori is a reasonable 
“neutral” choice (Hoeting et al. 1999). The 
marginal model likelihood ( | )kp D M  is cal-
culated by: 

( | ) ( | , ) ( | )k k k k k kp D M p D M p M dθ θ θ= ∫
 
(6)

where kθ  is the vector of parameters in model 

kM , ( | )k kp Mθ  is the prior density of kθ  un-
der model kM , and ( | , )k kp D Mθ  is the likeli-
hood. 

The posterior mean and variance of the BMA 
prediction can be defined as follows:

1
[ | ] ( | , )

K

k k
k

E y D E y D M w
=

=∑
		         

(7)

					             (8)

Although BMA is theoretically attractive, two 
practical difficulties need to be solved before 
its implementation. First, the results of BMA 
heavily rely on the model space and it is nec-
essary to select a proper set of candidate mod-
els. One obvious approach is to include all 
possible models. However, when the number 
of possible models is large, the process of the 
BMA method becomes very time-consuming. 
Currently, two approaches are available to 
solve this problem. One approach is called the 
Occam’s window method, which will be intro-
duced in the following section. The other ap-
proach, the Markov chain Monte Carlo model 
composition (MC3), uses a Markov chain 
Monte Carlo method to directly approximate 
model space in equation (4) (see Madigan and 
York 1995). The implementation of the MC3 
is very complicated and the Occam’s window 
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tends to be much faster computationally (Raf-
tery et al. 1997). Thus, we adopted the Oc-
cam’s window method.

The second difficulty associated with the BMA 
approach is that the marginal model likeli-
hood may be analytically intractable especially 
in many cases where no closed form integral 
is available. Several alternative methods have 
been proposed in the literature to calculate or ap-
proximate the likelihood (Gibbons et al. 2008): 
(i) The most popular approximation of the mar-
ginal likelihood is the Laplace approximation 
which can be calculated at the posterior mode 
or at the maximum likelihood parameter esti-
mates; (ii) Another approximation of the mar-
ginal likelihood is the harmonic mean estimator. 
This estimator is relatively simple, but it is quite 
unstable and sensitive to small likelihood values 
and hence is not recommended in this study; (iii) 
Kass and Wasserman (1995) derived the Bayes-
ian Information Criterion as a rough but adequate 
approximation, and this BIC approximation was 
used in this paper.

Occam’s Window Method

Because the number of terms in equation (4) can 
be very large, the Occam’s window approach 
was used to discard models that predict much 
poorer than their competitors. The Occam’s win-
dow algorithm was first developed by Madigan 
and Raftery (1994). Raftery et al. (1997) later 
applied this method to linear regression models. 
There are two basic principles under the Occam’s 
window method. First, if a model predicts the 
data far poorer than the model which provides 
the best predictions, then this model should be 
excluded from the model space and no longer be 
considered. Those models not belonging to 

	        				             
(9)

should be discarded in equation (4). The 
max { ( | )}l lp M D  is the model with the high-
est PMP and the value of C  is determined 
by the data analyst. Usually, the value of C  
is equal to 20 and we also used C=20  in this 
study. 

The second (optional) principle is called Oc-
cam’s razor and this method is used to exclude 
complex models that receive less support from 
the data than any of their simpler submodels. 
Those models excluded from model space be-
long to

( | ): , , 1
( | )
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k l l k
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(10)

This method can significantly reduce the num-
ber of models in the sum in equation (4). Typi-
cally the number of terms in equation (4) can 
be reduced to fewer than 20 models and often 
to as few as one to two models. The equation 
(4) can be rewritten as:

					            
(11)

where ' \A A B M= ∈ .

To implement the proposed principles, this 
study adopted the leaps and bounds algorithm 
as the search strategy. For more details about 
the search strategy, interested readers should 
read Raftery’s paper (1995).

DATA DESCRIPTION

The dataset used for this study contains crash 
data collected on 338 rural interstate road sec-
tions in Indiana over a five-year time period 
from 1995 to 1999. The data have been inves-
tigated in previous studies (e.g., Anastasopou-
los et al. 2008; Geedipally et al. 2012). Ex-
planatory variables in table 1 are considered 
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to construct a set of model space M for the 
Bayesian model averaging in the study. The 
available highway geometric design informa-
tion includes length of section, minimum fric-
tion reading, pavement surface type, median 
width, presence of median barrier, presence of 
interior shoulder and interior shoulder width; 
while the available traffic information contains 
average daily traffic (ADT) of various vehicle 
types and truck percentage. During the five-
year study period, there were 5,737 crashes. 
The summary statistics for the model variables 
are presented in table 1. As shown in this table, 
the observed crash frequency ranges from 0 to 
329, and the mean frequency is 16.97. For a 
complete list of variables in this dataset, inter-
ested readers can consult (Washington et al. 
2011).

RESULTS AND DISCUSSION

This section describes the modeling results for 
Poisson regression and NB regression models 
using the BMA approach. Despite the fact that 
Poisson regression model has significant dis-
advantages and is now rarely used for analyz-
ing crash data (Lord and Mannering 2010), this 
study considers this regression model as an ex-

ample to demonstrate the usefulness of BMA. 
When analyzing the crash data, we consider the 
segment length as an offset term which means 
that the number of crashes is linearly propor-
tional to the segment length. Thus, we have 
8 candidate explanatory variables, and these 
variables can potentially result in 82 256=  
different models. For the model averaging 
strategies, all possible combinations of candi-
date explanatory variables are assumed to be 
equally likely a priori. The Occam’s window 
method is implemented to exclude the models 
with poor prediction performance. The results 
show that the BMA approach can provide ad-
ditional insight in interpreting the explana-
tory variables and averaging over the selected 
models provides better prediction performance 
than basing inference on a single model in the 
NB regression example. All statistical analy-
ses were carried out in an R package.

Poisson Regression Model

The BMA approach was performed using the 
leaps and bounds algorithm and the results are 
provided in tables 2 and 3. Table 2 contains 
the selected models with the highest poste-
rior probabilities using the Occam’s window 

TABLE 1  Summary Statistics of Characteristics for the Data

Variable Minimum Maximum Mean(SD) Sum

Number of crashes (5 years) X1* 0 329 16.97 (36.30) 5,737

Average daily traffic over the 5 years  ( ADT) X2 9,442 143,422 30,237.6 (28776.4)

Minimum friction reading in the road section over the 5-year 
period (FRICTION) X3 15.9 48.2 30.51 (6.67)

Pavement surface type (1: asphalt, 0: concrete) (PAVEMENT) X4 0 1 0.77 (0.42)

Median width (in feet) (MW) X5 16 194.7 66.98 (34.17)

Presence of median barrier (1: present, 0: absent) (BARRIER) X6 0 1 0.16 (0.37)

Presence of interior shoulder (1: present, 0 absent) (SHOULDER) X7 0 1 0.93 (0.26)

Interior shoulder width (in feet) (SW) X8 2.7 24.1 5.35 (2.80)

Percentage of trucks (average daily) (TRUCKS) X9 7.32% 44.87% 31.74%

Segment length (in miles) (L) X10 0.009 11.53 0.89 (1.48) 300.09

* X1 is the serial number of variable number of crashes.
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method. As shown in this table, only two mod-
els are selected based on the Occam’s window 
method. The model with the higher posterior 
model probability accounts for 90% of the to-
tal posterior probability. Although the amount 
of model uncertainty is not significant for this 
case, there still exists model uncertainty to 
some degree. Compared to Model 1, Model 2 
excludes the variable X7, presence of interior 
shoulder. Table 3 lists the posterior means of 

| Dβ , standard deviations of | Dβ  and pos-
terior effect probabilities ( 0 | )P Dβ ≠  for the 
coefficient associated with each variable us-
ing the BMA approach. The posterior effect 
probability ( 0 | )P Dβ ≠  for one explanatory 
variable is obtained by summing the posterior 
model probabilities of models that contain that 
explanatory variable. Using the conventional 
statistical technique and assuming the full 
model, the estimates, standard errors and p-

values for the coefficients are also provided in 
table 3. Note that all standard deviations using 
the BMA approach are larger than their corre-
sponding standard errors using the full model. 
This is because those parameter estimates and 
standard deviations directly incorporate mod-
el uncertainty (Hoeting et al. 1999). Another 
point to note is that the posterior effect prob-
ability of coefficient associated with variable 
X7 is 90%, and this is because only Model 1 
in the model space includes variable X7 in the 
analysis.

As shown in table 3, we can see that all ex-
planatory variables except variable X7 are 
highly important when predicting the crash 
frequency. Both posterior effect probabilities 
and p-values indicate that there is a very strong 
evidence of an effect. The posterior effect 
probabilities are all 100% and p-values are less 
than 0.0001. The estimated coefficient values 

TABLE 2  Models with Highest Posterior Model Probabilities for Poisson Regression

Model number X2 X3 X4 X5 X6 X7 X8 X9 PMP***

1 T* T T T T T T T 0.90

2 T T T T T F** T T 0.10
* T denotes that the explanatory variable is considered in the corresponding model. 
** F means that the explanatory variable is NOT considered in the corresponding model. 
*** PMP is the posterior model probability.

TABLE 3  Comparison of BMA Results to Full Model for Poisson Regression

Variable

Bayesian model averaging Full model

Mean | Dβ SD* | Dβ ( 0 | )P D≠ Estimate SE** p value

Ln(ADT) X2 0.7069974 0.035122 100 0.706032 0.035035 < 2e-16

FRICTION X3 -0.02241202 0.002124 100 -0.02246 0.00212 < 2e-16

PAVEMENT X4 0.32118 0.044125 100 0.322125 0.044051 2.62e-13

MW X5 -0.003429911 0.000758 100 -0.0034 0.000752 6.28e-06

BARRIER X6 -3.498241 0.357748 100 -3.55938 0.315016 < 2e-16

SHOULDER X7 -0.9032813 0.437834 90 -0.99939 0.340566 0.00334

SW X8 -0.07734632 0.018532 100 -0.07867 0.018197 0.0000154

TRUCKS X9 -1.497767 0.164029 100 -1.50363 0.163252 < 2e-16
* SD is the standard deviation.  
** SE means the standard error.
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of the variables from both approaches demon-
strate that: first, an increase in ADT is found to 
be linked to an increase in the crash frequency 
(although non-linear). Road sections with as-
phalt surface tend to have more crashes than 
sections with concrete surface. Second, the in-
creases of other variables are found to be asso-
ciated with a decrease in the crash frequency. 
For the explanatory variable X7, the p-value 
indicates that the effect is significant and pos-
terior effect probability concludes that there is 
a strong effect. 

Negative Binomial Regression 
Model

The BMA approach was also applied to the 
NB regression model and the results are pre-
sented in tables 4 and 5. As the BMA results 
in table 4 indicate, the model with the high-
est posterior model probability accounts for 
89.7% of the total posterior probability. Thus, 
we can conclude that there is a certain amount 
of model uncertainty. Compared with other se-
lected models, Model 1 is in a dominant po-
sition and this model considers only two ex-
planatory variables X6 and X9. Table 5 gives 
the statistics of the coefficient associated with 
each variable using the BMA approach and the 
conventional statistical technique. For the two 
explanatory variables X6 and X9, since the cor-
responding posterior effect probabilities are 
equal to 100% and the p-values are less than 
0.001, both posterior effect probabilities and p-
values demonstrate that they have very strong 
effects on the crash frequency. For the other 
six explanatory variables, the results show that 
there is a qualitative difference between the 
two methods. If 0.01 is chosen as the signifi-
cance level, then five variables (X2, X4, X5, X7 
and X8) are rejected based on the reported p-
values. On the one hand, for the variables X2, 
X4, X5, X7 and X8, the p-values indicate that 

the effect is insignificant and the posterior ef-
fect probabilities conclude that there is a weak 
or no effect. On the other hand, for the vari-
able X3, the posterior effect probability indi-
cates that the variable minimum friction has 
no effect on the crash frequency, while the 
corresponding p-value shows that the effect 
of minimum friction on the crash frequency is 
significant. Overall, the posterior effect prob-
abilities of the four variables (X2, X3, X4 and 
X5) imply weaker evidence for these effects 
given the corresponding p-values. This is be-
cause the p-values from the full model do not 
take account of model uncertainty, and the p-
values thus overstate the evidence for the ef-
fects (Hoeting et al. 1999). For some variables, 
the posterior mean of coefficients are 0, which 
means the results shrink the estimates toward 
zero (Hoeting et al. 1999). 

