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Recent developments in sensory and communication technologies have made the development of portable air-
quality (AQ) micro-sensing units (MSUs) feasible. These MSUs allow AQ measurements in many new applica-
tions, such as ambulatory exposure analyses and citizen science. Typically, the performance of these devices is
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assessed using themean error or correlation coefficients with respect to a laboratory equipment. However, these
criteria do not represent how such sensors perform outside of laboratory conditions in large-scale field applica-
tions, and do not cover all aspects of possible differences in performance between the sensor-based and standard-
ized equipment, or changes in performance over time. This paper presents a comprehensive Sensor Evaluation
Toolbox (SET) for evaluating AQMSUs by a range of criteria, to better assess their performance in varied applica-
tions and environments. Within the SET are included four new schemes for evaluating sensors' capability to: lo-
cate pollution sources; represent the pollution level on a coarse scale; capture the high temporal variability of the
observed pollutant and their reliability. Each of the evaluation criteria allows for assessing sensors' performance
in a different way, together constituting a holistic evaluation of the suitability and usability of the sensors in a
wide range of applications. Application of the SET onmeasurements acquired by 25MSUs deployed in eight cities
across Europe showed that the suggested schemes facilitates a comprehensive cross platformanalysis that can be
used to determine and compare the sensors' performance. The SET was implemented in R and the code is avail-
able on the first author's website.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Air pollution is recognized as a contributing factor to various
health outcomes, and has been associated with public health risks
(International Agency for Research on Cancer (IARC), 2013; Sarnat
et al., 2000). Accurately assessing ambient concentrations of differ-
ent air pollutants is necessary in any study on the impact of air qual-
ity (AQ) on different health endpoints. To date, ambient pollutant
concentrations are obtained from either short time-period measure-
ment campaigns using a large number of sensing devices (e.g.
(Crouse et al., 2009)), or from measurements reported by standard
Air Quality Monitoring (AQM) stations over extended time periods
(e.g. (Pope et al., 2002)).While the former is limited in temporal rep-
resentativeness (e.g. due to inter-seasonal variation), the latter is
limited in spatial representativeness (e.g. due to dispersion pat-
terns) and typically measures only a limited number of criteria
pollutants (Bishoi and Prakash, 2009). Further, regulatory AQM sta-
tions require certified instrumentation meeting measurement accu-
racy requirements, and an extensive set of procedures to ensure that
data quality remains satisfactory. These requirements, typically re-
quired by laws and regulations, ensure that measurements are com-
parable across all networks with similar requirements, but limit the
AQM spatial deployment due to their high investment and opera-
tional cost. As a result, the AQM network has limited ability to ac-
count for spatial variability of pollution levels in heterogeneous
regions such as urban areas, which in return, renders exposure
assessment a very difficult task (Rao et al., 2012). Moreover, the
air-inlets of AQM stations are typically located on rooftops or way
above the ground (European Environment Agency, 1998), thus
misrepresenting the true exposure of any individual at head height.

Recent developments in sensory and communication technologies
have made the deployment of portable and relatively low-cost micro
sensing units (MSUs) possible. These MSUs can operate as a set of indi-
vidual nodes, or may be interconnected to form a Wireless Distributed
Environmental Sensor Network (WDESN) to measure air pollution
over large spatial scales. WDESNs gather high-resolution spatial and
temporal data from numerous individual nodes allowing for a better in-
terpolation and the generation of dense pollutionmaps, which are clos-
er to real-life pollution dispersion scenarios (Kanaroglou et al., 2005).
The gaseous sensors mounted on these MSUs are low-power and low-
cost, and are based on widely understood amperometric sensor meth-
odologies designed for sensing selected gases at the parts-per-million
(ppm) level (Bard and Faulkner, 2001; Mead et al., 2013; Stetter and
Li, 2008). Electronic circuitry, which applies signal processing, allows
for the detection at the part-per-billion level (Mead et al., 2013). Recent
miniaturization of Optical Particles Counters (OPCs) (Gao et al., 2016;
Ulanowski et al., 2013) and solid state (Carminati et al., 2014, 2015)
sensors allows to extend the MSUs capabilities to measure particulate
matter (PM) as well.
The small size and low power-consumption of MSUs lay the path for
many new applications that require AQ data, such as exposure analyses
(Jerret et al., 2005; Lebret, 1990), education (Ballantyne et al., 2010),
hot-spot identification and characterization (Ma et al., 2008), supple-
mentary network monitoring (Molchanov et al., 2015; The European
Parliament and the Council of the European Union, 2008), and citizen
science (Bonney et al., 2009; Shirk et al., 2012; Williams et al., 2014).
In particular, the essence of citizen science requires active participation
of citizens in the scientific researchprocess (Bonney et al., 2009).Within
the context of air-quality research, MSUs may be deployed at citizen's
homes, monitoring either ambient or indoor air quality in their local en-
vironment. An example is the CITI-SENSE project, which aims at devel-
oping sensor- based citizen observatories for improving the quality of
life in cities (CITI-SENSE Project, 2015).

