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The emergence of low-cost, user-friendly and very compact air pollution platforms enable observations at high
spatial resolution in near-real-time and provide new opportunities to simultaneously enhance existingmonitor-
ing systems, as well as engage citizens in active environmental monitoring. This provides a whole new set of ca-
pabilities in the assessment of human exposure to air pollution. However, the data generated by these platforms
are often of questionable quality.
We have conducted an exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform
against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capa-
bility over time and a range of environmental conditions. Our results show that their performance varies spatially
and temporally, as it depends on the atmospheric composition and the meteorological conditions. Our results
show that the performance varies from unit to unit, which makes it necessary to examine the data quality of
each node before its use.
In general, guidance is lacking on how to test such sensor nodes and ensure adequate performance prior to mar-
keting these platforms. We have implemented and tested diverse metrics in order to assess if the sensor can be
employed for applications that require high accuracy (i.e., tomeet theData Quality Objectives defined in air qual-
ity legislation, epidemiological studies) or lower accuracy (i.e., to represent the pollution level on a coarse scale,
for purposes such as awareness raising).
Data quality is a pertinent concern, especially in citizen science applications, where citizens are collecting and
interpreting the data. In general, while low-cost platforms present low accuracy for regulatory or health purposes
they can provide relative and aggregated information about the observed air quality.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Urban air quality represents a major public health burden and is a
long-standing concern to citizens. Air pollution is associated with a
range of diseases, symptoms and conditions that impair health and
quality of life (e.g., Bentayeb et al., 2015; Pascal et al., 2013;
Raaschou-Nielsen et al., 2016; Wu et al., 2016). European cities, as
with many other cities worldwide, are facing challenges in their fight
against air pollution. Many efforts have been carried out to combat air
pollution. However, levels of air pollution are still a problem in some cit-
ies. For instance, many European cities do not meet the requirements
set out in air quality regulations (EEA, 2013, 2015).
. This is an open access article under
1.1. Current monitoring systems

Historically, air qualitymonitoring has been conducted for twomain
purposes: legislation surveillance and scientific research. Currently air
pollution concentrations are monitored by professional personnel
(i.e., government authorities, scientists, health experts) using static
monitoring stations equipped with certified reference instruments for
measuring regulatory pollutants, such as carbon monoxide (CO), nitro-
gen oxides (NOx, NO, NO2), ozone (O3) and particulate matter (PM10,
PM2.5). The air pollutant analyzers are relatively large, heavy and expen-
sive, with prices ranging between €5000 and €30,000 per device. Tradi-
tional fixed-site air quality monitoring stations are also subject to strict
routines of maintenance and calibration of their instruments, to ensure
high quality data and comparability between different stations and
regions.

Large cities in developed countries are usually dotted with a net-
work of reference monitoring stations that monitor air quality in real-
time. However, the high costs of installation and maintenance of
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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reference monitoring stations results in a relatively sparse monitoring,
which provides accurate data but only in few locations, satisfying the
legislative requirements but not providing information about localized
gradients of potential importance to health protection. Moreover, in
smaller cities or in underdeveloped regions, such air quality monitoring
(AQM) stations may not exist. The fixed monitoring network is some-
times complemented by mobile air quality monitoring stations. These
units usually have the same line of instrumentation as the fixed moni-
toring stations, mounted on vehicles, and the instruments have the
same maintenance and calibration routines. Often, mobile monitoring
stations are used for stationary measurements over a fixed period of
time (e.g., a measurement campaign) in certain locations not covered
by the fixed monitoring network (Glasius, 2006; Röösli et al., 2000).
However, due to their high cost, mobile AQM vehicles cannot signifi-
cantly increase spatial sampling density. The major limitation of mobile
AQMdata from the perspective of health protection is that their tempo-
ral coverage is incomplete.

Air quality monitoring may also be based on passive samplers. Such
devices have the advantage in that they are inexpensive to deploy and
operate (excluding laboratory analysis), easy to use and do not require
electricity. The limitation of passive samplers is that they only allow
the quantification of cumulative air pollutant levels, and therefore can-
not identify short-term pollutant episodes or even track common tem-
poral patterns (e.g., diurnal variability). Moreover, passive samplers are
not as accurate as reference instrumentation, suffer from chemical in-
terference, and are also affected by the atmospheric conditions (Krupa
and Legge, 2000; Plaisance et al., 2004).

Finally, air quality models are an effective tool to supplement air
quality monitoring. Models can also be used for tasks that cannot be
conducted by monitoring alone, (e.g., scenario analysis, forecasting).
However, the use of models requires a highly specialized knowledge
and input data that is not available in all places. Moreover, in most
cases air quality models do not run in an operational mode but rather
in a prospective mode. Modelled concentrations may also suffer from
systematic errors, including bias, depending on the input data and on
the modeller parametrization choices (Pannullo et al., 2016).