Prediction Performance  
Comparisons

In problems where model uncertainty is pres-
ent, BMA can yield prediction performance 
improvements over single selected models. 
This conclusion has been verified in various 
fields, as discussed above. In order to mea-
sure the applicability of BMA in predicting 
the crash data, the mean absolute deviance 
(MAD), the mean squared predictive error 
(MSPE) and the logarithmic score (LS) were 
used to compare the model prediction perfor-
mance between BMA and the conventional 
statistical approach. The first two performance 
indexes (MAD and MSPE) were calculated as 
follows: 
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where n is the testing data size, and iy  and 
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∧

 
are the observed and predicted numbers of ac-
cidents for observation i , respectively (Oh et al. 
2003). The LS was introduced by Good (1952) 
and previous studies (e.g., Hoeting et al. 1999; 
Madigan and Raftery 1994) have used the 
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LS to measure the prediction performance of 
BMA. The observed data in this study are ran-
domly split into two subsets. The first subset 
is referred to as the build data. We apply the 
BMA method and conventional statistical ap-
proach to this subset of data. Then, the second 
subset defined as the test data is used to mea-
sure the prediction performance. The number 
of sections used for building model is 238, 
and the number of sections used for testing is 
100. The logarithmic score measures the pre-
diction ability of an individual model, iM , us-
ing the equation, ( )Ln ( | , )

T

B
i

y D

p y M D
∈

− ∑ . BD  is the 
build data and TD  is the test data. Then the 
prediction performance of BMA is examined 
using the equation, Ln ( | , ) ( |

T
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. To make the comparison results more con-
vincing, the random data separation process 
was repeated for four times and four scenarios 
were considered. Smaller MAD, MSPE and 

LS values indicate a better overall prediction 
performance for the given model. 

Table 6 reports the MAD, MSPE, and LS val-
ues of the competing methods for the NB re-
gression model. Bold values in table 6 are the 
smallest MAD, MSPE, and LS values among 
selected models. As shown in table 6, except 
the MAD value in scenario 1, all other good-
ness-of-fit values indicate that BMA can im-
prove the model prediction accuracy for the 
test data. The difference in LS of 15.38 (be-
tween BMA and full model in scenario 1) can 
be viewed as an improvement in prediction 
performance. For example, if the average pre-
diction probability, ( | , ) /100

T

B

y D

p y M D
∈

− ∑ , is 25%, 
and the corresponding logarithmic score is 

Ln(0.25) 1.386− = . Then after implementing 
BMA, the new average prediction probability 
will be 15.38exp(-(1.386- ))=29.2%

100 . This means that 
BMA can predict the number of crashes 4.2% 

TABLE 4  Models with Highest Posterior Model Probabilities for Negative Binomial Regression

Model number X2 X3 X4 X5 X6 X7 X8 X9 PMP

1 F F F F T F F T 0.897

2 F F F F T T F T 0.052

3 F F F T T F F T 0.051

TABLE 5  Comparison of BMA Results to Full Model for Negative Binomial Regression

Variable

Bayesian model averaging Full model

Mean | Dβ SD | Dβ ( 0 | )P Dβ ≠ Estimate SE p value

Ln(ADT) X2 0 0 0 0.345986 0.161449 0.032*

FRICTION X3 0 0 0 -0.02822 0.010116 0.005

PAVEMENT X4 0 0 0 0.393769 1.72E-01 0.022*

MW X5 -0.00026525 0.001242 5.1 -0.00362 0.002089 0.083*

BARRIER X6 -2.830011 0.280228 100 -3.08466 0.406729 3.35e-14

SHOULDER X7 -0.02144128 0.142661 5.2 -0.57188 0.502978 0.256*

SW X8 0 0 0 -0.02819 0.038981 0.470*

TRUCKS X9 -3.847502 0.627213 100 -2.66588 0.779984 0.000631
* Insignificant at 0.01 level of significance.
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more accurately than the method using the full 
model. Although the difference appears small 
for some of the measures, it is large enough 
that BMA should be selected over the full 
model (see a related discussion about GOF 
and biased models in Lord (2006)). In sum, in 
predicting the crash frequency of the test data, 
the proposed BMA model outperforms the 
conventional models based on MAD, MSPE 
and LS values. Thus, we conclude that BMA 
can improve the prediction performance for 
the NB regression model.

Discussion

In this study, the results showed that BMA can 
provide better prediction performance than 
the conventional statistical technique for the 
NB regression model. The findings suggest 
that BMA may be an appropriate methodol-
ogy for predicting crash data; note that BMA 
should not be used for examining relationships 
between variables. Thus, further studies are 
needed to examine the applicability of BMAs 
to other types of crash model. In previous 
studies, the conventional statistical techniques 

were commonly used for traffic accident anal-
ysis partially because the built-in functions for 
crash models are available in many statistical 
software programs, and usually the analysis 
results can be easily interpreted and provide 
clear and valuable information for traffic safe-
ty analysts in order to make further inferences. 
In contrast, the advantage of BMA is that this 
model overcomes the problem in accounting 
for model uncertainty by conditioning, not on 
a single “best” regression model, but on the 
entire statistical regression model space, and 
the output of BMA combines inferences and 
predictions from multiple candidate models. 
For the NB regression example, a total of 3 
models were selected. Another advantage of 
BMA is that, in the presence of model uncer-
tainty, it can yield prediction performance im-
provements over single selected models. De-
spite the above merits of BMA, there are a few 
limitations associated with this model. First, 
when the number of explanatory variables in 
crash data is large, for instance, 20 explanatory 
variables are included in the analysis, then, the 
application of the Occam’s window method is 

TABLE 6  Performance Index Values for Negative Binomial Regression Models

Scenario Performance Index Full model Model with significant variables* BMA

1

MAD 5.82 6.35 5.85

MSPE 100.63 118.88 91.21

LS 292.28 288.89 276.90

2

MAD 7.99 8.00 7.76

MSPE 285.77 289.96 266.41

LS 311.65 308.61 298.57

3

MAD 8.91 8.40 7.60

MSPE 357.49 314.37 231.53

LS 314.75 312.98 304.16

4

MAD 5.48 5.44 5.10

MSPE 84.19 83.55 64.89

LS 281.00 277.65 266.57
* Model with significant variables at a significance level of 0.05.
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very time-consuming because there are a to-
tal of 202  1,048,576=  candidates model in 
the complete model space. Therefore, the ef-
ficiency of BMA can be compromised by the 
number of explanatory variables examined in 
the analysis. Second, after Occam’s window 
method is applied, in our experience, the num-
ber of terms in equation (4) can be reduced to 
fewer than 20, often to as few as 1 or 2. For 
example, as illustrated in tables 2 and 4, two 
or three models are selected based on Occam’s 
window method. This finding may be differ-
ent from the typical application of BMA and 
thus understate the value of BMA. To better 
demonstrate its usefulness, some other statisti-
cal models (i.e., Poisson-lognormal, Poisson-
Weibull, etc.) for analyzing crash data could 
be used. Another way to increase model un-
certainty is to implement BMA without using 
Occam’s window.

CONCLUSIONS

This paper has documented the application of 
the Bayesian model averaging approach for 
predicting motor vehicle crashes. Crash data 
collected on rural interstate road sections in 
Indiana were analyzed using the proposed 
approach. Poisson and NB regression mod-
els were used to establish the relationship be-
tween traffic accident frequency and highway 
geometric variables and traffic characteristics. 
The results of this study revealed that the mod-
el uncertainty problem can be solved or at least 
minimized using BMA; and, in the presence 
of model uncertainty, the proposed approach 
can provide better prediction performance 
than single models selected by conventional 
statistical techniques for the NB models. This 
study also presented a new methodology in 
predicting the traffic accident frequency. For 
future work, since the crash data used in this 
study were collected at rural interstate roads, 
an application of BMA to other types of data 

would be meaningful. Moreover, it would also 
be interesting to examine the results of apply-
ing BMA to more complex crash prediction 
models, such as the newly introduced Nega-
tive Binomial-Lindley model (Geedipally et 
al. 2012). Finally, this study did not apply the 
Markov chain Monte Carlo model composi-
tion method to directly approximate the terms 
in equation (4). The Occam’s window meth-
od and the Markov chain Monte Carlo model 
composition method should be compared, and 
their influence on the modeling results inves-
tigated.
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ABSTRACT1

This study developed lane width crash modi-
fication factors (CMFs) for urban curb-and-
gutter multilane roadways with asymmetric 
lanes, i.e., outside lane wider than inside lane. 
The roadway segments used were urban four-
lane with a raised median (4D) and with a two-
way left-turn lane (5T). Three crash categories 
were evaluated: KABCO (Fatal (K), incapac-
itating-injury (A), non-incapacitating injury 
(B), possible injury (C) and property damage 
only crashes (O)), KABC (Fatal (K), incapac-
itating-injury (A), non-incapacitating injury 
(B), and possible injury crashes (C)), and PDO 
(property damage only) crashes. 

A cross-sectional method was used as it was 
the most practical and feasible for this study. 
Six-year (2004 to 2009) of segment crashes 
were examined. The analysis involved statis-
tical modeling using the negative binomial 
model, whose coefficients were used to devel-
op multiplicative CMF equations for a com-
bined effect of variable inside and outside lane 
width. 

In summary, the results show that reducing the 
inside lane width from 12 ft to 11 ft does not 
affect estimated crash frequency of four-lane 
with a raised median segments for all three 
crash categories, and PDO crashes for four-
lane with a two-way left-turn lane segments. 
However, narrowing the inside lane width ap-
pears to be associated with increased estimat-
ed KABCO and KABC crashes for four-lane 
with a two-way left-turn lane sections. The 

KEYWORDS: Crash modification factors, lane width, 
asymmetric roadways

Lane Width Crash Modification Factors for Curb-and-Gutter 
Asymmetric Multilane Roadways: Statistical Modeling
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results also suggest that widening the outside 
lane from the baseline 12 ft causes a reduction 
in estimated crash frequency for all three crash 
categories (KABCO, KABC, and PDO) for 
both four-lane with a raised median and four-
lane with a two-way left-turn lane segments.

INTRODUCTION

This paper presents the process that was used 
to develop crash modification factors (CMFs) 
for urban multilane curb-and-gutter asymmet-
ric lanes in the state of Florida. The CMFs de-
veloped in this study describe change in safety 
when a typical section measuring 12 ft for both 
inside and outside lanes is changed to an asym-
metric section, also known as an atypical con-
figuration. An example of this would be chang-
ing a 12 ft inside and outside lane to an 11 ft 
inside lane and 13 ft outside lane. Most of these 
roadway configurations result from retrofitting, 
by repainting, or widening of the roadway ren-
dering the outside lane a shared lane for bicy-
cles and motor vehicles.

LITERATURE REVIEW

There are several studies that were conducted to 
develop lane width crash modification factors 
(CMFs) for two-lane rural highways (Griffin 
and Mak (1987), Zeeger et al. (1987), Harwood 
et al. (2000), Harwood et al. (2003), and Harkey 
et al. (2008)). These studies are also cited in the 
Highway Safety Manual, HSM (2010). They 
were all conducted on two-lane rural highways. 
Separate CMFs were reported for roadways 
with average annual daily traffic (AADT) less 
than 400 motor vehicles per day and for road-
ways with AADT greater than 2000 motor ve-
hicles per day. These CMFs indicate that wid-
ening of lanes reduce a specific set of related 
accident types, namely single-vehicle run-off-
road accidents, multiple-vehicle head-on, op-
posite-direction sideswipe, and same-direction 

sideswipe collisions (Harkey et al. (2008) & 
Highway Safety Manual (2010)). This decrease 
was relative to 12 ft lane width, which was con-
sidered the base line of comparison. 

In another lane width study, Lord and Ben-
neson (2007) developed lane width CMFs for 
two-lane rural highway frontage roads for the 
state of Texas. Rural frontage roadways differ 
from rural two-lane roadways because they 
have restricted access along at least one side of 
the road, a higher percentage of turning traffic, 
and periodic ramp-frontage-road terminals with 
yield control. The results showed increased 
crash frequency as lane width decreased from 
12 ft to 9 ft. 

CMFs reported in the Highway Safety Manual 
(2010) for rural multilane roadways were devel-
oped by the study that was conducted by Har-
key et al. for the National Cooperative Highway 
Research Program (NCHRP) (2008). An expert 
panel was used to develop CMFs for rural mul-
tilane roadways. Lane width CMFs developed 
by modeling crashes for multilane highways 
are absent. Furthermore, it is clear that CMFs 
reported in the HSM (2010) for rural multilane 
(both divided and undivided) highways may not 
apply to urban multilane roadways. This is due 
to the difference in traffic operations and level 
of activities surrounding urban highways.

In a recent lane width study, Potts et al. (2007) 
investigated the relationship between lane width 
and safety for roadway segments on urban and 
suburban arterials. The study by Potts et al. did 
not develop CMFs. The study did not find any 
indication of safety risk on urban and suburban 
arterials when lane width narrower than 12 ft 
was used.

Based on the summary of the literature review, 
two main observations need special attention. 
First, the average lane width was used in all 
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previous studies that developed CMFs for lane 
width. While averaging may apply to symmet-
ric lane configurations, such as 12 ft inside lane 
and 12 ft curb lane, it may be too simplistic for 
asymmetric sections, which have wider curb 
lanes and narrow inside lanes. Second, all exist-
ing CMFs for lane widths were developed for 
rural highways. None of the CMFs reported in 
previous studies were developed to specifically 
address the safety consequences of lane width 
in urban roadways. These two observations are 
the motivation of this study as it employs in-
dividual lane measurements instead of the av-
erage of aggregated lane width and focuses on 
urban segments, helping to fill the knowledge 
gap that exists in lane width CMF development.