Seminal studies that evaluate MSUs in pre-field and field trials show
that these units indeed can capture air pollution spatio-temporal varia-
tion (Becker et al., 2000; Lee and Lee, 2001; Lerner et al., 2015; Mead et
al., 2013; Molchanov et al., 2015; Piedrahita et al., 2014; Williams et al.,
2013). However, these studies have shown that the MSUs' main limita-
tion is their low accuracy relative to laboratory equipment (Becker et al.,
2000; Lee and Lee, 2001; Mead et al., 2013; Piedrahita et al., 2014;
Williams et al., 2013) or an AQM station (Mead et al., 2013;
Molchanov et al., 2015; Williams et al., 2013).

Previously-used MSU calibration and evaluation measures, i.e., sen-
sitivity (Becker et al., 2000; Lee and Lee, 2001; Mead et al., 2013;
Williams et al., 2013), correlation coefficient, ρ, coefficient of determi-
nation, R2 (Lerner et al., 2015; Mead et al., 2013; Molchanov et al.,
2015), and the Root Mean Squared Error, RMSE (Lerner et al., 2015;
Molchanov et al., 2015) aim at assessing the MSUs' accuracy and capa-
bility to capture trends and values of the pollutants' true ambient levels.
While these criteria evaluate some aspects of the sensors' performance
in many fields, for some applications different criteria covering addi-
tional performance aspects may be more adequate (Williams et al.,
2014).

Personal exposure studies have supplied participants with MSUs
that measured various air pollutants of exposure during daily routines
(e.g., (Rabinovitch et al., 2006; Sarnat et al., 2000)). However, exposure
is affected by many factors, and thus the variance of the dose response
function is typically high and dominates the attributed relative risks/
hazard ratios results, regardless of sensors' accuracy (Jerret et al.,
2005; Lebret, 1990). Therefore, one common practice for estimating in-
dividual exposure is to use a coarse scale (Bishoi and Prakash, 2009;
CITI-SENSE Project, 2015; Kyrkilis et al., 2007), rather than the sensors'
actual measurement. Educational and citizen science applications typi-
cally aim at fostering informal and qualitative awareness. The measur-
ing range in such applications is typically quantized into a binary
scale, indicating the presence or absence of a pollutant. These scales
and measures, although quantized, can still be used for relational com-
parison of air-pollution levels among different locations and times. This
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motivates the need for a more widely composed set of criteria to char-
acterize theMSUs' actual (field) capabilities. Having such criteria allows
for custom-made assessment of sensor's performance looking at prop-
erties that are important according to the task and application in hand.

Thiswork presents a comprehensive Sensor Evaluation Toolkit (SET)
for evaluating and comparing the AQ-MSUs' performance and its appli-
cation on 25 sensors deployed in eight cities in Europe, as part of the
CITI-SENSE project (CITI-SENSE Project, 2015). The R implementation
of the SET is available on the first author's website.

2. Material and methods

MSU evaluation can be executed either in a laboratory, with critical
atmospheric ambient conditions measured and controlled, or in an
open uncontrolled environment. The laboratory provides calibration
against traceable reference standards. In an open, uncontrolled environ-
ment, theMSUs are placed in AQMstations and their measurements are
compared against those acquired by AQM (reference) equipment.
While the SET requires a reference device (dubbed REF) to evaluate
the MSU measurements, it does not make any assertion on the nature
of this reference equipment. The evaluation involves a comparison of
two concentration time-series: one acquired by the MSU, {CkMSU}, and
one obtained by the reference device, {CkREF}. Both time-series should
be of equal length, i.e. consist of K measurements, with the measure-
ment acquired more or less simultaneously.

The SET consists of eight performance measures, including the clas-
sic measures of RMSE and various correlations (described in Section
2.1). Four new measures, within the SET, are introduced: the presence
measure that represents the sensor's availability over time (described
in Section 2.2); the source-analysis, which depicts how accurately a sen-
sor can identify and locate a source (detailed in Section 2.3); thematch
(detailed in Section 2.4) that evaluates the sensor's accuracy when the
measured concentrations are transformed into generalized coarse
scales; and the Lower Frequencies Energy Content (LFE), whichmeasures
theMSUs' ability to capture the temporal variability of the observed pol-
lutant (Section 2.5). All measures are then combined into an Integrated
Performance Index (IPI) (Section 2.6).

2.1. Root Mean Squared Error and correlation coefficients

The Root Mean Squared Error (RMSE) and the Pearson correlation
measures are often used to evaluate MSUs' performance (Kanaroglou
et al., 2005; Lerner et al., 2015; Mead et al., 2013; Molchanov et al.,
Fig. 1. Fourier Transform of h(t) averaging over 5 min period, i.e. Δt = 5 (solid blue), Δt =
2015;Williams et al., 2013). However, thesemeasures apply specific as-
sumptions on the errors and their distributions. RMSE measures the
total bias (deviation) between two time series, and is often used to eval-
uate MSU errors (Mead et al., 2013; Molchanov et al., 2015; Williams et
al., 2013). While the RMSE is an excellent general-purpose error metric
for numerical deviations, it severely amplifies and disproportionally ac-
counts for large errors. Thus, if two signals have the same values but a
small abrupt large deviation the inter-unit RMSE will be large.