1.2. Low-cost air quality platforms

There is a current trend worldwide to increase the collection of air
quality data beyond referencemonitoring stations. However, legislation
to regulate the usability of these data is not in place yet (Castell et al.,
2013; Kumar et al., 2015; Lewis and Edwards, 2016).

Several research projects are exploring the possibility of collecting
air quality data using low-cost sensor platforms. Examples include
OpenSense (www.opensense.ethz.ch) and Citi-Sense-MOB (Castell
et al., 2015) that use mobile platforms tomonitor air pollution variation
in cities, Everyaware (www.everyaware.eu) that helps citizens collect
and share noise and air pollution data and Citi-Sense (www.citi-sense.
eu) that empowers people to use low-cost air quality platforms in 8 cit-
ies across Europe.

Sensor platforms are currently available to monitor a range of air
pollutants and new devices are continually being introduced
(Aleixandre and Gerboles, 2012; Snyder et al., 2013; Piedrahita et al.,
2014). Air pollution sensors can be classified into two groups; those
that measure gas phase species and those that measure particulate
matter.

Commercially available gas sensors operate bymeasuring either the
electrochemical interaction between the sensing material and the pol-
lutant (i.e., electrochemical or metal oxide technologies) or the absorp-
tion of light at the visible range (Aleixandre and Gerboles, 2012).
Particulate matter is measured by light scattering or absorption, using
algorithms to relate the attenuated signal to the particle size and/or
composition.

These individual sensors need to be integrated into a sensor platform
or node. The sensor node contains a sensor board, the sensors, and a
control board that integrates all the required electronics (e.g., signal
conditioning, GPS, communication ports, data storage). The number
and type of commercially available sensor platforms is increasing at a
rapid pace. Whereas the price of individual gas sensors ranges from
€20 to €100, the cost of a commercial sensor node that includes several
sensors can reach €500–€5000.
1.3. New opportunities for ubiquitous monitoring

All European countries are required to comply with the EU Direc-
tives. The framework and legal requirements for assessment and man-
agement of ambient air quality are described in the Air Quality
Directive 2008/50/EC (EU, 2008). The Air Quality Directive (AQD) estab-
lishes the criteria for air quality monitoring. It defines the reference
measurement methods that Member States shall apply when monitor-
ing air quality. These methods are currently applied in the fixed moni-
toring station networks in European cities. However, the AQD also
opens the door for the use of other supplementary techniques, such as
air quality models and indicative measurements.

Low cost sensor platforms can play an important role in air quality
monitoring. Sensor nodes can be deployed as dense networks (ubiqui-
tous monitoring) or mounted on vehicles, facilitating the elaboration
of high-resolution air quality maps (Hasenfratz et al., 2015; Schneider
et al., 2016). The reduced size of the low-cost platforms also allows
new research in personal exposure. ‘Wearable’ platforms are able to
consider changes in exposure due to changes in location and activities
and provide new capabilities to evaluate health risk from air pollution
(Bossche et al., 2016; Nazelle et al., 2013).

Legislation requires measuring of PM10 and PM2.5. However, there is
a growing concern on whether mass-based measurements are indeed
relevant for assessing health effects of particulate pollution, or
number-based measurements should be eventually promoted (Kumar
et al., 2010). Several toxicological and panel studies present significant
associations between elevated nanoparticle number concentrations
(10–100 nm) and daily total as well as cardio-respiratory mortality
using time-series epidemiological analysis (Stölzel et al., 2007), promot-
ing number concentrations measurements as an appropriate metric for
assessing health effects (Nel et al., 2006; Peters et al., 1997 and Xia et al.,
2009).

We are experiencing now a paradigm shift in how and who is mon-
itoring air quality (Castell et al., 2013; Lewis and Edwards, 2016). Attri-
butes of sensor platforms are relatively lower in cost, easier to use and
less bulky than traditional equipment, and provide the possibility for
citizens and communities to monitor their local air quality that may af-
fect their health (Snyder et al., 2013). Indeed, interest in low cost sen-
sors is on the rise even before the sensor performance has been
evaluated, and widespread data collection and data sharing using
these sensor technologies is already occurring (Snyder et al., 2013;
Lewis and Edwards, 2016). Examples are AirVisual, a crowdsourced
community that has developed a home air quality monitor (https://
www.indiegogo.com/projects/airvisual-node-the-world-s-smartest-
air-monitor#/) and AirCasting - an open-source solution for collecting,
displaying and sharing air pollution data (http://aircasting.org/). How-
ever, in order to employ low-cost platforms for air quality management
and health studies, it is necessary to ensure their measurement repro-
ducibility and assess any associated uncertainty. For example, it is
known that low-cost sensors suffer from chemical interference and
are affected by environmental conditions (Aleixandre and Gerboles,
2012).