Rural and urban highways differ in their cross-
sectional geometric configurations. Rural 
highways have shoulders while urban high-
ways considered in this study have curb-and-
gutter. The shoulder provides room for road 
users to veer to the right if they are on the 
outside lane to avoid a crash while curb-and-
gutter roadways causes a constraint for lateral 
movement to the right of the travel lanes. Also, 
bicyclists do not share a lane with motorists on 
rural highways. They ride on the shoulder to 
the right of the white stripe. This study pres-
ents the analysis of urban wide curb lanes, i.e., 
outside lanes widths greater than 12 feet, to 
accommodate bicyclists and motorists on the 
same lane. 

RESEARCH OBJECTIVE

The objective of this study was to evaluate the 
safety of urban multilane roads with atypical 
lane width configurations, i.e., outside lane 
width greater than the standard lane width (12 
ft) and narrower inside lane narrower than 12 
ft. This objective was accomplished by de-
veloping Crash Modification Factors for two 
types of atypical multilane urban cross sec-

tions namely urban four-lane roadways with 
divided median (4D) and urban four-lane with 
two-way left-turn lane (5T). Crash Modifica-
tion Factors quantify the change in expected 
average crash frequency (crash effect) caused 
by implementing a particular treatment. The 
value of Crash Modification Factor below 1 
indicates treatment causes crash reduction 
while Crash Modification Factor greater than 
1 indicates that the treatment is expected to re-
sult in an increased number of crashes. a Crash 
Modification Factor of 1 represents no effect 
on safety.

DATA COLLECTION

Roadway Data

Databases Used

Roadway characteristics inventory (RCI): 
This database was used to identify the type of 
road configuration and roadway characteristics 
including: total surface lane width, number of 
lanes, shoulder type, and traffic characteristics. 
All four-lane with a raised median and four-lane 
with a two-way left-turn lane were filtered and 
further analyzed using Florida Department of 
Transportation (FDOT) as-built plans.

FDOT scanned copy of as-built plans: FDOT 
archives scanned copies of as-built plans for 
state maintained roadway projects. The data-
base has most of the roadway plans for com-
pleted projects and projects that are under con-
struction. The advantage of as-built plans over 
RCI database is that they show individual lane 
width while roadway characteristics inventory 
database shows the total surface width. From 
the as-built plans, using roadway ID obtained 
from roadway characteristics inventory data-
base, four-lane with a raised median and four-
lane with a two-way left-turn lane multilane 
roadways with asymmetric lanes were verified 
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by examining individual lane width. Addition-
al data obtained from the as-built plans include 
individual lane width, type of median, num-
ber of driveways, number of median openings, 
and approximated segment length.

Comparison Sites

Comparison sites were roadways with standard 
lane width of 12 ft for both inside and outside 
lanes. They were obtained by using a technique 
suggested by Bonneson and Pratt (2008). At 
first, sites adjacent to selected asymmetric lanes 
on the same roadway (figure 1a) were chosen 
to ensure that the pairs were homogenous to 
the asymmetric segments. However, it was not 
possible to get sufficient data using this tech-
nique. Therefore, the selection was expanded 
to consider parallel (figure 1b) and intersecting 
(figure 1c) the selected asymmetric segments. 
Parallel and intersecting segments were consid-
ered only if their roadway characteristics were 
similar to the paired asymmetric segments and 
had a comparable average annual daily traffic 
(AADT). The attributes used for the selection of 
comparison sites were number of lanes, median 
type, posted speed limit, degree of curve, type 
of shoulder (curb), and type of onstreet parking. 

Verification of Roadway Geometric 
Information for Asymmetric and Com-
parison Segments 

Two issues emerged when reviewing the as-
built drawings. First, it was discovered that 
most of as-built plans are not updated regu-
larly. Second, there was inconsistency in the 
way the curb lane was measured. Therefore, 
as-built plans measurements were verified by 
performing field measurements for segments 
with asymmetric lanes and comparison sites. A 
total of 918 road segments were verified. After 
field verification, 454 segments (49.5% of all 
segments) were dropped as their characteris-

tics differed those recorded on RCI and as-built 
drawings, hence did not qualify for analysis. A 
minimum of 100 segments is recommended for 
modeling (Agrawal and Lord, 2006). After field 
verification, both 4D and 5T were found to have 
enough segments for modeling with a total of 
224 and 240 segments, respectively, for both 
segments with asymmetric lanes and compari-
son segments. 

Crash Data

Statewide crash data was obtained from crash 
analysis reporting (CAR) database, an electron-
ic repository of crashes maintained by FDOT.  
The data was from 2004 to 2009.  The location 
of each crash was linearly referenced to the 
Florida Department of Transportation roadway 
system using the milepost system indexed by 
the roadway identification number (Roadway 
ID). Data was filtered to remain with mid-block 
crashes only. All crashes that occurred within a 
radius of 250 ft from the center of intersections 
were discarded. 

DATA ANALYSIS

Crash Rate Analysis for  
Segments With Asymmetric Lanes 
Configuration 

Categories of outside lane width were formed 
by grouping ranges of lane widths as follow: 
11.8 ft–12.2 ft formed a 12 ft category; 12.3 ft–
12.7 ft formed a 12.5 ft category; 12.8 ft–13.2 ft 
formed a 13 ft category; 13.3 ft–13.7 ft formed 
a 13.5 ft category; and 13.8 ft–14.2 ft formed a 
14 ft category. It should be noted that for the 12 
ft category of outside lane width, the inside lane 
width was also12 ft (comparison sites). Howev-
er, for all other lane width categories, the inside 
lane width was fixed to 11 ft. These categories 
were used for an explanatory analysis whose re-
sults are reported in table 1. 
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FIGURE 1  Criteria Used in Selection of Comparison Segments 

(a)

(b)

(c)
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As can be seen in table 1, crash categories are 
described using three acronyms, i.e., KABCO, 
KABC, and PDO crashes, derived from the 
Highway Safety Manual naming convention. 
KABCO stands for fatal (K), incapacitating 
(A), non-incapacitating (B), possible injury 
(C) and PDO (O) crashes while KABC rep-
resents fatal (K), incapacitating (A), non-inca-
pacitating (B), and possible injury (C) crashes. 
PDO is used for crashes that result in property 
damage only. 

Figure 2 is a graphical representation of the 
results shown in table 1, depicting the rela-
tionship between crash rate per million vehi-
cle miles (mvm) and the outside lane width. 
The two graphs presented in figure 2 show an 
increase of crashes when outside lane width 
increased from 12 ft (with inside lane width 
of 12 ft) to 12.5 ft (with an inside lane of 11 
ft). There is a discernible pattern of decreased 
crash rate as the outside lane width is increased 
from 12.5 ft to 14 ft with a fixed inside lane 
width of 11 ft. This trend was observed for all 
three crash categories, i.e., KABCO, KABC, 
and PDO crashes. 

Statistical Modeling

Selection of the Statistical Model

Two regression count models used to analyze 
crash data are Poisson and Negative Binomi-
al. Poison regression distribution requires the 
mean and variance of the dependent variable 
to be equal. For most crash data, the variance 
of the crash frequency exceeds the mean and, 
in such case, the data would be overdispersed. 
The Highway Safety Manual (2010) specifi-
cally calls for the use of the Negative binomial 
model in lieu of Poisson model because the de-
gree of overdispersion in a negative binomial 
model is represented by a statistical parameter, 
known as the overdispersion parameter that is 
estimated along with the coefficients of the re-
gression equation. The larger the value of the 
overdispersion parameter, the more the crash 
data vary as compared to a Poisson distribu-
tion with the same mean.

Selection of the Function

The first step toward development of predic-
tive models is the selection of the functional 

TABLE 1  Crashes Rate for Different 4D Outside Lane Width Categories

Inside lane 

width (ft)

Outside lane 

width (ft)

Exposure 

(mvm)

KABCO 

crashes

PDO 

crashes

KABC 

crashes

KABCO  

crashes/mvm

PDO crashes/

mvm

KABC crashes/

mvm

12 *12.0 1631.24 739 313 426 0.45 0.19 0.26

11 12.5 297.81 219 84 135 0.74 0.28 0.45

11 13.0 595.56 372 164 208 0.62 0.28 0.35

11 13.5 482.45 162 63 99 0.34 0.13 0.21

11 14.0 254.45 45 19 26 0.18 0.07 0.10

Crashes rate for different 5t outside lane width categories

12 *12.0 634.31 420 189 231 0.66 0.30 0.36

11 12.5 215.94 187 79 108 0.87 0.37 0.50

11 13.0 209.46 153 56 97 0.73 0.27 0.46

11 13.5 88.16 59 21 38 0.67 0.24 0.43

11 14.0 120.84 71 24 47 0.59 0.20 0.39
*Comparison sites with inside lane width of 12.0. All other categories have inside lane width of 11.0 ft.
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FIGURE 2  Graphs of Outside Lane Width and Crashes Rate by Severities

form. Normally, the function is determined em-
pirically after several runs of different variable 
combinations which correlate the dependent 
variable (outcome variable) to the model co-
variates. Different functions were considered 
and fitness of resulting models was assessed. 
After several trials of different combination 
of variables, the function based on Negative 
Binomial (NB) model presented as equation 1 
was selected.

              (1)

Equation 1 was simplified to provide a linear 
relationship between the dependent variable 

and covariates by taking natural logarithm on 
both sides. The resulting formula is presented 
as equation 2. 

	
					               (2)

Where

AADT = is an average annual daily traffic over 
six years of study period

Li = segment length

µi= mean number of crashes for six year  
period for site i 
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x1, x2,…… xn= explanatory variables

βo, βi,……., βn = regression coefficients to be 
estimated

Selection of Explanatory Variables

Previous studies have found that roadway 
cross-section variables such as lane width, 
median width, median type, grade, segment 
length, and degree of curve have contribution 
to occurrences of crashes (Zeeger et al. (1987) 
& Harkey et al. (2008)). Mauga and Kaseko 
(2010) found median opening density and 
driveway density to have contributed to the 
increase in crashes in urban multilane roads. 
Also, AADT and posted speed limit have been 
widely reported as important variables in crash 
modeling (Harkey et al. (2008), HCM (2010), 
& Mauga and Kaseko (2010)). In this study, 
two main explanatory variables—AADT and 
segment length were considered to be key vari-
ables that relate number of crashes to predic-
tors. In addition, inside and outside lane width 
were considered as study variables and were 
given equal importance as key variables. Due 
to the nature of sites used for this study, other 
variables including posted speed limit (mph), 
median width (ft), degree of curve (degree), 
and driveway density (number of driveway/ 
0.1 mile) and median opening density were 
also added in the model. Number of median 
opening density was found to be irrelevant for 
four-lane with a two-way left-turn lane con-
figuration as the configuration does not restrict 
turning at any point. However, it was impor-
tant for four-lane with a raised median config-
uration as turning to access adjacent properties 
is only through median openings.

It is worth noting that in previous studies, 
driveway density and median opening densi-
ty had been expressed in terms of number of 
driveways/mile or number of openings/mile. 

However, for this study, segment lengths were 
ranged from 0.01 mile to 0.52 mile for four-
lane with a two-way left-turn lane configura-
tion with 0.1 mile being a mean value. In order 
to avoid having high values for driveway den-
sity and median openings, the mean segment 
length of 0.1 mile was used to scale the median 
openings and driveway density. 

Negative Binomial (NB) Model  
Selection and Evaluation

The negative binomial model was developed to 
analyze the influence of the independent vari-
ables on three response variables i.e., KABCO, 
KABC, and PDO crashes. Model results were 
tested at 0.05 level of significant. All insignifi-
cant variables were removed to form a reduced 
model. A reduced model was re-run and tested 
again at the same level of significant. 

Thereafter, a comparison of the full and re-
duced models was performed using two 
information-theoretic approach indicators 
i.e., Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC). The 
general criterion for comparison is that the 
model with a smaller value of AIC and BIC 
is considered to be better. The values of BIC 
and AIC for the reduced models were smaller 
than those of the full models for all three re-
sponse variables (KABCO, KABC, and PDO) 
crashes. The reduced model was then selected 
for all three response variables.