Correlation coefficients are often used for evaluating the similarity
between two time series, usually in complement to the RMSE (Mead
et al., 2013; Molchanov et al., 2015; Williams et al., 2013). Correlation
coefficients are robust to abrupt, large deviations and are bounded be-
tween [−1, 1], a property which will be exploited in our aggregation
process (see Section 2.6). Typically, the correlation of the tested device
with a reference is reported with the Pearson correlation coefficient
(e.g., (Kanaroglou et al., 2005; Lerner et al., 2015; Mead et al., 2013;
Molchanov et al., 2015;Williams et al., 2013)). However, the commonly
used Pearson correlation coefficient, ρ, measures how well AQM mea-
surements can be represented by the MSU records using a linear func-
tion. This measure is adequate if both the AQM and the MSU are in
their linear sensitivity range. Ambient pollutant levels are often below
the linear range of the MSUs (Becker et al., 2000; Lee and Lee, 2001;
Piedrahita et al., 2014;Williams et al., 2013). Therefore, the SET includes
also the Kendall-τ (Daniel, 1990; Kendall, 1948) and the Spearman rank
correlation coefficients, S (Myers et al., 2010),whichdonot assume nor-
mality of the underlying variables and perhaps more importantly, are
more sensitive tomonotonic but non-linear relationships. A real-life ex-
ample of using the differently defined correlation coefficients is given in
Section S1 of Supplementary information. The example presents seven
NO MSUs (CitiSense Leo Model, Ateknea Solutions Catalonia, Spain),
which are evaluated against a reference AQM for 20 days. While the
Pearson and Kendall-τ coefficients are relatively low, and would have
rendered the sensor as inadequate, the Spearman coefficient shows
that the sensor is suitable for NO measurements, given linearity is not
considered. This phenomenon is due to the low NO ambient levels out
of the linear response range of the MSUs (Fishbain and Moreno-
Centeno, 2016). Thus, the multiple evaluation criteria allow to better
characterize MSUs' suitability to different applications.
2.2. Presence

Each sensor's time series may contain missing values. This may re-
sult from the sensor malfunctioning or from communication errors.
15 min (dashed red); Δt = 30 min (dot-dash green); and Δt = 60 min (dotted black).

Image of Fig. 1
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The presence measure accounts for the sensor's or system's availability
of a measurement at a given time, and reports the fraction of the ac-
quired measurements of all theoretically possible. The presence of an
MSUs is a significant factor in evaluating any outdoormeasuring device.
For calculating, for example, averages during a given time interval, a
minimum data availability is required to ensure representativity. Limit-
ed presence always brings about the question of representativity of the
measurements for a given environment, and may indicate high mainte-
nance costs.With that, sensor's presence is completely omitted from the
RMSE and correlation evaluation criteria.

Standard AQM stations are bounded to standards, connected to the
power grid and are placed in dedicated containers,where only the inlets
are exposed to outside and weather conditions. Thus, measuring equip-
ment presence is typically a non-issue for AQMs. When it comes to
MSUs, presence is often a major hurdle. This is why this measure has a
larger significance when evaluating MSUs.
Table 1
Environmentally sensed indicators - mean values (M) and Integrated Performance Index (IPI)
nitrogen dioxide (NO2); ozone (O3); and carbon monoxide (CO). The IPIs are color coded to re

Unit Location

AQM 
Temp
[°C]

AP MSU Temp RH

M
[mBar]

IPI M [°C] IPI
M
[%]

GAP1
Gal·la 

Placídia 

Barcelona 

Spain

23.62 1007 0.949 24.5 0.887 61.6

GAP2 23.62 1008 0.952 24.5 0.892 62.0

GAP3 23.62 1008 0.950 24.5 0.894 60.8

GAP4 23.62 1008 0.944 24.3 0.897 106.4

GAP5 23.62 1009 0.957 24.5 0.901 68.7

116 St Leonards, 

Edinburgh,

Scotland
118 --13 --13 --13 --13 --13 --13

120

135 Neve 

Shaannan, 

Haifa, Israel

12.95 --13 --13 14.7 0.717 57.5

136 12.95
--13 --13 14.4 0.689 57.0

130 Igud, 

Haifa, Israel

12.97 --13 --13 13.6 0.712 57.3

134 13.65 --13 --13 14.9 0.705 58.1

125
Ljubljana, 

Slovenia

12.46 979 0.989 13.7 0.935 64.9

128 12.46 978 0.940 13.8 0.926 64.8

131 12.46 980 0.934 14.1 0.908 63.6

124

Kirkeveien, 

Oslo, 

Norway

6.80 1009 0.988 7.9 0.931 84.2

144 6.80 1007 0.990 7.9 0.945 83.1

145 6.80 1008 0.989 7.8 0.937 84.5

146 6.80 1008 0.988 7.9 0.937 84.2

147 6.80 1008 0.989 7.9 0.945 83.3

124 7.26 1006 0.976 9.1 0.923 65.9

144 7.26 1004 0.993 8.8 0.933 66.9

145 7.26 1004 0.992 8.7 0.937 67.0

146 7.26 1005 0.978 9.1 0.924 66.2

147 7.26 1005 0.991 8.8 0.945 66.4

124

Hjortnes, 

Oslo, 

Norway

17.80 1011 0.983 20.4 0.911 63.0

144 17.80 1009 0.991 20.5 0.905 62.8

145 17.80 1010 0.989 20.4 0.918 63.7

146 17.80 1010 0.986 20.5 0.917 63.1

147 17.80 1010 0.988 20.6 0.920 61.9

611 Ostrava, 

Czech Rep.