Themain challenge that low cost sensor technology faces in relation
to legally based monitoring is to reach data quality requirements set by
the AQD. Namely, to supplement air quality monitoring networks for
scientific research, these data need to meet an acceptable level of qual-
ity. However, for many other applications, such as citizen awareness or
community monitoring, it may be not crucial to have sensor platforms

http://www.opensense.ethz.ch
http://www.everyaware.eu
http://www.citi-sense.eu
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thatmeet the requirements set by the AQD, and other criteria for the ac-
ceptance of results may be developed and applied.

Information regarding low-cost sensor performance is only begin-
ning to be available (Mead et al., 2013; Holstius et al., 2014; Marco,
2014; Järvinen et al., 2015; Jovasevic-Stojanovic et al., 2015;
Moltchanov et al., 2015). However, there is currently lack of information
provided by the platform manufacturers regarding the performance of
their sensor platforms. In most cases, neither error characteristics nor
data quality and stability over long-term deployment in the field, with
varying environmental conditions, have been evaluated. Therefore,
when acquiring a sensor platform it is difficult for the user to know if
the platform performance is sufficient for the intended purpose.

In this manuscript we present an extensive performance evaluation
of the commercial AQMesh platform (monitoringNO, NO2, O3, CO, PM10

and PM2.5) in both laboratory and field conditions. Co-location of 24
identical AQMesh platforms in the field was performed over 6 months
(April to September 2015) allowing for a detailed characterization of
the temporal performance variability and the variation in performance
across identical platforms. Additionally, the field campaign included
studying the sensor nodes at different monitoring stations, which
were distinctly affected by urban traffic and urbanbackgroundpollutant
levels.

There is insufficient guidance on how to test low-cost sensor plat-
forms to ensure adequate performance. Spinelle et al. (2013) drafted a
first protocol for evaluation of low-cost gas sensors. The European Com-
mittee for Standardization (CEN/TC264/WG42) is currently working on
the definition of the technical specifications for performance require-
ments and test methods under prescribed laboratory and field condi-
tions for low-cost sensors. To date, when acquiring a low-cost sensor
platform, it is not possible to know if it will be fit for its purpose. In
this manuscript, we investigate whether a low-cost monitoring system
can provide reliable indications about air quality trends and patterns. As
the required data quality may vary depending on the application, we
have implemented and tested diverse metrics to examine to what
extent the data quality is suitable for different applications
(e.g., regulative purposes, exposure estimates, community monitoring,
and education). As such, we have analysed the main challenges faced
by sensor platforms: (i) differences between laboratory and field cali-
bration; (ii) long-term performance; (iii) response to varying weather
conditions; and (iv) effect of deployment location and proximity to
sources.

2. Experimental methods and materials

2.1. The AQMesh platform

AQMesh units (Environmental Instruments Ltd, UK, www.aqmesh.
com) are battery operated stationary platforms that measure four gas-
eous components (CO, NO, NO2 and O3) and the total particle count
(as an integration over 32 particle size channels). PM10 and PM2.5 are es-
timated by converting the particle counts into PMmass-based fractions
assuming a spherical particle shape and standard density. The refraction
index and density are part of the algorithm, but the values employed are
not known to us. Typical values are 1.56 ± 0.086i for the refraction
index and 1.87 g/cm3 for the density (Hand and Kreidenweis, 2002). A
proprietary algorithm is used to post-process the data gathered by the
gas sensors, aiming to correct for cross-interferences and for the effect
of temperature and relative humidity. The AQMesh nodes measure
also temperature, relative humidity and atmospheric pressure. Tables
SI-1 and SI-2 in the Supplementary Information present the platform in-
formation for the gas and particle sensors, respectively. We tested
AQMesh platforms from the v3.5 series. This version includes an O3-
filtered NO2 sensor (Alphasense Ltd) that is designed to efficiently filter
O3 and, hence, eliminate cross-sensitivity issues.

Standard AQMesh nodes deliver one-hour averaged data but can be
configured to deliver 15min averaged data. An integrated GPRSmodem
allows data transfer to the AQMesh database server. The data can then
be downloaded from a dedicated website.
2.2. Laboratory set-up

The laboratory study evaluated the performance of the sensors
against traceable gas standards under reproducible and accurately con-
trolled ambient conditions. The sensor node was located in a measure-
ment chamber made of a borosilicate glass in a thermostatic bath.
Temperature and relative humidity were kept constant at 20 °C and
30%, respectively. Both parameters showed relative standard deviation
below1% during the testing sequence. The selection of the ambient tem-
perature was imposed by the laboratory set-up whereas humidity level
was an arbitrary choice. A standard dilution system generated all the
necessary concentrations by diluting traceable primary gas standards
with zero-air. NO2 was automatically produced by the dilution device
which includes an O3 generator, with NO2 production relying on stoi-
chiometric reaction between diluted NO and produced O3. The test pro-
tocol consists of a multi-point calibration involving five different gas
levels plus zero-air.