Model Results for 4D Segments

Model results for four-lane with a raised me-
dian segments are reported in table 2. The re-
sults revealed an increase in KABCO, KABC, 
and PDO crashes as outside lane widths is de-
creased. The increase in crashes was signifi-
cant when tested at 95% confidence level with 
p-values of 0.010, 0.044 and 0.0153 for the 
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TABLE 2  Results for Urban Four-Lane Roadway With Divided Median (4D)

4D Segments—metadata for the KABCO, KABC, and PDO crashes

Variable Mean Standard deviation Minimum Maximum
AADT 37,510 7,383 25,100 52,500
Segment length (length) 0.17 0.1 0.01 0.64
Outside lane width (ft) 12.63 0.7 12 14
Inside lane width (ft) 11.68 0.4 11 12
Median opening density 0.68 1.3 0 10.6
Driveway density (drive way/0.1mile) 1.16 2.1 0 19

KABCO crashes 

Parameter Estimate Standard error p-values Comment
Intercept -33.1729 4.8553 <.0001 Significant
Log of  AADT 3.7903 0.4586 <.0001 Significant
Log of length 0.3505 0.126 0.0054 Significant
Outside lane width (ft) -0.3591 0.1395 0.0101 Significant
Median opening density 0.1713 0.0716 0.0167 Significant

Deviance (value/df ): 1.12
Over-dispersion parameter k: 1.51

 BIC: 1198.95
AIC: 1177.82

Pearson χ2 (value/df ): 1.04

KABC crashes
Intercept -31.8083 5.321 <.0001 Insignificant
Log of  AADT 3.5618 0.5011 <.0001 Significant
Log of length 0.3944 0.1391 0.0046 Significant
Outside lane width (ft) -0.3113 0.1546 0.044 Significant
Median opening density 0.1921 0.0802 0.0165 Significant

Deviance (value/df ): 1.05
Over-dispersion parameter k: 1.71

BIC: 1002.31
AIC: 981.98

Pearson χ2 (value/df ): 1.01

PDO crashes
Intercept -38.6478 5.6048 <.0001 Insignificant
Log of  AADT 4.2327 0.5342 <.0001 Significant
Log of length 0.3038 0.1444 0.0354 Significant
Outside lane width (ft) -0.3743 0.1544 0.0153 Significant
Median opening density 0.1584 0.0736 0.0315 Significant

Deviance (Value/df ): 1.01    
Over-dispersion parameter k: 1.51    

BIC: 869.59    
AIC: 849.26

Pearson χ2 (value/df ): 1.03



70  JOURNAL OF TRANSPORTATION STATISTICS  V10, N1 2013

outside lane width. The effect of the inside lane 
width was insignificant, therefore the coeffi-
cient was removed. Also, the increase in medi-
an opening density resulted in the increase of 
KABCO, KABC, and PDO crashes. This was 
evident as the p-values of 0.0167, 0.0165, and 
0.0315 for KABCO, KABC, and PDO crashes 
were observed. These results were consistent 
to the Mauga and Kaseko (2010) study which 
observed the increase in injury crashes with an 
increase in median opening density.

Model Results for Four-Lane With a 
Two-Way Left-Turn Lane Segment

Table 3 presents the model results for four-lane 
with a two-way left-turn lane segments. Ac-
cording to the results reported in table 3, both 
KABCO and KABC crashes increased with 
reduced lane width for both lanes (inside and 
outside). The results were significant at 95% 
confidence level. For KABC crashes, p-values 
of 0.0184 and 0.0294 for inside and outside 
lane, respectively, were observed while for 
KABCO crashes, p-values for inside and out-
side were 0.0493 and 0.0106, respectively. 

Both KABCO and KABC crashes were sig-
nificantly correlated to driveway density. The 
increase in driveway density resulted in the 
increase in KABCO and KABC crashes. P-
values of 0.0334 and 0.0007 for KABCO and 
KABC crashes, respectively, were observed. 
This finding is consistent to the results re-
ported by Mauga and Kaseko (2010) which 
observed the increase in injury crash rate as 
driveway densities were increased. However, 
with respect to PDO crashes, the inside lane 
width and driveway densities were found to be 
insignificant not only at 95%, but also at 90% 
confidence level. 

The influence of AADT was found to be sig-
nificant for all three response variables (KAB-

CO, KABC and PDO crashes). The model 
yielded p-values of 0.0001, 0.0001 and 0.0001 
for KABCO, KABC and PDO crashes, re-
spectively, for four-lane with a raised median 
segments. P-values of 0.0001, 0.0001, 0.0111, 
for KABCO, KABC and PDO crashes, respec-
tively, were observed for four-lane with a two-
way left-turn lane segments. In all three cases 
for the four-lane with a two-way left-turn lane 
segments, the model coefficient for segment 
length was approximately 1.000, therefore was 
used as an offset variable.

Developing Crash Modification 
Factors 

Method Used

The Highway Safety Manual (2010) provides 
a list of methods that can be used for develop-
ing Crash Modification Factors. The most pre-
ferred methods are controlled experiments and 
the Empirical Bayes method using the before-
and-after data. Due to the difficulty in obtain-
ing the exact date that a treatment was imple-
mented, the before-and-after analysis was not 
feasible for this study. Another method rec-
ommended by the Highway Safety Manual 
(2010), i.e., the cross-sectional method was 
therefore adopted as it does not require the 
“before” period data for analysis. Instead, it 
employs the treatment and comparison sites of 
“after” period data for analysis. It is the same 
method that was used by Lord and Bonneson 
(2007) to estimate Crash Modification Factors 
for rural frontage roads in Texas. The method 
estimates Crash Modification Factors by using 
coefficients developed from regression mod-
els, for this case, coefficients reported in tables 
2 and 3. Crash Modification Factors for each 
specific response variable follow an exponen-
tial relationship shown in equation 3.

                              (3)
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TABLE 3  Results for Urban Four-Lane Roadway With TWLTL (5T)

5T Segments—metadata for the KABCO, KABC, and PDO crashes

Variable Mean Standard deviation Minimum Maximum
AADT 22,078 7,118 7,480 43,929
Segment length (length) 0.10 0.07 0.01 0.52
Outside lane width (ft) 12.60 0.7 12 14
Inside lane width (ft) 11.50 0.5 11 12
Median width (ft) 12.10 1 10 14
Driveway density (drive way/0.1mile) 5.00 3 0 24

KABCO crashes
Parameter Estimate Standard error p-values Comment
Intercept 7.9121 6.8456 0.2478 Insignificant
Log AADT 1.0190 0.2412 <.0001 Significant
Driveway density 0.0504 0.0237 0.0334 Significant
Outside lane width (ft) -0.5887 0.2305 0.0106 Significant
Inside Lane width (ft) -0.6318 0.3214 0.0493 Significant

Deviance (value/df ): 1.11
Over-dispersion parameter k: 1.07

 BIC: 999.53
AIC: 979.56

Pearson χ2 (value/df ): 1.38

KABC crashes
Intercept 5.6102 6.7447 0.4055 Insignificant
Log AADT 1.1963 0.2523 <.0001 Significant
Driveway density 0.0823 0.0243 0.0007 Significant
Outside lane width (ft) -0.4978 0.2285 0.0294 Significant
Inside lane width (ft) -0.7452 0.3162 0.0184 Significant

Deviance (value/df ): 1.09
Over-dispersion parameter k: 0.87

BIC: 795.99
AIC: 815.96

Pearson χ2 (value/df ): 1.40

PDO crashes
Intercept -1.2237 3.9480 0.7566 Insignificant
Log AADT 0.9114 0.3587 0.0111 Significant
Outside lane width (ft) -0.4092 0.1835 0.0258 Significant

Deviance (value/df ): 0.90
Over-dispersion parameter k: 2.14      

BIC: 676.39
AIC: 659.75

Pearson χ2 (value/df ): 1.14
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Where

xi= range of values or a specific value investi-
gated (e.g. lane width, etc.) 

yi = baseline conditions or average conditions 
for the variable 

βi= regression coefficient 

Lane Width Crash Modification Factors 

The lane width of 12 ft for both inside and out-
side lanes was considered as a base condition. 
Since CMFs are multiplicative factors when 
used to predict crash frequencies, based on the 
results presented in tables 2 and 3, and equation 
3, the resulting CMFs were derived as:

•	 four-lane with a raised median Crash modi-
fication functions

CMF for KABCO crashes

      (4)

CMF for KABC crashes

        (5)

CMF for PDO crashes:

      (6)

•	 four-lane with a two-way left-turn lane Crash 
modification functions

CMF for KABCO crashes:

  
                                                                       (7)

CMF for KABC crashes:

 
					                (8)

CMF for PDO crashes:

           (9)

It can be noted that the coefficient of the inside 
lane width is not included in the Crash Modifica-
tion Factors of all three crash categories for four-
lane with a raised median segments (equations 
4 to 6) and Crash Modification Factor of PDO 
crashes for four-lane with a two-way left-turn 
lane segments (equation 9). This is because the 
inside lane width was not significant for these 
particular cases as explained in previous sections.

Crash Modification Factor Curves and 
Interpretation

Figures 3 and 4 show Crash Modification Factor 
curves for KABCO, KABC, and PDO crashes 
for four-lane with a two-way left-turn lane seg-
ments and four-lane with a raised median seg-
ments, respectively. The six curves were devel-
oped by substituting lane widths of 11 ft and 12 
ft for the inside lane and varying lane widths of 
12.5 to 14 for the outside lane, in equations 4 
through 9. The base CMF of 1.00 corresponds 
to the segments with the inside and outside lane 
width of 12 ft each. 

When considering different combination of in-
side and outside lane widths, the following ob-
servations were made. For four-lane with a two-
way left-turn lane configuration (figure 3), apart 
from the base condition (12 ft for both inside and 
outside lanes), Crash Modification Factor of 1.0 
for KABCO crashes was observed for a combi-
nation of 11 ft inside and 13 ft outside lane and a 
pair of 11 ft inside and 13 ft outside lane width. 
The combination of 11.5 ft and 13 ft resulted 
to Crash Modification Factor of 0.75, which 
indicates reduced estimated average KABCO 
crash frequency in comparison to the base con-
dition. For KABC crashes, the combination of 
11 ft inside/13 ft outside lane width and 11.5 ft 
inside/12.5 ft outside lane width yielded Crash 
Modification Factors greater than 1.00, which 
indicates an increase in estimated KABC crash-
es. On the other hand, the combination of 11.5 
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ft and 13 ft resulted in a CMF Crash Modifica-
tion Factor smaller than 1.00, which indicates a 
reduction in estimated KABC crashes. With re-
spect to PDO crashes, it was outside lane width 
which had an effect on Crash Modification Fac-
tor. As the width increased to greater than 12 ft 
the Crash Modification Factor was less than one 
indicating reduction in PDO crashes.

For four-lane with a raised median configuration 
(figure 4), 60% reduction for KABCO and PDO 
crashes was observed as the Crash Modification 
Factor decreased from 1.0 to 0.4 as the outside 
lane width increases from 12 ft to 14.5 ft. The 
crash reduction of 66% was observed for KABC 
crashes as the outside lane width widens from 12 
ft to 14.5 ft.

FIGURE 3  Graphs of CMFs for Four-Lane With a Two-Way Left-Turn Lane Segments
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FIGURE 4  Graph of CMFs for four-lane with a raised median segments
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SUMMARY

This study developed lane width crash modi-
fication factors for asymmetric urban multi-
lane roadways. The roadway segments used 
were urban four-lane with a raised median 
(4D) and with two-way left-turn lane (5T). In 
total, the analysis reported in this study used 
25 centerline miles of four-lane with a two-
way left-turn lane segments and 39 centerline 
miles of four-lane with a raised median road-
ways.

Development of Crash Modification Factors 
followed a protocol described by the Highway 
Safety Manual (2010). The cross-sectional 
method was used. Negative binomial regres-
sion models were used to model the relation-
ship between crash frequency and model 
variables. Variables considered in modeling 
included driveway density, median open-
ing density, posted speed limit, inside lane 
width, outside lane width, median width, seg-
ment length, and average annual daily traffic 
(AADT). Six years (2004–2009) of segment 
crashes were examined. Three crash catego-
ries were evaluated: KABCO (Fatal (K), in-
capacitating-injury (A), non-incapacitating 
injury (B), possible injury (C) and property 
damage only crashes (O)), KABC (Fatal (K), 
incapacitating-injury (A), non-incapacitating 
injury (B), and possible injury crashes (C)), 
and PDO (property damage only) crashes.

The results of the safety analysis are summa-
rized in table 4. These values are calculated 
using equations 4 through 9. A Crash Modi-
fication Factor of 1.00 indicates no influence 
in causing crashes while Crash Modification 
Factors smaller and greater than 1.00 indicate 
that a change of a variable from a base value 
causes a decrease and increase in crashes, re-
spectively. According to the results depicted 
in table 4, for four-lane with a raised median 

segments, the effect of inside lane width is 
insignificant, indicating that the decrease of 
lane width from 12 ft to 11 ft does not cause 
an increase in crash frequency. According to 
the results, crashes decrease as the outside lane 
width is increased from 12 ft. This decrease is 
seen on all types of crashes analyzed in this 
study, i.e., KABCO, KABC, and PDO.

For four-lane with a two-way left-turn lane sec-
tions, the results show an increase in crashes as 
the inside lane width is reduced to 11 ft while 
the outside lane width is increased to 12.5 ft. 
This trend was observed for both KABCO 
and KABC crashes, but not for PDO crashes. 
However, the combination of 11.5 ft or more 
for the inside lane and 13 ft for the outside lane 
width resulted in the decrease in crashes for 
KABCO and KABC crashes. Crash Modifica-
tion Factors for PDO crashes were found to 
be independent of the inside lane width, but 
dependent of outside lane width. Relative to 
outside lane width of 12 ft, the Crash Modifi-
cation Factors for PDO crashes were found to 
decrease as the outside lane width increased. 