1.06 992 0.975 4.6 0.901 80.5

612 1.06 991 0.971 4.6 0.896 80.8

221 Belgrade, 

Serbia

5.78 1008 0.685 5.7 0.885 82.8

222 5.78 1008 0.685 5.7 0.874 81.4

143 Vienna 5.08 15.1 0.473 62.4

Average IPI 0.953 0.876
2.3. Source analysis

For many applications such as source apportionment (Carslaw et al.,
2006; Westmoreland et al., 2007) or dispersion models, especially La-
grangian models (Carslaw and Ropkins, 2012; Jones et al., 2010), the
source location is crucial. Bivariate polar plots, which represent how
the concentration of a pollutant varies with the wind direction and
speed at the receptor, have proved to be a useful tool for identifying
and understanding pollution sources (Carslaw and Ropkins, 2012;
Carslaw et al., 2006; Jones et al., 2010; Molchanov et al., 2015;
Westmoreland et al., 2007). This representation manifests the direc-
tional dependence of different sources, particularly when more than
one monitoring site is available, making source-analysis ideal for
WDESN applications.

The source location analysis within the SET aims at evaluating how
accurate the MSU is in identifying and locating sources. i.e., it assesses
for air pressure (AP); temperature (Temp); relative humidity (RH); nitrogen oxide (NO);
present low to high values in a red-to-green scale.

NO NO2 O3 CO

IPI
M

[ppb] IPI
Mean
[ppb] IPI IPI

M
[ppb]

M
[ppb] IPI

0.863 6.2 0.656 13.6 0.464 133.8 0.687 162.9 0.587

0.864 0.1 0.412 0.8 0.455 178.6 0.669 177.0 0.572

0.853 1.0 0.557 9.4 0.497 65.4 0.699 137.9 0.584

0.382 16.2 0.667 9.6 0.503 144.8 0.675 159.0 0.569

0.543 1.9 0.638 1.8 0.481 153.8 0.674 148.3 0.576

7.8 0.513 11.7 0.409 51.2 0.649 58.8 0.524

--13 138.0 0.501 8.5 0.394 66.9 0.604 433.3 0.451

9.7 0.514 9.9 0.413 42.5 0.627 54.1 0.482

0.860 3.2 0.513 2.7 0.621 71.2 0.663 103.2 0.562

0.842 3.3 0.508 5.0 0.640 44.8 0.697 94.4 0.552

0.829 7.2 0.620 --13 --13 52.3 0.641 --13 --13

0.802 5.9 0.633 --13 --13 41.9 0.633 --13 --13

0.947 --13 --13 21 0.55 78.4 0.711 166.4 0.769

0.945 --13 --13 3800 0.46 105.8 0.687 175.0 0.681

0.937 --13 --13 6 0.54 96.9 0.719 179.8 0.663

0.889 27.2 0.921 15.5 0.685 --13 --13 101.2 0.710

0.895 30.5 0.869 16.9 0.637 --13 --13 95.6 0.697

0.893 23.0 0.860 16.5 0.712 --13 --13 98.8 0.704

0.896 37.3 0.899 13.7 0.697 --13 --13 102.1 0.682

0.892 25.9 0.876 14.4 0.565 --13 --13 94.5 0.592

0.923 16.8 0.859 9.2 0.583 --13 --13 --13 --13

0.931 16.8 0.871 12.2 0.651 --13 --13 --13 --13

0.930 11.9 0.795 16.5 0.692 --13 --13 --13 --13

0.923 9.8 0.732 12.6 0.647 --13 --13 --13 --13

0.934 16.4 0.856 9.3 0.659 --13 --13 --13 --13

0.907 15.4 0.842 17.7 0.654 --13 --13 --13 --13

0.905 15.5 0.843 22.2 0.644 --13 --13 --13 --13

0.911 5.9 0.760 26.9 0.700 --13 --13 --13 --13

0.910 22.5 0.803 18.7 0.635 --13 --13 --13 --13

0.912 12.7 0.828 15.6 0.634 --13 --13 --13 --13

0.911 --13 --13 --13 --13 30.5 0.736 --13 --13

0.895 --13 --13 --13 --13 26.3 0.773 --13 --13

0.810 69.7 0.794 27.5 0.591 35.8 0.585 519.8 0.691

0.815 81.8 0.793 14.3 0.554 60.9 0.537 537.6 0.692

0.402 13.2 0.387 5.5 0.348 126.0 0.402 --13 --13

0.848 0.711 0.577 0.653 0.617

Unlabelled image


Table 2
IPI breakdown – mean ambient level (M); match score; Root Mean Squared Error (RMSE); Pearson ρ correlation coefficient; Kendall τ correlation coefficient; Spearman (S) correlation
coefficient; source analysis; presence (Pres.); Low Frequencies Energy (LFE) content and the integrated Air Quality Index (IPI).