CEN approved gas analyzers were connected to the output of the
measurement chamber. Measurements of CO were made using non-
dispersive infrared spectroscopy (EN14626) with a Teledyne API 300E
(detection limit of 40 ppb). Measurements of NOx were performed
using the chemiluminescence reaction ofO3withNO alongwith the cat-
alytic reduction of NO2 toNO (EN14211)with a Teledyne API 200A (de-
tection limit of 0.4 ppb). Measurements of O3 are made using the
principle of UV photometry (EN14625)with a Teledyne API 400 (detec-
tion limit of 0.4 ppb).
2.3. Air quality monitoring stations

The characterization of the AQMesh low-cost platforms included
field testing against reference instruments (co-location) for a range
of different environmental conditions (e.g., weather, traffic). The
field tests were designed to identify additional errors that can be in-
troduced when sensors are exposed to real-world conditions, which
could not be tested in the laboratory. For field evaluation, Spinelle
et al. (2013) recommend to have the sensor measuring for at least
3 months on the field.

Between April and June 2015, 24 AQMesh nodes were co-located at
the reference AQM station of Kirkeveien, Oslo, Norway. From July to
September 2015, the nodes were distributed between four AQM sta-
tions in Oslo: Kirkeveien (10 units), Manglerud (4 units), Åkebergveien
(5 units) and Alnabru (4 units). Unfortunately, the station at Alnabru
was not operative during most of the co-location period and cannot be
included in the analysis. The AQM stations at Kirkeveien andManglerud
are close to streets with busy traffic, while the AQM station at
Åkebergveien is in the intersection of two streets with low to medium
traffic. The distribution of the nodes to the different AQM stations has
allowed us to evaluate the performance in different urban environ-
ments. A total of 10 nodes were co-located at the Kirkeveien AQM sta-
tion between April and September 2015, allowing evaluating long-
term performance.

All the AQM stations are equipped with CEN approved gas and PM
analyzers. The station at Kirkeveien is equipped with CO, NOx, O3 and
PM analyzers. The stations at Manglerud and Åkebergveien are
equipped with NOx and PM analyzers. CO is measured using non-
dispersive infrared spectroscopy (EN14626), NOx is measured using
chemiluminescence (EN14211) and O3 is measured using UV photome-
try (EN14625). PM is measured using TEOM (inertial measurement)
with a Thermo TEOM (EN12341) in Kirkeveien and Manglerud and by
Mie diffraction (optical measurement) with a Grimm 180 (EN12341)
in Åkebergveien.

http://www.aqmesh.com
http://www.aqmesh.com


Fig. 1. Calibration sequences for O3 and NO2 sensors from the AQMesh node 688150.
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2.4. Performance evaluation methods

2.4.1. Basic data analysis
The comparison between the data collected by the AQMesh plat-

forms and the reference instrumentation is based onwidely used statis-
tical measures (e.g., Yuval and Broday, 2013; Table SI-3).

2.4.2. Data Quality Objective analysis
The EuropeanAir QualityDirective (EU, 2008) defines theDataQual-

ity Objective (DQO) thatmonitoringmethods need to complywith to be
used as indicative measurements for regulative purposes. The DQO is a
measure of the acceptable uncertainty for indicativemeasurements. Ac-
cording to the Directive, allowed uncertainties are 50% for PM10 and
PM2.5, 30% for O3 and 25% for CO, NOx, NO2 and SO2.

To assess the performance of each sensor and of the sensor platform
as awhole, themeasurement of uncertainty has been calculated follow-
ing the methodology described in JCGM (2008) and Spinelle et al.
(2015). The relative expanded uncertainty Ur was estimated using Eq.
(1), where b0 and b1 are the slope and intercept of the orthogonal re-
gression, respectively, RSS is the sum of squares of the residuals (Eq.
(2)), and u is the uncertainty of the reference instrument, obtained
from the CEN standards (e.g., 14211). Further details on the calculation
of the expanded uncertainty can be found in the Guide for the demon-
stration of equivalence (EC WG, 2010).

Ur yið Þ ¼
2 RSS

n−2ð Þ−u2 xið Þ þ b0 þ b1−1ð Þxi½ �2
� �1=2

yi
ð1Þ

RSS ¼
X

yi−b0−b1xið Þ2 ð2Þ

2.4.3. Match score analysis
The measure of the capacity to represent the pollution level on a

coarse scale is interesting when the application does not require precise
measurements but rather a more general advice whether the air pollu-
tion is high or low. This is the case, for example, in communitymonitor-
ing and raising citizen awareness. The match score computes the
proportion of agreement among strata for increasing amount of sub-
partitions between the reference and the sensor platform measure-
ments (Supplementary Information Fig. SI-1). The sub-partitions do
not consider the possible bias between the two data sets. A match
score of 1 indicates that the agreement between the sensor platform
and the reference instrument is perfect (Castell et al., 2016; Fishbain
et al., 2016).