As stated above, for four-lane with a raised 
median segments, narrowing the inside lane 
from 12 ft to 11 ft did not result in an increase 
in crash frequency for any of the three types 
of crashes. Also, for four-lane with a two-way 
left-turn lane segments, the decrease in inside 
lane width was not significant for PDO crash-
es. It was only significant for KABCO and 
KABC crashes, hence higher values of Crash 
Modification Factors for KABCO and KABC 
crashes for four-lane with a two-way left-
turn lane. As far as four-lane with a two-way 
left-turn lane segments are concerned, higher 
Crash Modification Factor values for KABCO 
and KABC crashes might have been attributed 
to the type of median and might have less to do 
with the inside lane width. Having higher val-
ues of Crash Modification Factors for KABCO 
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TABLE 4  Comparison of CMFs for 4D and 5T When Inside Lane Width is Fixed to 11 ft  
           While Outside Lane Width Varies

[4D CMF] 

(5T CMF) 

Ratio (5T CMF)/(4D CMF)

Outside lane width range (ft) 11.8-12.2 12.3-12.7 12.8-13.2 13.3-13.7 13.8-14.2 14.3-14.7

Outside lane width (ft) 12 12.5 13 13.5 14 14.5

CMF for KABCO crashes 

[1.00] 

(1.88) 

1.88

[0.84] 

(1.40) 

1.67

[0.70] 

(1.04) 

1.49

[0.58] 

(0.77) 

1.32

[0.49] 

(0.58) 

1.18

[0.41] 

(0.43) 

1.05

CMF for KABC crashes 

[1.00] 

(2.12) 

2.12

[0.86] 

(1.65) 

1.92

[0.73] 

(1.28) 

1.75

[0.63] 

(1.00) 

1.59

[0.54] 

(0.78) 

1.44

[0.64] 

(0.61) 

0.95

CMF for PDO crashes 

[1.00] 

(1.00) 

1.00

[0.83] 

(0.81) 

0.98

[0.69] 

(0.66) 

0.96

[0.57] 

(0.54) 

0.95

[0.48] 

(0.44) 

0.92

[0.40] 

(0.36) 

0.9

and KABC crashes (total crashes) on roads 
with a two-way left-turn lane is consistent 
with studies by Mauga and Kaseko (2010) and 
15 studies reviewed by Gluck et al. (1999). 
These studies reported crash reduction that 
range from 3% and 57% for KABCO crashes 
on roads with raised median in comparison to 
segments with two-way left-turn lane. Mauga 
and Kaseko (2010) also found a decrease of 
21% on KABC crashes for roads with raised 
median in comparison to those with two-way 
left-turn lane. 

Table 4 also shows the ratio between the Crash 
Modification Factors developed for four-lane 
with a raised median and four-lane with a two-
way left-turn lane segments with a fixed inside 
lane of 11 ft while outside lane width varied 
from 12.5 ft to 14.5 ft. The results revealed 
that with respect to KABCO crashes, the Crash 
Modification Factor for four-lane with a two-
way left-turn lane segments, when the inside 
lane width is 11 ft and the outside lane width 
is 12 ft is 1.88 times that of four-lane with a 
raised median segments. The ratio decreases 

as the outside lane width increases from 12.5 ft 
to 14.5ft, where the four-lane with a two-way 
left-turn lane CMF is 1.05 times that of four-
lane with a raised median segments. A similar 
trend was observed for KABC crashes as the 
ratio decreased from 2.12 to 0.95 as the outside 
lane width increased from 12 ft to 14.5 ft while 
keeping the inside lane width constant at 11 ft. 
As can be seen in table 4, for PDO crashes, the 
ratio of Crash Modification Factors for four-
lane with a raised median segments to Crash 
Modification Factors for four-lane with a two-
way left-turn lane segments is smaller than 
1.0, indicating that for PDO crashes, a higher 
crash reduction is expected for four-lane with 
a two-way left-turn lane segments than for 
four-lane with a raised median segment when 
the outside lane width is widened while keep-
ing the inside lane fixed at 11 ft.

When comparing a typical 12 ft inside and a 
12 ft outside through lane width segment (a 
total of 24 ft) with an asymmetric segment of 
an 11 ft inside lane and a 13 ft outside through 
lane (also, a total of 24 ft), the results in table 
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4 show that a four-lane with a raised median 
asymmetric lane configuration would result in 
fewer crashes (See highlighted cells—CMFs 
of 0.70, 0.73, and 0.69 for KABCO, KABC, 
and PDO crashes, respectively). For four-lane 
with a raised median configurations, given a 
total of 24 ft pavement width for both lanes, 
the results presented in table 4 indicate that 
restriping a roadway 12 ft to an 11 ft inside 
and a 13 ft outside through lane would result 
in a decrease in crashes. For four-lane with a 
two-way left-turn lane sections, the results are 
mixed, showing a slight increase for KABCO 
and KABC crashes (CMFs of 1.04 and 1.28, 
respectively) and a reduction of PDO crashes 
(CMF of 0.66), when a typical roadway is ret-
rofitted to an 11 ft inside and a 13 ft outside 
through lane, respectively. The results also 
show that as the width of outside lane increas-
es, for both four-lane with a raised median and 
four-lane with two-way left-turn lane configu-
rations, crashes decrease. 

RECOMMENDATIONS FOR  
FURTHER STUDY

This study is not without limitations. The most 
preferred methods for developing Crash Modi-
fication Factors are controlled experiments and 
observational before-and-after studies. This 
study used a cross-sectional method. A before-
and-after method would have given more ro-
bust results but was not practical or feasible 
as exact dates when standard 12 ft lanes were 
retrofitted to create asymmetric lanes could 
not be obtained. 

The results of this study are not without bias. 
The Highway Safety Manual protocol calls for 
use of homogeneous segments for obtaining 
crash modification factors. Hence segments 
tend to be shorter, rendering a small num-
ber of crashes per segment, potentially caus-
ing higher dispersion of data. Although sites 

were selected randomly from around the state 
of Florida, many potential sites were dropped 
from analysis because there was no homoge-
neous comparison sites, i.e., sites with similar 
variables except for a few variables considered 
in the model.

Lane width Crash Modification Factors for 
urban roadways do not exist. Therefore, there 
were no existing Crash Modification Factor 
equations to compare the results with. The 
robustness of CMFs developed by statistical 
modeling is improved by using homogeneous 
sites, i.e., sites with similar properties, whereas 
the only variables are AADT, segment length, 
and the treatment variable, for this case, lane 
width. This was not practical as it was not pos-
sible to get sufficient segments with similar 
properties such as the posted speed limit, me-
dian opening density, and driveway density. 
Also, due to limited data, area type was not 
considered as a variable. A much wider study 
is recommended, which will develop lane 
width separate Crash Modification Factors 
for residential, industrial, and central busi-
ness district areas. This study did not model 
the effect of truck percentage due to lack of 
accurate data for truck traffic at studied sites. 
Future studies should consider truck percent-
age as it might have significant contribution to 
crash occurrences. Last but not least, further 
research is needed to calibrate the developed 
Crash Modification Factors to make them use-
ful elsewhere other than Florida.
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ABSTRACT1

Road fatalities are rare outcomes of events that 
occur in a small time-space region. Although the 
exact chain of events for each fatality is unique, 
there are inherent similarities between road fa-
talities. The science of road safety is dedicated 
to identifying such similarities, mainly using 
statistical analysis tools. Researchers typically 
analyze patterns that emerge over space, such 
as hot-spot studies, or patterns that emerge over 
time, such as before-after studies. Traffic re-
search enumerates 84 parameters that charac-
terize a road fatality. A vast number of papers 
have tried to find the correlation between one or 
two parameters. In those studies quite often the 
contribution of other factors is omitted. In this 
research we utilize a clustering graph theoretic 
method, known as graph-cuts, for segmenting a 
very large crash dataset (i.e., all fatal car crashes 
in the last 2, 5, or 10 years), while incorporating 
all available crash information into the process. 
The analysis of the clusters allows one to find 
subtle trends and significant causes for traffic fa-
talities. With this method, for example, we have 
found high correlation between hit-and-run and 
pedestrians fatalities, which was overlooked by 
previous studies. An additional output of the re-
search is a full description of the typical fatality, 
thus all factors that characterized the represen-
tative crash in a cluster.

INTRODUCTION

The study of road crashes and their causes af-
fects many fields, such as vehicle design, road 
design, transportation planning, law enforce-

KEYWORDS: traffic safety, vehicles crashes, graph cuts, 
clustering, fatal accidents

A Multidimensional Clustering Algorithm for Studying Fatal 
Road Crashes
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ment, policy making, and actuarial science. 
The identification and analysis of factors af-
fecting the frequency and severity of crashes is 
a fundamental step in all of the aforementioned 
applications and disciplines. Traffic crashes 
are expected to form clusters in the spatiotem-
poral space as many of the crashes’ contrib-
uting factors exhibit spatial and temporal pat-
terns (McGuigan 1981; Plug et al. 2011; Shino 
2008; Steenberghen et al. 2004). For example, 
collision frequency is typically tied to traffic 
volumes, which present spatial and temporal 
patterns (Eleni et al. 2007). Spatial correlation 
is typically attributed to highway infrastruc-
ture, its access and egress points and its de-
ficient design and maintenance (Black 1991). 
In this study we apply data cluster analysis for 
identifying the factors affecting the frequency 
of fatal crashes.

The spatial distribution of crashes has been 
investigated mainly in an attempt to identify 
high collision concentration locations (i.e., hot 
spots)  (McGuigan 1981; Steenberghen et al. 
2004). Many studies have utilized point pat-
tern analysis for this task  (Bailey and Gatrell 
1995; Cressie 1993; Diggle 1983; Fother-
ingham et al. 2000). This cohort of methods 
aims at determining whether an observed dis-
tribution of point events results from a ran-
dom pattern or whether there is an underly-
ing mechanism affecting these crashes. These 
methods include quadrant analysis  (Shino 
2008), nearest-neighbor analysis  (Getis and 
Franklin 2010), Kernel Density Estimation 
(KDE) (Xie and Yan 2008), and K-function 
techniques (Yamada and Thill 2004). Each of 
these methods produces good results, but suf-
fers from inherent deficiencies. Most of the 
traditional quadrat and nearest-neighbor anal-
yses (e.g., Bailey and Gatrell 1995; Cressie 
1993; Diggle 1983; Fotheringham et al. 2000) 
do not regard the fact that a traffic crash is an 

event that is constrained by the transportation 
network. Shino (Shino 2008) coped with this 
problem by driving the transportation net-
work into mutually exclusive subnetworks 
(i.e., network-based quadrats). The complex-
ity of finding a single quadrat is a function of 
the entire network’s size. For ne representing 
the number of links and np representing the 
number of nodes in the network, the com-
plexity of finding a single quadrat is given by  

 (Aho et al. 1983, 
Shino 2008). Furthermore, the problem of 
finding a set of subnetworks that covers the 
entire network is essentially the Set Cover 
Problem (SCP), which is known to be com-
putationally intractable (i.e., NP-Hard) (Alon 
et al. 2006; Karp 1972; Shino 2008). Hence, 
the problem is computationally intense and 
consequentially is not suitable for applications 
where networks of more than a few dozens of 
miles are considered (Ang et al. 2012; Shino 
2008). KDE methods drape a grid of equal-
sized cells over the transportation network 
and perform the analysis in each cell. How-
ever, these methods disregard the density of 
the network links—hence, the number of road 
sections in each grid cell. This in return biases 
the results (Steenberghen et al. 2004). The K-
Function method produces a global measure, 
which does not reveal the clusters’ locations. 
Steenberghen et al. (Steenberghen et al. 2010) 
suggest a moving segment approach for solv-
ing this problem. The moving segment mea-
sures, at each point of the road network, the 
level of risk over all the road sections given 
a specific distance. To allow for the consider-
ation of the network constraints, the distance 
is measured along the network. The main criti-
cism of spatial methods is that they consider 
only location-related information. Hence they 
omit temporal and other data from the analy-
sis.
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Of the numerous factors that play a role in 
collisions, the temporal factors (i.e., time of 
day, day of the week, and year) are significant 
determinants. Many different methodological 
approaches for modeling occurrence of traf-
fic crashes have been developed (Lord and 
Mannering 2010). Loosely speaking, methods 
for temporal analysis of traffic crashes occur-
rence can be categorized into two (Abdel-Aty 
and Pande 2007): methods which investigate 
crashes’ frequency over long periods of time 
(Golob and Recker 2003; Hauer 1986; Miaou 
and Lum 1993; Persaud 1991); and techniques 
for real-time crash analysis, which determine 
the probability of crash occurrence in real time 
(Golob and Recker 2004; Lee et al.). Tempo-
ral analysis often addresses specific questions. 
The distribution of fatal crashes before and 
after the annual daylight savings time (DST) 
changes in spring and fall was examined to 
identify the increased risk to pedestrians in 
darkness (Sullivan and Flannagan 2001). In 
this study crashes were taken from a one-hour 
clock window three weeks before and three 
weeks after the transitions in both the spring 
and fall. The key assumption was that traffic 
conditions are the same in the weeks immedi-
ately before and after the changeover to DST, 
as traffic is principally governed by clock time 
rather than sunset time. Observed differences 
in crash levels between these two periods were 
attributed to the difference in ambient light 
level, and therefore can be used to quantify 
the effect of light in fatal crashes. While the 
research has shown a significant increase in 
risk to pedestrians, the method is limited to a 
short span of time. A simple visual exploratory 
approach to examine the relationship between 
fatal pedestrian crashes and time of day, day of 
the week, and time of the year showed that the 
first two hours of darkness typically presented 
the greatest frequency of pedestrian fatal colli-
sion (Griswold et al. 2011). The temporal cor-

relation of fatal crashes with the drivers’ age 
and alcohol consumption were also investi-
gated within the scope of this study. Road traf-
fic crash study in Christchurch, New Zealand, 
showed a comparative increase in rates during 
morning rush hour and during school run, the 
times students are traveling to and from school 
- 08.00–09.00 and 15.00–15.30 in this specific 
study (Kingham et al. 2011). It is important to 
note that this study failed to find spatial pat-
terns in the data set. However, the search for 
patterns was held separately for the temporal 
and the spatial factors.