Sensor M Match RMSE ρ τ S Source Pres. LFE IPI

118 (NO) 129.9 0.920 0.24 0.063 0.068 0.090 –a 0.732 0.976 0.519
130 (T) 13.63 0.462 0.003 0.679 0.538 0.712 –a 1 0.997 0.712

a The Source score could not be computed as no wind data was collected at this location.
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the ability of the device to react to changes in observationswithin a time
interval that corresponds to wind direction change, and to be sensitive
enough to measure associated changes in concentrations. This is
achieved through the calculation of the two-dimensional Pearson corre-
lation between polar plots obtained from the reference device and the
MSU, treating both as two-dimensional matrix arrays (Yaroslavsky,
2012). For generating the polar plots, time-matched measurements of
the wind and the pollutant must be available. This information is typi-
cally obtained either from theAQMstation (given itmeasures theseme-
teorological parameters) or by an externally collocated wind vane.
Section S2 of Supplementary material presents an example of a set of
two PM2.5 MSUs evaluated against an AQM station. While all other per-
formance criteria of the two sensors are relatively similar, the source
analysis score of the two sensors does show a difference. Thismay be at-
tributed to the sensor being placed incorrectly so it has an obscure ob-
servation. Thus, a low source analysis score may allow us to find the
problem and rectify it.
2.4. Match score

IntegratedAQmeasures, such as theAir Quality Index (AQI) (Kyrkilis
et al., 2007), are often used to convey the general notion of severity of
air-quality to the public, ranking observations according to a chosen
scheme. Such measures may also be used when the research question
does not require precisemeasurements but rather amore general inter-
pretation, such as general risk estimation (Bishoi and Prakash, 2009;
Kyrkilis et al., 2007) and citizen science (Williams et al., 2014). When
applying such an AQ grading scheme, neither the RMSE nor the coeffi-
cient of determination represent well the sensor's performance, as
they penalize small perturbations in the measurements. Thus, if an
MSUdeviates, due to its inaccuracy, froma reference device and if its de-
viations are randomly distributed around the reference value, these two
measureswill report poor performance. Thematch score overcomes this
limitation and its calculation is detailed in Algorithm 1.

The match score is the proportion of agreement among strata for in-
creasing amount of sub-partitions between the reference and the MSU
measurements. If we would like to compare the different MSUs, the
number of maximum sub-partitions, D, should be predetermined and
be kept constant throughout the analyses. Its value should be the
highest number that still has at least one set of measurements ct

MSU

and ct
REF that belong to the same bin. In our analyses, after several pre-

liminary runs, D was set to 10.
Algorithm 1 Match score.

1. Set COUNT = 0
2. Compute the dynamic range for {ctMSU} and for {ctREF}, i.e., [min{ctMSU},

max{ctMSU}] and [min({ctREF}),max({ctREF})] for all t∈T.
3. For d = 1 to D do:

a. Divide MSU's dynamic range into d equal bins and label them 1 through d.
Divide REF's dynamic range into d equal bins and label them 1 through d.

b. For each pair of measurements {ct
MSU,ct

REF },t∈T:
If ct

MSU and ct
REF belong to the bins with the same label → COUNT =

COUNT + 1;

4. Compute: Match Score ¼ 1
D∙T ∙COUNT
2.5. Lower Frequencies Energy (LFE)

The signal Lower Frequency Energy, dubbed LFE, is a characteristic of
the signal rather than a comparative measure with respect to a refer-
ence device. Let us assume that p(t) is a continuous signal that repre-
sents the true ambient level of a specific pollutant in a specific
location. Both the MSU and the AQM average p(t) over a small sliding
temporal-window, h(t), of a size Δt, obtaining pðtÞ, and sample it to ob-
tain the aforementioned discrete time series {CkMSU} and {CkREF}. Formally,
the averaging is described by a convolution integral:

p tð Þ ¼ ∫
∞

−∞
p τð Þh t−τð Þdτ ð1Þ

Let ω be the Fourier Transform domain coefficients. Applying the
Fourier Transform on p(t) and h(t) (obtaining P(ω) and H(ω) respec-
tively) and the convolution theorem (Katznelson, 2004), the Fourier
representation of pðtÞ, PðωÞ, is given by:

P ωð Þ ¼ P ωð Þ∙H ωð Þ ð2Þ

The Fourier Transform's amplitude of h(t) is presented in Fig. 1 for
four different window sizes: averaging over 5, 15, 30 and 60 min. It
can be seen that at zero H(ω) receives a value of one and its value de-
creases as ω (in absolute value) increases. Considering Eq. (2), the
sampling process suppresses higher frequencies, i.e., it applies low-
pass filter on the observed signal. Thus, larger window-sizes in the
signal domain, i.e. larger Δt, represent narrower filters in the fre-
quency domain.

If the observed pollutant signal changes rapidly, its higher-fre-
quency coefficients will assume higher values. Considering Eq. (2),
these values would be diminished in the acquired signal if they are
multiplied by a narrow H(ω), i.e. averaged over a large temporal-
window. A real-life example is given in Section S3 in Supplementary
material.