3. Results

3.1. Laboratory evaluation

Two sensor nodes were tested in the laboratory (id = 688150 and
id = 864150). Node 688150 was tested before being deployed in the
field, while node 864150was tested after 3months of field deployment.
The reason for testing 864150 in the laboratory after field deployment
was that the results in field showed low correlations for NO2 and O3

with the AQM data (r b 0.3).
As mentioned earlier, the instruments were tested with repeated

multi-point calibration sequences including four to five different gas
concentrations plus zero-air. Fig. 1 displays the responses for O3 and
NO2 sensors to step changes in the respective calibration gases for a
full calibration sequence of the node 688150. For all the gases, there is
a close correspondence between reference instruments and the data
from the sensors, although there are differences in absolute values.
Both O3 and NO2 sensors overestimate the measured concentrations.
The CO sensor underestimates the measurand whereas the response
from the NO sensor is very close to the one from the reference analyzer
(Fig. SI-2).

The correlation plots (Figs. SI-3 and SI-4) show that all the tested
sensors presented a linear response, with the slope and intercept close
to 1 and 0, respectively. Table 1 shows the results obtained in the test
performed in the laboratory, under controlled conditions. The results
show that both platforms have good correlations with reference values
(r N 0.9) for all the parameter analyzer. We also analyzed the cross-
sensitivity with other gases, i.e., the contribution of compounds other
than the desired compound to the overall sensor response. The results
showed that while the O3 sensor in node 688150 has low cross-



Table 1
Summary of the calibration of AQMesh nodes 688150 and 864150 in the laboratory. The cross-sensitivity has been rated as N = no, L = low and H = high.

Platform Data
Average
Time (seconds)

Species/parameter Correlation (r) Slope Intercept [ppb] Observed cross-sensitivity between gas (species)

688150 900 CO 0.99 0.86 0.07 NO2:N, O3:N, NO:N
NO 0.99 0.97 −1.13 NO2:N, O3:N, CO:N
NO2 0.99 1.22 −1.02 O3:N, NO:N, CO:N
O3 0.99 1.16 −1.27 NO2:L, CO:N, NO:N

864150 900 CO – – – –
NO – – – –
NO2 0.96 1.21 3.85 O3:N
O3 0.99 0.99 3.25 NO2:H
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sensitivity with NO2, the cross-sensitivity is high for node 864150. The
NO2 sensor does not show cross-sensitivity with O3 in the laboratory
tests. Both nodes use the AlphasenseNO2 sensor (series B), which incor-
porates a filter to reduce or eliminate O3 cross-interference.

Table SI-4 displays the mean and standard deviation for the refer-
ence instruments and the AQMesh for zero-air and concentrations of
100 ppb for NO, NO2 and O3 and 1300 ppb for CO (refered as span
values). The mean and standard deviation were calculated considering
24 measurements.

The limit of detection (LOD) of low-cost sensors can be estimated as
3 times the standard deviationwhenmeasuring zero-air (Spinelle et al.,
2013). Before estimating the LOD all the sensor outputs were corrected
based on the results from the calibration (i.e., applying a linear calibra-
tion with the slope and intercept obtained in the laboratory). The re-
sponses of NO, NO2 and O3 sensors were constantly 0 for zero-air. In
that case, the LOD can be estimated by analyzing the relation between
different measured concentrations (i.e., five different points) and their
associated standard deviations. Assuming the standard deviation varies
linearly with the concentration, the regression line between the two
variables can be extrapolated down to zero concentration. This method
gives a LOD for NO, NO2 and O3 of 2.4 ppb, 2.7 ppb and 1.8 ppb, respec-
tively. The LOD for the CO sensor can be calculated directly by multiply-
ing the standard deviation of the sensor signalwhenmeasuring zero-air
by 3, obtaining a LOD of 21 ppb.

The repeatability of the sensor response at selected concentrations
can be calculated by multiplying the standard deviation of the signal
at the span concentration by a factor of 2√2 (Spinelle et al., 2013). The
results (Table SI-4) show that all tested sensors have relatively good
precision during the tests performedunder stable laboratory conditions.

3.2. Field results

3.2.1. Calibration
Observations from 24 AQMesh nodes were evaluated against data

from the reference instruments at the Kirkeveien AQM station for the
period 13th April–24th June 2015. Meteorological conditions during
the co-location period show an average relative humidity of 63%
(range: 19%–98%) and an average temperature of 10 °C (range:
−0.7 °C–23.3 °C).

Table 2 summarizes the calibration results from both the laboratory
and the field studies for nodes 688150 and 864150. The results show a
clear need for field calibration. For instance, field calibration of node
Table 2
Summary of calibration results of AQMesh nodes 688150 and 864150 in the laboratory and th

AQMesh unit Species/parameter Correlation (laboratory) Correlation (field) Slop

688150 CO 0.99 0.58 0.86
NO 0.99 0.96 0.97
NO2 0.99 0.65 1.22
O3 0.99 0.81 1.16

864150 NO2 0.96 0.30 1.21
O3 0.99 0.32 0.99
688150 reveal an offset of 166 ppb for CO, compared with an offset of
0.07 ppb obtained during the laboratory tests. The slope and intercept
for NO were very similar in the laboratory and the field. The other
gases, NO2 and O3, showed a large difference in both the slope and the
intercept.