Other studies, aimed at finding an association 
between one or more crash attributes, employ 
various statistical regression analyses. The 
most common models are multiple linear re-
gression, Poisson regression and Negative Bi-
nomial (NB) regression. NB and Poisson mod-
els were used for selecting the variables with 
the highest impact (e.g., Wong et al. 2007) and 
for predicting crashes (e.g., Lord and Manner-
ing 2010). This work is conducted under a uni-
variate modeling regime, where each variable 
is a scalar value. Recent work has extended 
these frameworks to multivariate models, in 
which each variable is a vector, typically de-
scribing different crash parameters (e.g., Ma 
and Kockelman 2006; Miaou and Song 2005). 
However, Both Poisson and NB models apply 
strong assumption regarding the crash data: 
the Poisson model requires the variance-to-
mean ratio of the crash data to be about 1, and 
both Poisson and NB models require the crash 
data to be uncorrelated in time. As there is a 
correlation in time ( e.g., Griswold et al. 2011), 
both models are limited.

Finite mixture/Markov switching models are 
also a common tool for examining heteroge-
neous populations (Frhwirth-Schnatter 2006). 
In these models, the underlying assumption is 
that the overall data are generated from sev-
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eral distributions that are mixed together and 
that individual observations can switch among 
these distributions over time. In recent years, a 
few researchers have examined the application 
of finite mixture models to highway safety as 
they offer considerable potential for provid-
ing important new insights into the analysis of 
crash data. However, these models are quite 
complex to estimate (Lord and Mannering 
2010). 

Machine learning techniques were also used 
for analyzing contributing factors to crashes. 
Neural network models, such as Back Projec-
tion Neural Network (BPNN), have been re-
cently used for modeling and predicting crash 
data (Abdel-Aty and Pande 2007; Mussone et 
al. 1999; Xie et al. 2007). These models often 
over-fit the data, especially when the sample 
size is small (Vogt and Bared 1998). Methods 
based on Bayesian Neural Networks (BNN) 
overcome the over-fitting problem (e.g., Xie et 
al. 2007) and were found to be more efficient 
than NB models for predicting crashes. Sup-
port Vector Machine (SVM) methods (Li et al. 
2008;  Zhang and Xie 2008) were suggested 
for the crash analysis task as well. SVM-based 
methods present less over-fitting and can be 
generalized in a simpler fashion than BPNN or 
BNN (Li et al. 2008). SVM, however, is com-
putationally complex, and analyzing a large 
data set becomes impracticable.

This paper presents a two-step methodology, 
which avoids most of the deficiencies associat-
ed with the traditional data analysis methods. 
The method does not apply any assumptions 
on the data and does not require any tuning 
stage. A similar notion was recently present-
ed by Depaire et al. (Depaire et al. 2008). In 
their study, the accidents were grouped by ac-
cident type, accident location type, driver age, 
road type, and vehicle type. While this study 
excluded analysis subjectivity and estimated 

a model stochastically, the set of parameters 
was preselected, which weakens the results of 
this set of features.

In the method presented here, at the first stage 
a graph-theory based method is employed to 
identify the set of road fatalities that are the 
least different (the typical fatality). By doing 
this we remove some of the noise originat-
ing from the most different fatalities. To ob-
tain this we utilize clustering graph theoretic 
methods, known as graph-cuts (Ford and Fulk-
erson 1956) for segmenting crash data-sets. 
The segmentation is done using all available 
crash data. Incorporating all the information at 
hand allows one to find associations between 
the various factors, which may not have been 
identified otherwise. At the second stage, each 
group is analyzed by applying conventional 
statistical techniques. In this second stage both 
intra-group and inter-group analyses are con-
ducted. Intra-group analysis allows for finding 
subtle trends and patterns as the groups are 
more homogeneous than the entire data set. 
Inter-group analysis facilitates the examina-
tion of the differences between the groups and 
effective identification of interactions.

METHOD

Graph Representation of Traffic 
Crash Data

 A graph theoretical framework is suitable for 
segmentation and grouping problems of multi-
dimensional data in general, and for multivari-
ate crashes data in particular. The segmenta-
tion problem is presented on an undirected 
complete graph G=(V,E), where V is the set of 
crashes and E are the set of edges connecting 
two crashes. Each edge carries a weight asso-
ciated with the similarity of the two crashes it 
connects (See figure 1). The similarity weight 
wij, which is associated with the edge connect-
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ing nodes i and j increases as the two crashes 
i and j are perceived to be more similar. Low 
values of wij are interpreted as dissimilarity.

The similarity between two vertices i and j 
in the graph is determined by a function that 
takes as input a feature or observation vector 
xi (for vertex i) and another, xj, for vertex j. 
In our application, xi is the ith crash’s feature 
vector (e.g., date, time, number of involved 
vehicles, number of fatalities, manner of colli-
sion, driver’s alcohol consumption, number of 
lanes, etc.). The function outputs a single real-
valued number, where larger numbers indicate 
a higher degree of similarity between i and 
j. Depending on the properties of the feature 
vectors, a variety of similarity functions can 
be used. The most commonly used similarity 
metrics are measures of correlation, such as 
Pearson’s correlation or Kendall’s τ rank cor-
relation (Kendall 1938). Euclidean distance or 
l2-norm is a common measure of dissimilarity, 
where larger distances correspond to greater 
degrees of dissimilarity. For a, b, and c user-
defined parameters, the Gaussian similarity 
function transforms the Euclidean distance 
measure to a similarity function as follows:

 
       (1)

We opted to use this similarity function due to 
its intuitive behavior and flexibility, however, 
any alternative monotonically increasing func-
tion in  may be used in its place.

Cuts on a Graph

We now provide a formal definition for cuts or 
partitions on a graph, which is a major compo-
nent of our proposed method.

A bipartition of a graph is called a cut,
, where  is the 

complement of S, . This is illustrated 
in figure 2. The capacity of a cut  is de-
fined as the sum of the weights of all edges 
between S and , thus edges that have one end-
point in S and the other in . In the example 
given in figure 2, these edges are represented 
in solid lines. Formally the capacity of the cut 
is given by:

 

FIGURE 1  Example of a Complete,  
          Undirected Graph With Edge  
          Weights
Each node corresponds to a crash, and edge 
weights reflect the similarity between two crashes.

FIGURE 2  Example of a Cut on an  
          Undirected, Complete Graph
The cut is indicated by the dark black line that 
partitions the node set V into two disjoint sets: S
and S . The capacity C S,S( )  of the cut is the sum 
of the weights of the edges that cross the cut (i.e., 
the sum of the weights of all edges that have one 
endpoint in S  and one in S .
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                            (2)

More generally, for any pair of sets 
we define the set of edges going between 
these two sets as  
and the capacity of A, B( ) is 
 

                                (3)

Consequentially, the  capacity  of  a  set, 
 is given by: 

 
                                    (4)

and is denoted by C A( ) .

Finally, the total sum of the weights of edges 
from nodes in  to all nodes in the graph, 
V, is denoted by d(S) and is referred to as the 
volume of the set: 
 

                    (5)

Using the notation above, one can easily see that: 
 

                      (6)

and

                                           (7)

where C(V) is the capacity of the graph—
hence, the sum of all edge weights in G(V,E), 
which for a given graph, G(V,E), is constant.

The segmentation problem can be formulated 
in many ways. One common formulation is to 
find a partition into two sets which minimizes 
the similarity between crashes that are associ-
ated with different groups. This problem is the 
minimum-cut problem (Ford and Fulkerson 
1956), which oftentimes results in an unbal-
anced partition (Shi and Malik 2000). Shi and 
Malik tried to overcome this unbalance prob-
lem, by maximizing the dissimilarity between 
groups and the similarity within a group (Shi 

and Malik 2000). This is achieved by finding 
a partition to two nonempty disjoint sets mini-
mizing the quantity called the Normalized Cut 
(NC):

 NC(S,S ) = C(S,S )
d(S)

+
C(S,S )

d(S )                                 (8)

This objective function drives the segment S 
and its complement to be approximately of 
equal size. However, there is no efficient way 
for finding the partition S that minimizes equa-
tion (8). Hence, this objective is NP-hard (by 
reduction from set partitioning (Shi and Malik 
2000). In this paper we use a slightly different 
quantity, NC ”:

 
                               (9)

The set  which minimizes equation (8) 
also minimizes equation (9). As shown below:

 
         (10)

As C(V) is constant, for a given G(V,E); and as 
C V( )  >  d S( ) for all nonempty  equation 
(9) is equivalent to equation (8). This means 
that the set S, which minimizes equation (8) 
also minimizes equation (9) and finding it is 
also NP-hard.

The NC’’ problem finds a bi-partition of the 
graph. The extension of this objective to par-
tition the graph into K segments is given by: 

  
                                                                       (11)

For solving the multigroup segmentation, we 
extend a stochastic approximation scheme, 
originally suggested by Karger and Stein 
(Karger and Stein 1996) for solving the min-
imum-cut problem, for solving the multi-seg-
mentation NC’’K problem.
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Stochastic Approximation for the 
Normalized Cut Problem

This algorithm is iterative. At each step one 
edge eij, connecting two vertices, i and j, is 
randomly selected. The selected edge, eij, is 
removed and the vertices i and j are merged 
into one meta-node k. The edges going from 
any node v in the remaining of the graph to 
either i or j are replaced with edges connecting 
v and the new meta-node k. This edge’s weight 
is then given by:

                                  (12)

The rest of the graph remains unchanged. An 
example of an edge contraction is given in fig-
ure 3. The algorithm ends when there are K 
nodes (or meta-nodes) left in the graph. Be-
cause the algorithm has a stochastic compo-
nent in it, the entire process is repeated several 
times, and the graph partitioning that gives the 
minimum value of equation (11) is chosen.

The merging algorithm is based on the idea that 
because the number of edges that reside on the 
cut is small, a randomly chosen edge is unlike-
ly to be part of the cut. In a try to increase the 
chances that the optimal minimum of (11) is 

reached, the probability, , of choosing an 
edge eij is inversely proportional to the maxi-
mum value of the NC’’ objective of the two 
 nodes it connects, hence:

 
             (13)

DATA

Crash Data 

To illustrate the suggested method, we exam-
ine 1,573 fatal collisions in California during 
2008. The crash data was extracted from the 
Fatality Analysis Reporting System (FARS), a 
comprehensive surveillance system of U.S. fa-
tal collisions maintained by the National High-
way Traffic Safety Administration (NHTSA). 
The 1,573 fatalities were chosen arbitrarily by 
ordering them according to the recorded time 
of the crash and taking every other crash.

For each fatality, the FARS system holds more 
than 125 data elements. These elements are 
reported on four standard forms (Accident, 
Vehicle, Driver and Person) that include de-
tailed information about persons and vehicles 
involved in the crash, and the physical envi-
ronment in which the crash occurred (NHTSA 
2004). While the algorithm is not restricted by 
the number of features incorporated into the 
crashes’ feature vectors, we focus here on all 
28 features included in the Accident file (see 
table 8). This subset consists of the features 
that describe the crash and its possible con-
tributing factors; time related factors; and road 
infrastructure descriptors. The objective here 
is to identify causal attributes of fatal crashes; 
post-crash attributes were omitted from the 
analysis. Additional administrative attributes 
such as case id and milepost were also re-
moved.

FIGURE 3   Merging Step
Merging nodes i and j into node k
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Similarity Measures

For computing the distance of two feature vec-
tors, as a measure for similarity (inverse pro-
portion—see Section 2.1), we consider the na-
ture (or type) of the different variables. For all 
types of variables the distance is normalized so 
the maximum possible distance is 1. The dis-
tance between any two crashes is computed by 
summing both crashes’ features’ distances.

The distance of time-related variables (month, 
day of the month, hour and minute) between 
two crashes is computed in a cyclic fashion. 
Hence, the distance between a crash that occurs 
on the 31st to a crash that took place on the 1st, 
is the same as the distance between the latter 
and a crash on the 2nd. Similarly, the distance 
between a crash that is reported at 11 pm and 
a crash at midnight is the same as the distance 
between midnight and 1am.