The signal's energy is a characteristic used in signal processing and is
given by:

E ¼
Z∞

−∞

p tð Þj j2dt ð3Þ
Fig. 2. IPI of the various measured parameters as a function of the ambient temperature.

Image of Fig. 2


(a) Temp. IPI (b) AP IPI (c) RH IPI

Fig. 3. IPI of a sensor as a function of its specific measured meteorological parameters – temperature IPI (a), air pressure (AP) IPI (b), and relative humidity (RH) IPI (c).
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Following the Parseval's theorem (Boas, 2006), the energy of a signal
is equal to the energy of its Fourier Transform:

E ¼ ∫
∞

−∞
P ωð Þj j2dω ð4Þ

Hence, the function |P(ω)|2 represents the energy distribution in
the frequency domain. The smaller the energy portion in the higher
frequencies, the better the sensor can capture the signal's temporal
variability. Thus, the portion of the signal's energy in the lower fre-
quencies, i.e. the Lower Frequencies Energy (LFE), can be used for
evaluating the sensor's capability to capture the temporal variability
of the pollutant. After discrete sampling that accounts for the K sam-
ples in the pollution time series Eq. (4) becomes:

E ¼ ∑
K

ω¼1
P ωð Þj j2; ð5Þ

and the LFE measure is computed as:

LFE ¼ 1−
∑K

ω¼1 ω∙ P ωð Þj j2
� �

E∙
K K−1ð Þ

2

ð6Þ

where E is given by Eq. (5).
Fig. 4. IPI as a function of pollutants' recorded campa
The maximum value that LFE can obtain is 1, which represents the
case where all the information is within the first frequency coefficient,
i.e., all frequency coefficients, but the first one, are zero.

MSUs are typically self-contained unitswith their ownpower supply
and transmission modules. Typically, data acquisition and transmission
times are set such that operational energy consumption (for data acqui-
sition and transmission) is minimized. Consequentially, their sampling
interval, Δt, may be long, i.e., low sampling rate, which corresponds to
narrow low-pass filtering. Therefore, while applicable to AQM and
standard laboratory equipment, a measure of spectral distribution is
especially important to MSUs working under power consumption
constraints.

2.6. Integrated Performance Index (IPI)

The SET consists of eight different performancemeasures accounting
for different aspects of signal acquisition. Different combinations of
these measures can be used in order to evaluate the sensor perfor-
mance, depends on the specific application. In order to integrate the
various measures, it is important that they all share the same scale.
This is inherent for the SET as all measures span between [0, 1].

Integration of several measures into an overall evaluation measure
can be done either by addition or multiplication of all measures togeth-
er. The former facilitates an aggregation scheme that can account for
ign average levels for each sensor on each node.

Image of Fig. 4
Image of Fig. 3


(a) (b)

(c) (d)

Fig. 5. IPI as a function of NO2 (a) and NO (b) recorded levels at Kirkeveien, Oslo (daily score). The standard deviation of the IPI computed for each pollution level decile are presented in
figures (c) and (d) for NO2 and NO respectively.
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differentweights for the differentmeasures by introducingweight coef-
ficients, α!. Given α!, m!, the measures vector for a given sensor (RMSE,
correlations, presence, source analysis, match and LFE), and the time se-
ries {CkMSU} and {CkREF} acquired by the sensor and a reference device re-
spectively, the IPI is given by:

IPIMSU ¼ ∑
i
αimi CMSU

k

n o
; CREF

k

n o� �
ð7Þ

2.7. SET implementation and application

For demonstrating the method and its capabilities, the SET was im-
plemented in R. For evaluation, the MSUs are compared against a refer-
ence device. This device can be either AQM or laboratory calibrated
equipment. Both the MSU and the reference device must measure the
same physical phenomenon (e.g., ambient levels of a specific pollutant,
temperature or relative humidity). The same physical phenomenon can
be measured when the sensors are collocated (Mead et al., 2013;
Molchanov et al., 2015; Williams et al., 2013) or when the observed
phenomenon is uniform in all measuring points (Molchanov et al.,
(a) NO

Fig. 6. NO (a) and NO2 (b) IPI distribution function
2015; Tsujita et al., 2005). When no AQM nor reference devices are
available the same analysis can be donewith respect to the average sig-
nal of the entire sensory network in a given region (Molchanov et al.,
2015). Here we demonstrate the SET for collocated sensors with AQM
stations.

For demonstrating the capabilities and richness of the suggested
evaluation toolkit, twenty-five MSU pods (Geotech AQMesh, UK,
2015) were placed near ten different AQM stations in eight cities in Eu-
rope, as part of the European Union 7th framework program (FP7) CITI-
SENSE project (CITI-SENSE Project, 2015). The full deployment, acquir-
ing data for about three months at each location, is detailed in Section
S4 of the Supplementary material. Each AQMesh unit was equipped
with five environmental sensors: NO, NO2, O3, atmospheric pressure
(AP), and relative humidity (RH). Some of the AQMEsh pods included
also OPC PM sensor. Additionally, the AQMesh measured the unit's (in-
ternal) temperature (Temp). The specific AQM parameters (location,
height above ground level (AGL) and above sea level (ASL)) are detailed
in Section S4 of the Supplementary information. The average tempera-
ture and the averages of all measured pollutants are provided in Table
1 alongside their SET performance. The latter is color coded to represent
low to high SET values in a red-to-green color scale.
(b) NO2

s measured at Kirkeveien, Oslo (daily score).