Correlations between node and reference data were also significant-
ly lower in the field than in the laboratory. The highest correlation was
obtained for the NO sensor, andwas comparable to the one found in the
laboratory.

On the basis of the laboratory study, the sensors for the different
gases appear to respond at the ppb level and to show a linear behavior.
Also, based solely on the laboratory tests, the limit of detection and re-
peatability of the different sensors are compatible with their use for
air quality management. However, when deployed in field other sensor
characteristics appear, such as sensitivity to the varying ambient tem-
perature and relative humidity (see also Section 3.2.4).

3.2.2. Performance evaluation
Table 3 shows the basic statistics obtained during the co-location of

24 identical AQMesh nodes for the period 13th April–24th June 2015, at
the reference station of Kirkeveien.

Results for CO showed an inter-nodal correlation that ranges be-
tween 0.47 and 0.67, with 1 out of the 24 nodes showing a correlation
below 0.5. The nodes showed a bias in the range 133–156 ppb. NO
showed the highest correlation among all the measured species, with
an average of 0.86 and with all the nodes showing correlations higher
than 0.5. In contrast, for NO2 12 out of the 24 nodes had a
correlation b 0.5. Themean bias for NO2 was 75 ppb. For O3, the correla-
tions spanned the range of 0.09–0.8, with 8 nodes out of the 24 having a
correlation below 0.5. For particulate matter, the RMSE is higher for
PM10 than for PM2.5, with an average value of 64 ppb for PM10 and
7 ppb for PM2.5. For PM10, 5 out of 24 nodes showed correlations b 0.5,
while for PM2.5 8 nodes had correlations b 0.5.

The results show that even for identical sensors and platform, the
performance can vary from sensor to sensor. Carotta et al. (2001) de-
scribed the need for careful control of the sensormanufacturing process
for ensuring sensor repeatability. Our results show that performance of
two sensors from the same series can be very different in the field.
Performing field calibration will help to reduce the bias and measure-
ment errors, especially for those sensors that have higher offsets. In
our case, after performing a linear regression, the average RMSE of the
24 pods was reduced from 181 ppb to 87 ppb for CO, from 31 ppb to
e field (collocation with AQM station).

e (laboratory) Slope (field) Intercept (laboratory) [ppb] Intercept (field) [ppb]

0.88 0.07 166
0.93 −1.13 −0.12
0.38 −1.02 3.8
0.26 −1.27 7.2
0.2 3.85 16
0.11 3.25 9



Table 3
Summary statistics for the 24 AQMesh sensor nodes during their collocation at Kirkeveien,
April–June 2015.

Species MB MGE NMB NMGE RMSE r

CO Average −147.21 149.35 −0.68 0.69 170.99 0.60
Max −132.90 157.96 −0.62 0.71 181.28 0.67
Min −156.21 136.05 −0.70 0.63 159.04 0.47

NO Average −0.54 12.48 0.00 0.64 16.35 0.86
Max 12.75 22.01 0.73 1.34 30.94 0.98
Min −15.05 4.84 −0.71 0.25 6.97 0.60

NO2 Average 13.30 26.23 0.98 1.79 30.27 0.49
Max 74.66 74.69 5.42 5.42 81.60 0.72
Min −22.73 12.56 −1.31 0.85 15.52 0.21

O3 Average 6.76 19.87 0.62 1.64 22.20 0.54
Max 40.71 40.96 3.52 3.53 44.27 0.81
Min −28.66 9.60 −1.90 0.79 11.77 0.09

PM10 Average −2.00 7.92 −0.14 0.55 18.50 0.56
Max 1.31 9.40 0.09 0.64 64.38 0.73
Min −8.12 6.58 −0.54 0.45 13.82 0.19

PM2.5 Average −0.03 3.08 −0.01 0.69 5.57 0.51
Max 0.56 3.47 0.12 0.77 6.55 0.63
Min −2.00 2.83 −0.44 0.62 4.13 0.42
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10 ppb for NO, from 30 ppb to 9 ppb for NO2, from 22 ppb to 3 ppb for
O3, from 19 ppb to 13 ppb for PM10 and from 6 ppb to 3 ppb for PM2.5.