Out of the 28 features considered in this study, 
three categorical variables were grouped due to 
their apparent association. For these variables 
the possible reported values are first grouped 
into a small number of groups. If two crashes’ 
values fall into the same group, then the dis-
tance is 0, otherwise it is 1. For example for 
manner of collision, we determine 5 catego-
ries: collision with a fixed object, collision with 
other road user, car malfunction, driver’s fault 
and non-collision. For hit and run we designate 
two groups: hit and run has occurred (hit and 
run after collision with motor vehicle in trans-
port, after collision with pedestrian, after col-
lision with parked/stopped car, etc.) and no hit 
and run. Days of the week are grouped into four 
groups: weekdays (Tuesday through Thursday), 
Monday, Friday and weekend (Saturday and 
Sunday). The reason for this grouping is that 
Monday, Friday and weekends exhibit different 
crash patterns ( e.g., Griswold et al. 2011).

For all other variables, if they are the same 

then the distance is 0, if they are different then 
the distance is 1. By doing this we avoid hard 
questions such as whether the distance between 
1-lane road and 2-lanes road is the same as the 
distance between 2-lanes to 3-lanes roads. Oth-
er similar questions are the distance between 
different roadway surface conditions and num-
ber of fatalities.

As described in Section 2.1 the weights on the 
graph represent the similarity between two 
crashes rather than the distance. To shift from 
distance to similarity, we use equation (1), 
where a = 1, b = 0.1 and c = 1. These values 
were selected after a binary search and they 
provide the lowest value for       ,  ,equation (11).

RESULTS

Each crash in the data set is characterized by 28 
features grouped into three types:

“what” variables: include manner of collision, 
harmful event, number of fatalities, number of 
people involved, drunk drivers, number of pe-
destrians, number of involved vehicles in trans-
port, total number of vehicles and whether it 
was a hit and run.

“when” variables: include date, time, and light 
conditions.

“road” variables: speed limit, number of 
lanes, roadway alignment and profile, traffic 
flow, relation to junction and roadway, surface 
condition, traffic control device, and construc-
tion zone indication.

We present here four different analyses, all using 
the proposed method. The difference between 
the analyses is the features that are included in 
the feature vectors. We run the analysis when 
the feature vectors consist only of the “what”, 
“when” and “road” variables, as well as a mod-
el incorporating all variables.
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For executing the clustering one has to com-
pute the similarity matrix and then find the 
minimum cut, which in the scheme presented 
here, is an iterative process.  The runtime is 
on average 25 µ-seconds per sample per fea-
ture for creating the similarity matrix, and 28 
seconds per iteration for computing the cut, 
regardless of the feature vector size. Thus, for 
1,573 samples with feature vectors of length 
28 (all features) it takes about 880 seconds for 
computing the similarity matrix and about 3 
hours for 300 iterations, which were found to 
be sufficient for the clustering algorithm here.

Analysis of the “What” Variables

The segmentation of the 1,573 fatalities, con-
sidered in this study, into 12 clusters is pre-
sented in table 1. For each cluster, the table 
presents its size and the mean and mode (most 
frequent) values for each of the variables. The 
latter is important for descriptive features (i.e., 
manner of collision and harmful event) for 
which averaging makes little sense.

The presentation of the crash data in this fash-
ion reveals an interesting phenomenon. For 
the analysis, let us consider clusters 1 and 2 of 
table 1 as one group, A, and clusters 3,4,5 and 
6 as group B. This grouping procedure allows 
to pinpoint what are the features that separate 
the clusters of group B from the ones in A. Ex-
amining group B’s characteristics shows an in-
verse proportional relation between the num-
ber of crashes involving pedestrians and the 
hit and run frequency. This is illustrated in fig-
ure 4, where each of the four clusters of group 
B are projected on a two-dimensional space—
with the percentage in the cluster of Hit & Run 
accidents as one dimension and the percentage 
of accidents with pedestrians involved as the 
second. Hence, we have characterized crash-
es in group A by observing what makes this 
group different with respect to group B. Group 

A consists of 1,179 crashes out of 1,573 acci-
dents that were analyzed. If we take the char-
acteristics of the crashes in group A to repre-
sent the typical (or common) crash, we have 
found a behavioral relation between frequency 
of pedestrian involvement in crashes and the 
hit and run percentage.

It would be reasonable to assume that the im-
pact in a fatal accident when two cars are in-
volved is much larger than a fatal crash when 
a vehicle and a pedestrian are involved, as in 
the former the passengers have the car’s frame 
and its safety means to protect them. There-
fore it is more probable that a car can flee the 
scene after being involved in a fatal accident 
with a pedestrian than after a fatal crash with 
another car. While intuitive, this association 
has not been investigated. Studies that tried 
to characterized hit and run crashes (e.g., Ri-
faat and Chin 2007; Tay et al. 2009; and Tay 
et al. 2008) found many other factors, such as 
roadway functional class, routes, traffic flow, 
types of roadway section, speed limit, traffic 
control device, functioning of traffic control 
device, lighting condition, roadway alignment 
and roadway profile, as important determi-
nants. In these studies all accidents data were 

FIGURE 4   Trend Analysis of “What”  
            Variables of Group B, Which  
            Consists of the 3rd , 4th , 5th, 
            and 6th Largest Clusters
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considered in the analysis. As a result crashes 
in group B weaken the connection found here. 
When applying the segmentation and effec-
tively removing group B crashes, this connec-
tion manifests itself.

The results of an analysis to determine whether 
the link between pedestrians involvement and 
hit and run frequency holds outside the scope 
of the 1,573 fatalities investigated in our ini-
tial study are presented in figure 5. The analy-
sis was carried out over the entire 2008 FARS 
data set, which holds 34,017 fatalities. Figure 
5 depicts a plot of the frequency of hit and run 
versus the frequency of pedestrians crashes for 
each of the 53 states and U.S. territories. It is 
evident from figure 5 that this association be-
tween pedestrians and hit and run does hold.

For quantitative analysis of the results we ap-
ply analysis of variance (ANoVA) (Hogg and 
Ledolter 1987) on the segmentation results of 
the entire data-set—once for the clustering re-
sults and once for an arbitrary random cluster-
ing. For each “what” variable,  , we compare 
the F-statistics and its corresponding p-value 
for the null-hypotheses between the clustering 
results and a random clustering assignment 
(with the same clusters size). The smaller the 
p-value for a given , the less homogeneous 
the different clusters with respect to this vari-
able. In the comparison here, a feature with 
higher p-value in the NC’’ clustering (than the 
random clustering) is salient in the clustering 
process.  Hence, the clusters are characterized 
by different values of  and are more homo-
geneous with respect to this feature. It is im-
portant to note that the features, which were 
found salient in the clustering process, came 
out over a large number of runs (thousands). 
The results of the ANoVA are presented in 
table 2. Hit-and-run and the number of fatali-
ties are found to be the most salient features 
in the segmentation. This reinforces the find-

ings above. An additional parameter that was 
found to be salient is the number of vehicles 
involved, which also can differentiate between 
fatal accident with or without pedestrians’ in-
volvement.

Analysis of the “When” Variables

Table 3 details the segmentation results of the 
1,573 fatalities considered in this study by 
their “when” attributes. In order to allow better 
understanding of the results, figure 6 depicts 
the histograms of the month, day of the month, 
day of the week and the reported hour of the 

FIGURE 5   Frequency of Hit & Runs as a  
           Function of the Frequency  
           of Pedestrian Crashes

TABLE 2  Analysis of Variance (ANOVA)  
           Results for “What” Variables  
           Segmentation

NC’ Random

F-stats P-V F-stats P-V

Man. coll. 1.02 0.42 1.1 0.36

Harm ev. 1.03 0.42 0.74 0.87

Fatals 0.44 0.78 1.22 0.30

Persons 0.88 0.6 0.53 0.93

Drunk 2.06 0.08 1.63 0.16

Peds. 0.92 0.47 0.78 0.56

Ve. forms 1.10 0.36 1.93 0.08

Ve. total 0.46 0.8 1.97 0.07

Hit run 0.14 0.98 1.23 0.29
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TABLE 3  “When” Variable Segmentation
For each cluster, the mean and the most common value (mode) of each characteristic are presented: The cluster size (size), YEAR, 
MONTH, DAY of the Month, Day Of the Week (DOW), HOUR, MINUTE, light condition (LGT) and Weather (WEATHER)

Size

Year Month Day Dow Hour Minutes LGT Weather

mean mode mean mode mean mode mean mode mean mode mean mode mode mode

641 2008 2008 6.64 9 15.64 20 4.26 6 14.49 18 30.83 45 1 1

596 2008 2008 6.64 4 16.84 25 4.10 7 14.35 1 29.31 30 1 1

271 2008 2008 6.39 5 15.38 22 3.96 1 15.29 2 31.17 15 1 1

27 2008 2008 7.93 8 17.96 18 4.70 6 17.96 17 28.30 10 1 1

21 2008 2008 7.29 1 13.52 7 4.05 1 12.90 3 25.86 20 1 1

10 2008 2008 7.90 11 17.20 22 4.70 7 14.70 23 12.20 2 2 1

4 2008 2008 8.75 7 9.50 8 4.00 2 14.75 6 43.50 20 3 1

3 2008 2008 9.00 8 10.33 2 1.67 1 10.33 6 18.67 2 1 1

FIGURE 6  Histograms of the When Clusters for Month, Day of the Month (Day), Day of  
          the Week (DOW), and Hour of Crash
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Size

Speed Lanes Align Profile Flow Rel. junc.

mean mode mean mode mean mode mean mode mean mode mean mode

882 50.558 55 2.822 2 1.339 1 1.615 1 2.141 1 1.724 1

501 49.553 55 2.784 2 1.299 1 1.715 1 2.076 1 1.904 1

107 47.196 65 2.804 2 1.299 1 1.579 1 2.187 1 1.738 1

65 45.200 35 2.662 2 1.154 1 1.338 1 2.062 1 2.231 1

10 46.000 45 2.600 2 1.100 1 1.200 1 2.200 2 1.600 1

5 54.000 55 2.200 2 1.600 2 1.400 1 1.200 1 1.000 1

2 47.500 40 2.000 2 1.500 1 1.000 1 1.500 1 2.000 1

1 25.000 25 2.000 2 1.000 1 2.000 2 1.000 1 1.000 1

Size

Rel. road Pave type Sur. cond. Tra. cont. TCF Zone

mean mode mean mode mean mode mean mode mean mode mean mode

882 2.398 1 1.906 2 1.129 1 3.582 0 0.638 0 0.023 0

501 2.399 1 1.982 2 1.044 1 3.307 0 0.669 0 0.030 0

107 2.084 1 1.841 2 1.159 1 2.037 0 0.626 0 0.084 0

65 1.862 1 1.908 2 1.092 1 5.569 0 1.338 0 0.015 0

10 1.600 1 1.900 2 1.100 1 3.700 0 1.200 0 0.100 0

5 2.000 1 2.000 2 1.200 1 16.000 0 1.200 0 0.000 0

2 1.000 1 2.000 2 1.000 1 1.500 0 1.500 0 0.000 0

1 1.000 1 2.000 2 1.000 1 0.000 0 0.000 0 0.000 0

TABLE 4  ”Road” Variable Segmentation 

For each cluster, the mean and the most common value (mode) of each characteristic are presented: Cluster size 
(size), Speed Limit (SPEED), number of lanes (LANES), Roadway Alignment (ALIGN), Roadway Profile (Pro- file), 
Trafficway Flow (FLOW), Relation to Junction (REL JUNC), Relation to roadway (REL ROAD), Surface Type (PAVE 
TYP), Surface condition (SUR COND), Traffic control Device (TRA CONT), Traffic Control Device Functioning (TCF) 
and Construction / Maintenance Zone (Zone)

crash for the three largest clusters. The evalu-
ation of the histograms suggests that the first 
cluster (size of 641 fatalities) is characterized 
by weekend crashes, mainly at night time. This 
is derived by the DOW and hour histograms. 
The second largest cluster (size 596) consists 
of week-day crashes. We conclude this as the 
third cluster (271 crashes) consists of mainly 
spring-summer weekend vacation crashes. 
The third cluster’s month histogram shows a 
significant peak between April and August; its 
Day histogram has strong periodical peaks that 
correspond to weekends; and finally its DOW 

histogram clearly shows that the distribution of 
the day of the crash, for this cluster, is biased 
towards the weekend days. Another character-
istic that suggest that this cluster is a vocation 
weekend cluster is that its hour histogram does 
not have peaks that correspond to the morning 
or afternoon rush. The hour histogram of the 
first (largest) two clusters does present these 
peaks. Another interesting phenomenon that 
the clusters reveal is that the second week of 
the month of the first two clusters has fewer 
numbers of crashes.
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FIGURE 7  Histograms of the Road Clusters for Speed Limit (Speed), Relation to  
             Junction (Junc) and Control Device (ContDev)

TABLE 5  Analysis of Variance (ANOVA)  
           Results for “Road” Variables  
           Segmentation

NC’ Random

F-stats P-V F-stats P-V

Speed 0.40 0.96 0.64 0.83

Lanes 0.81 0.58 1.86 0.07

Align 1.11 0.33 1.19 0.31

Profile 0.09 0.96 1.16 0.33

Flow 3.33 0.00 0.29 0.94

Rel. junc. 1.43 0.15 0.85 0.58

Rel. road 1.02 0.42 1.65 0.01

Pave typ. 1.03 0.39 0.43 0.79

Sur. cond. 0.87 0.51 0.34 0.91

Tra. cont. 3.38 0.02 3.08 0.03

TCF 1.84 0.04 1.79 0.04

Zone 0.56 0.64 0.60 0.61

Having this information in hand, one can fur-
ther evaluate the crashes within each cluster in 
different aspects. Such aspects may be the se-
verity of the crash, the drivers’ characteristics, 
and the type of cars involved. As the crashes 
within a cluster are more homogeneous than 
the entire data set, this analyses are expected 
to provide new insights.