Image of Fig. 6
Image of Fig. 5


Fig. 7. PMMSUmeasurements obtained betweenDec. 17th and 24th, 2015 plotted against
collocated AQM station.
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In order to compare the AQM and the MSUmeasurements, the time
resolution of both should be the same. If that is not the case, the finer
time resolution time series has been aggregated so it fits the coarser res-
olution. The MSU time-series were acquired at a 15-min resolution,
while the AQM time-series had a 30 (or 60) -min resolution. Hence,
MSU measurements were averaged (without overlap) to produce a
time-series that corresponds to the AQM temporal resolution.

3. Results and discussion

3.1. Overview

Table 1 depicts the average values of the measured environmental
parameters, showing that the MSUs' meteorological measurements
are more accurate than those of pollutant concentrations. The AP,
(pod internal) Temp and RH sensors have, on average, an Integrated
Performance Index (IPI) of 0.975, 0.875 and 0.851, respectively.
Among the pollutants, NO sensors had the highest IPI, with an average
of 0.705. O3, CO and NO2 obtained IPIs of 0.664, 0.609 and 0.578,
respectively.

The utilization of the SET for evaluating MSU performance is well
demonstrated in Table 1. Sensor 143, which presents lower IPI values
for all measured environmental parameters, may have experienced a
systematic error. Thismay result from incorrect placement of the sensor
or malfunction of hardware. Sensor GAP 4 presents low IPI for RH. The
average RH value that this sensor reportedwas 106.4%. This clearly sug-
gests that the sensor is faulty or overly-offset for this parameter. Sensor
118 presented low IPI for CO andNOwhile their average concentrations
weremuch higher than thosemeasured by the AQM and other collocat-
ed MSUs. All these measurements were removed from the following
analysis.

The richness offered by the IPI is presented in Table 2, through the
breakdown of the IPI measure into its components (mean (M), match
score, RMSE, Pearson ρ, Kendall τ and Spearman (S) correlation coeffi-
cients; source-analysis score, presence (Pres.) and Lower Frequencies
Energy (LFE) content) for two sensors – #118 NO and #130 Temp sen-
sors. For both sensors the LFE measure is high, suggesting that the
changes in the observed signal are slower than the sampling rate. The
#118 NO sensor presents extremely-low correlation values, while its
match score is high. Thus, while this specific sensor would grade poorly
using the traditional evaluation tools (correlation and RMSE), it would
Table 3
IPI breakdown of PM sensors. The scores are color coded to represent low to high values in
a red-to-green scale.

Mean Match RMSE Pearson Kendall Spearman Presence eBalance IPI

Geo703 23.766 0.101 0.038 0.147 0.309 0.453 1.000 0.982 0.565

Geo706 26.926 0.119 0.023 0.259 0.284 0.421 1.000 0.993 0.579

Dylos08 139.894 0.311 0.134 0.560 0.468 0.639 1.000 0.997 0.693

Dylos09 152.258 0.312 0.147 0.570 0.474 0.647 1.000 0.997 0.695
be more than sufficient for many of the aforementioned applications,
such as citizen science and exposure estimations. The Temp sensor of
pod #130 also presents interesting behavior. Its Match aswell as its cor-
relation coefficients are reasonable, but its RMSE score is very low. This
suggests that while the sensor does not represent the true ambient
levels, i.e., it has some bias, it does represent the signal's behavior (i.e.,
good correlations). Indeed, this was the case, as explained in Section
3.3. Therefore we conclude that the different components of the IPI
measure do give a better understanding of the sensor performance
and its suitability for different applications.

3.2. Temperature impact on the measurements

Ambient temperature has been pointed-out as a major factor affect-
ing sensor performance (Lerner et al., 2015; Mead et al., 2013;
Molchanov et al., 2015; Williams et al., 2013). Here we examine this
using the IPI. Fig. 2 shows the average IPI of all 25 MSUs for all seven
measured parameters, as a function of the average temperature that
was measured by the AQM station throughout the campaign. The tem-
perature effect is evaluated over 175 measurements. Each of these 175
measurements consists of more than three months' worth of data.
Thus, the temperature evaluation is based on a large dataset. No appar-
ent trend is observed, suggesting that the MSUs manage to compensate
for any temperature impact on the measurements. Previously reported
temperature effects on AQ measurements may be attributed to higher
pollution levels in winter time (due to higher pollution source strength
andpollution accumulationduringperiodswith temperature inversions
(Seinfeld and Pandis, 2016; Yoshikado and Tsuchida, 1996)). This is be-
cause while temperature was not found to affect sensors' performance,
themeasured ambient levels, as is shown later, do have an effect, where
the sensors performs better in higher pollution levels. Next, we analyze
the IPI specifically for each measured parameter.