De Vito et al. (2008, 2009) and Tsujita et al. (2005) stressed the im-
portance of calibration of urban air quality sensors in the reduction of
measurement error. Spinelle et al. (2015, 2017) showed that field cali-
bration employing supervised learning techniques is more effective
than linear or multilinear regression techniques. Although various
methods have been developed, field calibration of low-cost sensors
still represents a challenge (Spinelle et al., 2017; Moltchanov et al.,
2015).
3.2.3. Long term performance evaluation
Ten AQMesh units were co-located at Kirkeveien station for

6 months, between April and September 2015. The results show a
clear change in behavior of the sensor platforms during the co-
location period. This might be related to the sensors' detection limit
and to the varying air composition and meteorological conditions. We
observed that the performance for CO, NO and NO2 worsened during
the month of July and improved again in August and September (Fig.
2). During July, CO andNOx levels were lower than during othermonths
because there is less traffic, as this is the time when most people take
vacation. O3 coefficient of determination did not show significant
Fig. 2. Linear calibration parameters for NO concentrations measured by the node 715
changes, and on average was below 0.3 during the 6 months. For PM10

we observed that the performance was lower during May and July
(Fig. SI-5). May, June and July were the months with lower PM10 aver-
age concentrations (8–10 μg/m3 monthly average for 2015). For PM2.5,
the performance was lower during June and July, also coinciding with
the months with lower PM2.5 ambient concentrations.

Themonthly average values of the slope and intercept show that the
month to month variation can be significant. This can lead to increased
errors and biases that can pass unnoticed once the sensor nodes are de-
ployed in the field. Fig. 2 shows an example of how the linear calibration
parameters vary for the NO concentrations measured by a node co-
located at Kirkeveien station.
3.2.4. Dependence on meteorological conditions
One of the main challenges when using electrochemical low-cost

sensors is that they suffer from interference with temperature and rela-
tive humidity (Aleixandre and Gerboles, 2012; Mead et al., 2013). Ge-
neric data describing the relationship between the sensor current
response, the temperature and the relative humidity are available
from the sensor manufacturer, and the manufacturer of the AQMesh
platform has already implemented correction factors for these effects.
In this section, we analyse how the bias (computed as the difference be-
tween concentrationsmeasured by the AQMesh node and the reference
equipment) varies with temperature and relative humidity.

Fig. 3 shows the variation of the absolute bias with temperature for
NO concentrations measured by co-located AQMesh nodes. It can be
seen that the nodes' performance varies. For instance, node 688150
shows no significant bias, node 864150 shows increasing biaswith tem-
perature increase, and node 785150 shows higher bias when the tem-
perature is below 5 °C or above 10 °C. This indicates that while the
manufacturer adjustments work well for some nodes, they do not
work as well for other nodes. Regarding relative humidity, the bias
also varies from node to node (Fig. SI-6). For example, some nodes
show high bias when the relative humidity is below 50% (e.g., node
862150), while other (e.g., node 688150) show negligible bias. Similar
results were obtained for the other pollutants (CO, NO2, O3, PM10 and
PM2.5).

Our results show that the response of each sensor is unique, and that
it is therefore necessary to evaluate each sensor node individually be-
fore deploying it in the field. In particular, the data supplied by the sen-
sormanufacturers is insufficient for correcting themeasurements under
real-world conditions, where large temperature and relative humidity
variations are encountered. Indeed, recent studies show the advantage
150. The node was co-located at Kirkeveien between April and September 2015.



Fig. 3. Absolute bias (y-axis) for NO concentrations in relation to temperature (range: 0–20 °C) for AQMesh nodes co-located at Kirkeveien station, Oslo, Norway.

Table 4
Summary of the calibration of AQMesh node688150 in the laboratory and at two locations
in field: dense traffic (Kirkeveien) and calm traffic (Åkebergveien).

CO NO NO2 O3 PM10 PM2.5

Coef. determination (r2) lab 0.99 0.99 0.99 0.99 – –
Coef. determination (r2) field
(dense traffic)

0.34 0.92 0.42 0.65 0.53 0.40

Coef. determination (r2) field
(calm traffic)

– 0.24 0.15 – 0.68 0.84

Slope lab 0.86 0.97 1.22 1.16 – –
Slope field (dense traffic) 0.88 0.93 0.38 0.26 1.30 0.51
Slope field (calm traffic) – 0.27 0.087 – 2.10 1.90
Intercept lab 0.07 −1.13 −1.02 −1.27 – –
Intercept field (dense traffic) 166 −0.12 3.80 7.20 5.60 3.30
Intercept field (calm traffic) – 4.20 6.90 – −1.30 0.98
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of applying post-processing methods, such as multiple regression, neu-
ral network and machine learning, to correct for the impact of environ-
mental conditions on electrochemical sensors (Spinelle et al., 2015; Sun
et al., 2016).

3.2.5. Dependence on the location
In order to evaluate the sensor performance in different urban envi-

ronments the platforms were co-located during the period between 1st
July–22nd September 2015, at 3 reference stations: Kirkeveien and
Manglerud (near busy roads) and Åkebergveien (a calm street).

For NO2 the results indicated poor correlations in all three locations,
with all correlations b 0.7. For NO, the correlations were good at the
three stations although lower at Åkebergveien AQM station (0.5–0.8)
compared to the two urban AQM stations known to be affected by
busy traffic (0.8–0.9; in Kirkeveien and Manglerud). This may be due
to the lower NOx concentrations at urban background AQM stations
compared to stations close to dense traffic.