Analysis of the “Road” Variables

The clustering results of the crashes by the 
“road” variables are given in table 4 and figure 
7. The three largest clusters can be character-
ized as highway crashes. This notion is based 
on the speed histograms which, for the first 
three clusters, are shifted towards the higher 
speed limits.

The notion is also supported by the histograms 
of the relation to junction and control device, 
where the fourth cluster presents larger num-
bers than the first three in noninterchange-junc-
tions or at traffic signals. Having the data clus-
tered prior to any analysis, as illustrated here, 
will allow for finding more subtle trends as the 
crash groups are homogeneous and the noise 
is filtered out. Table 5 presents the ANoVA re-
sults for the road variables. The same variables 

that were found to play a significant role in the 
segmentation process in the analysis above are 
shown to be salient in the ANoVA results as 
well. The dominant features are the number of 
lanes, road profile, speed limit and relation to 
roadway. These findings support the observa-
tion that this clustering distinguishes between 
highway and non-highway accidents
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TABLE 6  Typical Road Fatality

Variable Entire data Segment 1 Segment 2 Segment 3 Segment 4
Size 1573 422 413 334 176

Month
mean 6.65 6.79 6.30 6.75 6.98
mode 9 11 2 7 9
std 3.42 3.52 3.46 3.38 3.26

Day
mean 16.04 16.32 16.19 16.12 14.74
mode 27 15 10 23 7
std 8.74 8.68 9.12 8.40 8.54

Hour
mean 14.66 15.00 14.51 14.74 15.20
mode 18 18 22 17 20
std 14.71 14.15 13.90 15.78 15.96

Minute
mean 30.09 30.05 29.15 31.22 31.08
mode 30 20 30 45 35
std 20.12 19.83 19.43 20.75 20.04

Ve. total
mean 1.59 1.56 1.58 1.70 1.42
mode 1 1 1 1 1
std 0.89 0.82 0.85 1.03 0.69

Persons
mean 2.72 2.63 2.70 3.07 2.38
mode 2 2 2 2 2
std 2.20 1.63 2.07 3.18 1.46

Peds.
mean 0.24 0.27 0.22 0.25 0.23
mode 0 0 0 0 0
std 0.53 0.54 0.50 0.63 0.46

Harm ev.
mean 16.82 16.20 17.35 15.95 17.70
mode 12 12 12 12 12
std 12.40 11.47 12.69 12.00 13.18

Man. coll.
mean 1.41 1.46 1.20 1.66 1.02
mode 0 0 0 0 0
std 3.31 2.28 2.08 5.78 2.05

Rel. junc.
mean 1.80 1.71 1.64 1.87 1.79
mode 1 1 1 1 1
std 3.22 1.88 1.99 2.37 2.20

Rel. road
mean 2.35 2.24 2.68 1.99 2.14
mode 1 1 1 1 1
std 5.14 4.96 6.94 1.53 1.52

Flow
mean 2.12 2.09 2.18 2.12 2.11
mode 1 1 1 1 1
std 1.55 1.67 1.39 1.57 1.60

Lanes
mean 2.80 2.84 2.78 2.85 2.80
mode 2 2 2 2 2
std 1.35 1.43 1.28 1.37 1.45

Speed
mean 49.75 48.49 50.54 49.75 49.68
mode 55 55 55 55 55
std 14.68 14.52 14.62 15.43 14.78

continued on next page
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TABLE 6  Typical Road Fatality (continued)
Variable Entire data Segment 1 Segment 2 Segment 3 Segment 4

Align
mean 1.32 1.33 1.27 1.31 1.28
mode 1 1 1 1 1
std 0.94 0.94 0.78 0.94 0.92

Profile
mean 1.63 1.54 1.77 1.56 1.65
mode 1 1 1 1 1
std 1.85 1.67 2.07 1.77 1.94

Pave typ.
mean 1.93 1.97 1.92 1.88 1.99
mode 2 2 2 2 2
std 0.87 0.89 1.00 0.59 1.12

Sur. cond. 
mean 1.10 1.12 1.09 1.07 1.19
mode 1 1 1 1 1
std 0.47 0.50 0.33 0.30 0.94

Tra. cont.
mean 3.51 3.25 2.75 4.13 3.60
mode 0 0 0 0 0
std 9.39 8.30 8.23 10.61 9.09

TCF
mean 0.68 0.75 0.55 0.79 0.65
mode 0 0 0 0 0
std 1.28 1.35 1.16 1.32 1.24

Hit run
mean 0.08 0.09 0.07 0.07 0.10
mode 0 0 0 0 0
std 0.58 0.61 0.56 0.48 0.70

LGT
mean 1.92 1.88 1.96 1.94 1.95
mode 1 1 1 1 1
std 1.01 1.02 0.96 1.00 1.20

Zone
mean 0.03 0.03 0.04 0.01 0.04
mode 0 0 0 0 0
std 0.25 0.24 0.32 0.08 0.20

Fatals
mean 1.09 1.05 1.10 1.12 1.10
mode 1 1 1 1 1
std 0.41 0.23 0.33 0.58 0.54

DOW
mean 4.15 4.27 4.08 4.21 3.88
mode 7 6 6 7 1
std 2.14 2.10 2.16 2.17 2.17

Drunk
mean 0.42 0.43 0.45 0.43 0.37
mode 0 0 0 0 0
std 0.64 0.65 0.64 0.61 0.65

Ve. forms
mean 1.54 1.52 1.52 1.62 1.37
mode 1 1 1 1 1
std 0.84 0.80 0.82 0.91 0.59

Weather
mean 1.11 1.08 1.11 1.11 1.15
mode 1 1 1 1 1
std 0.57 0.36 0.59 0.59 0.82
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TABLE 7  Analysis of Variance (ANOVA) results for all variables

 NC Random
F-stats P-V F-stats P-V

Month 0.82 0.62 1.07 0.38
Day 0.86 0.69 0.89 0.64
Hour 1.37 0.11 1.01 0.44
Minute 0.94 0.6 0.99 0.49
Ve. total 0.47 0.8 0.81 0.54
Persons 1.05 0.4 1.2 0.26
Peds 1.39 0.22 1.64 0.15
Harm ev. 0.9 0.64 1.03 0.42
Man.  coll. 1.14 0.33 1.29 0.24
Rel. junc. 1.14 0.33 1.83 0.05
Rel. road 0.95 0.48 1.61 0.11
Flow 0.4 0.88 1.1 0.36
Lanes 1.09 0.37 0.72 0.65
Speed 1.95 0.02 0.71 0.75
Align 2.73 0.07 0.88 0.41
Profile 0.47 0.7 0.57 0.63
Pave  typ. 0.7 0.59 1.45 0.22
Sur. cond 0.52 0.8 1.11 0.35
Tra. cont. 1.66 0.07 0.46 0.94
TCF 4.23 0.01 0.65 0.58
Hit run 0.99 0.42 1.25 0.29
LGT 0.67 0.65 0.59 0.71
Zone 0.12 0.95 0.32 0.81
Fatals 1.41 0.23 0.66 0.62
DOW 0.99 0.43 1.02 0.41
Drunk 0.78 0.55 0.61 0.66
Ve. forms 0.66 0.65 0.64 0.67
Weather 0.6 0.7 1.65 0.15

Analysis of All Variables

 The segmentation procedure creates homo-
geneous clusters of crashes. Inter- and intra-
analysis of these clusters allows for observing 
subtle trends and small changes. In previous 
sections the analysis was carried out when dif-
ferent groups of features out of the 28 crash 
characteristics were considered. In this section 
we provide the analysis when all 28 parame-
ters are incorporated into the process. Table 6 
details the mean, mode and standard deviation 
(std) of each of the 28 parameter for the entire 
data set as well as for each of the 4 largest clus-

ters. Evaluating the standard deviations shows 
that there are several features that exhibit sig-
nificantly lower values for one or more clusters 
than the standard deviation of the entire data 
set. Examples are number of persons for the 4th 
segment, manner of collision in segments 1, 2 
and 4, relation to the junction in all segments, 
road profile (segments 1 and 3), number of 
fatalities (segments 1 and 2), number of ve-
hicles involved (segment 4) and weather (Seg-
ment 1). Following the statistical law of large 
numbers, had the clusters were assembled ran-
domly the standard deviation would have been 
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higher for the smaller subsets. Thus a lower 
standard deviation value for a specific feature 
of a certain cluster (with respect to the entire 
data set) signifies that this feature is more ho-
mogenous in the cluster. The same findings 
are obtained through the analysis of vari-
ance (ANoVA), which is presented in table 7. 
Hence the same set of features presents higher 
P-values for the NC’’ clustering comparing to 
the random-clustering values. These are the 
features that characterized the cluster and form 
its common fatality. This information can be 
then used for further study for extracting new 
connections between features or to single out a 
cluster which is more suitable for investigation 
of a certain phenomenon. Using these lines of 
research for analyzing crash data is expected 
to result in new insights and observations.

CONCLUSIONS

Road fatality analysis pose a great challenge as 
traffic crashes are rare outcomes of events that 
are confined to a small time-space region. This 
problem increases when a subset of crashes is 
considered (e.g., pedestrians or fatal crashes). 
In this paper we propose to apply a cluster 
analysis of the crashes prior to any other anal-
ysis. Then, each cluster is separately analyzed 
both internally and with respect to the other 
clusters. Those inter- intra-relations of the 
cluster point out trends phenomena and char-
acteristics that are less prominent in the entire 
data set, and therefore are often overlooked. 
This procedure is known as mixed models and 
several such analyses were presented in traf-

fic accident analysis (e.g., Depaire et al. 2008; 
Lord and Mannering 2010).

For the cluster analysis, we employ a graph-
theory-based segmentation algorithm.  The 
algorithm is based on the well-known normal-
ized-cut optimization criterion. The solution 
is sought through a stochastic approximation 
scheme. This scheme is a novel extension of a 
method for solving the minimum-cut problem.

The cluster analysis often results in finding 
subtle trends and significant causes for traffic 
fatalities. For example, the method has found 
a correlation between hit-and-run and pedes-
trians fatalities, which was not identified by 
previous studies. An additional output of the 
research is a description of the typical fatality, 
which is a result of the segmentation analy-
sis done when all factors that characterized a 
crash are considered.

Future research may expand the analysis pre-
sented here so other features that are recorded 
in the FARS data set are considered and natu-
rally for analyzing other data sets. An emerg-
ing research field in the traffic safety arena 
is naturalistic driving studies (Guo and Fang 
2012; Klauer et al. 2006). These studies are 
based on collecting continuous streams of 
different data. The data collected sums up to 
a sheer amount, which calls for exploratory 
tools such as the scheme presented here. Due 
to the efficiency of the presented mechanism, 
it likely to highlight new insights in the exam-
ined big-data and may lead to new findings in 
highway safety.
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TABLE 8  Accident File Data Fields (C indicates a categorical variable)

Short name Description

Man. coll. (C) Manner Of Collision

Harm ev. (C) First Harmful Event

Fatals Number of Fatalities In Crash 

Persons Number of Person Forms Submitted 

Drunk Number of Drunk Drivers in Crash

Peds. Number of Non-Motorist Forms Submitted

Ve. forms Number of Vehicle Forms Submitted, Motor Vehicles in Transport

Ve. total Number of Vehicle Forms Submitted, Total-Includes Motor Vehicles Not in Transport

Hit run Hit-And Run 

Year Crash Year 

Month Crash Month

Day Crash Day of the Month

DOW Day of Week 

Hour Crash Hour 

Minute Crash Minute 

LGT (C) Light Condition

Weather(C) Atmospheric Conditions

Speed Speed Limit

Lanes Number of Travel Lanes Align (C) 

Align (C) Roadway Alignment 

Profile (C) Roadway Profile

Flow Trafficway Flow

Rel. junc. (C) Relation To Junction 

Rel. road (C) Relation To Roadway PAVE TYP (C) 

TYP (C) Roadway Surface Type

Sur. cond. (C) Roadway Surface Condition

TCF (C) Traffic Control Device Functioning

Tra. cont. (C)     Traffic Control Device

Zone (C) Construction/Maintenance Zone
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