3.3. Meteorological sensors

Fig. 3 presents the IPI for the Temp, AP and RH sensors for all MSUs,
as a function of their average values. Thefirst notion that arises from this
presentation is that, in general, the sensors' IPI is indifferent to changes
in the observed meteorological parameter. It is worthwhile mentioning
that the batch of temperature sensors with lower IPI values (marked in
circle in Fig. 3a) were all obtained in the same station in Haifa, Israel.
Further queries revealed that temperature records in this specific
AQMwere measured inside the monitoring station rather than outside,
where the MSUs were located. This example demonstrates once again
the use of the SET to point out sensing errors.

3.4. Gaseous pollutants sensors

Fig. 4 depicts pollutant specific sensor's IPI as a function of the aver-
age reading. Thus, the IPI of each pollutant's sensor, computed over the
entire campaign, is plotted against the same pollutant's campaign aver-
age reading. It is evident from Fig. 4 that the ambient level of the ob-
served pollutant has a direct impact on the sensing quality. The lower
the ambient pollutant level, the lower the IPI and the higher its variance
for similar pollutant's ambient levels (i.e., the sensors presents lower re-
liability for lower pollutants ambient levels). Similar behavior was ob-
served by Lerner et al. (2015) and Molchanov et al. (2015). Hence, the
IPI suggests that the MSU sensors are more suitable for locations
where the pollutant is known to be high.Means to extract the threshold
are discussed next. As different pollutants have different ambient levels,
it is important to note that the x-axes of all followingfigures present dif-
ferent scales.

The aforementioned IPI behavior as a function of the pollutant's am-
bient level is better observedwhen the IPI is computed based on a daily
time series rather than using the entire campaign's time series. For ex-
ample, Fig. 5, depicts the daily IPI for NO2 (a) and NO (b) from

Unlabelled image
Image of Fig. 7
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measurements obtained in Kirkeveien, Oslo, by sensors #124, #144,
#145, #146 and #147 (see Section S4). One should determine the min-
imum ambient levels a sensor can measure where the IPI measure is
high and the standard deviation is low (how high and how low is appli-
cation dependent). Figures (c) and (d) depict the standard deviation of
the IPI, computed for the associated IPIs of each decile of the pollution
levels. It is evident that the standard deviation decreases as the IPI in-
creases. Using the notions above, a sensible threshold for the sensors de-
scribed formeasuringNO2 and NO can be ambient levels that are higher
than 30 ppb.

Fig. 6 demonstrates the utilization of the IPI for comparison between
sensors and between different working conditions; The figure depicts
the histograms of the NO and NO2 levels at Kirkeveien, Oslo, which are
presented in Fig. 5 (as time series). The notion above, of the effect of am-
bient levels on the sensors' performance, is evident in Fig. 6, where a bi-
modal distribution of the IPI is well observed. The two models
correspond to IPI scores above and below 30 ppb. Having the bimodal
distributions' parameters inferred, one can study their relations. For-
mally, this can be done by the Kolmogorov-Smirnoff test for discrete
variables (Arnold and Emerson, 2001; Smirnov, 1948) comparing the
best fitting distribution with the empirical distribution and test for
significance.

3.5. Particulate matter sensors

The SET criteriawas applied to four different PM sensors, all collocat-
ed at the Igud AQM station (Haifa, Israel – see Table 1). The four sensors,
two DC1700 Dylos (US) and two optical counters integrated on the
GeoTech MSUs, were place next to the AQM's inlet between December
17th and 24th, 2015. The data was recorded in 5 minute intervals. The
four sensors measurements are displayed against AQM PM measure-
ments, where all measurements are in ½μg=m3 � (Fig. 7).

Table 3 shows the IPI breakdown for the PM sensors. The two types
of sensors present different characteristics, while the GeoTech sensors
present better RMSE, the Dylos ones have better match, correlations
and eBalance. Thus, the SET is also capable to evaluate PM sensors and
define better the suitability of a sensor to a specific application.

4. Conclusions

This paper presents a Sensor Evaluation Toolbox (SET) for evaluating
AQMSUs by a range of criteria. The rich evaluation provided by the sug-
gested scheme allows for better assessment of sensors' performance in
varied applications and environments. The SET consists of eight differ-
ent assessment criteria: Root Mean Squared Error (RMSE), Pearson,
Kandel and Spearman correlations, and four new performance mea-
sures for evaluating sensors' capability to: locate pollution sources; rep-
resent the pollution level on a coarse scale; capture the high temporal
variability of the observed pollutant and their reliability.

Application of the SET on measurements acquired by gaseous and
PM MSUs deployed in eight cities across Europe showed that each of
the eight measures provides an important and unique information on
the sensor's performance assessing a rich spectrum of MSU capabilities.
The result also demonstrate how the scheme can pinpoint systematic as
well as sensor's specific faults. Further, we demonstrated that the Inte-
grated Performance Index (IPI) can support a methodology for deter-
mining the sensors' performance, hence facilitating a true cross
platform evaluation. The SET was implemented in R (Zumel and
Mount, 2014) and is available on the first author's website.
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