For particulate matter, the results show a better correlation at the
station located in a calm street, with correlations of 0.7–0.8 for PM10

and of 0.8–0.9 for PM2.5. At the traffic AQM stations, r was b0.4 for
both PM10 and PM2.5. It should be noted that the AQMesh node esti-
mates the PM mass concentration based on OPC number measure-
ments, using several assumptions discussed in Section 2. In AQM
stations close to traffic, the particles are freshly emitted and their com-
position might differ from the particles found in background stations,
due to aging and restructuring (Broday and Rosenzweig, 2011). In the
case of the AQMesh nodes, the conversion factors used within the algo-
rithm to obtain PM mass seem to be better tuned for background sites.

Table 4 reports calibration results obtained for node 688150 during
laboratory and field tests. Field tests took place at a station close to a
busy road (Kirkeveien, 13/04–24/06, 2015) and a station in a calm street
(Åkebergveien, 01/07–22/09, 2015). Reference O3 and CO gas analyzers
were not available at Åkebergveien station. As already mentioned, the
results show that the performance for the NO and NO2 sensors was bet-
ter at the traffic AQM station, probably due to the higher ambient NOx
concentrations. For gaseous pollutants, the laboratory results were
much better than the field results, i.e., the sensor performance under
controlled laboratory conditions was better than in the field. For PM,
the measurement is more reliable at the background AQM station
than at the traffic AQM stations.

The linear calibration parameters were different when the node was
located in traffic-saturated environment or at a traffic-calm environ-
ment. This highlights the importance of calibrating the nodes in an en-
vironment similar to the one in which they would be deployed (or
better, to perform in-situ calibration at the deployment site).

3.3. Data Quality Objective results

The use of low-cost sensors as indicative measurements could re-
duce the cost of air pollution monitoring as well as allow larger spatial
coverage, especially in remote areas where the use of traditional equip-
ment is complicated. However, to be used for regulatory purposes, sen-
sor platforms should comply with the Data Quality Objectives (DQOs)
defined in the AQD (EU, 2008): 50% uncertainty for PM10 and PM2.5,
30% uncertainty for O3 and 25% uncertainty for CO, NOx, NO2 and SO2.

Results for NO show that for some nodes the expanded uncertainty
is b20% for concentrations above 50 ppb (Fig. 4, left panel) whereas
for other nodes higher expanded uncertainties were obtained (40%–
80%) even for high concentrations (Fig. 4, right panel). For CO, the



Table 5
Summaryof thematch score results for the 24AQMeshnodes co-located atKirkeveien sta-
tion during April to June 2015.

CO NO NO2 O3 PM10 PM2.5

Average 0.44 0.79 0.46 0.32 0.91 0.48
Max 0.50 0.92 0.52 0.54 0.93 0.52
Min 0.33 0.47 0.37 0.13 0.87 0.39
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results show that the expanded uncertainties were about 100% for con-
centrations above 300 ppb, with higher expanded uncertainties ob-
served for lower concentrations (Fig. SI-7). Expanded uncertainties for
NO2 (Fig. SI-8) andO3 (Fig. SI-9)were also above 100% even at high con-
centrations. For PM10, the expanded uncertainties are below or close to
50% for some of the nodes for concentrations above 75 μg/m3 (Fig. SI-
10). For PM2.5 the expanded uncertainty is close to 50% for some of
the nodes (Fig. SI-11). Thus, the evaluation of the sensors' expanded un-
certainty as a measure of its suitability for indicative monitoring shows
high variability and a largely expanded uncertainty that exceeds the
DQO defined in the AQD for CO, NO2 and O3. The results are better for
NO and PM, but still we observe variability from sensor to sensor.

3.4. Match score analysis

It is clear that for most citizen applications (e.g., awareness raising
and education) data quality does not need to reach the same standards
necessary for air quality management by authorities or for research
(e.g., legislation compliance and health studies). We have computed
the match score (see Section 2.4.3) for the 24 sensor nodes co-located
at Kirkeveien AQM during the period between April and June 2015.
The aim is to see to what extent the sensor platform is able to provide
an indication of the air pollution levels, i.e., whether the air pollution
is low, medium, or high. This is similar to the information that authori-
ties offer to citizens based on an Air Quality Index (AQI), which aggre-
gates information from the reference monitoring stations.

Table 5 shows the results of the match score analysis. NO and PM10

show very good results, with an average match score close of 0.8 and
0.9, respectively. For NO2, CO, O3 and PM2.5 the match score is below
0.5, indicating that the agreement between the sensor platform and
the station is not good.

Fig. 5 shows the daily variation for NO and PM10 concentrations. The
sensor platform is capable of reproducing the time variation measured
at the reference station. Thus, even if their data uncertainty is too high
for use for legislative purposes, some sensors are still capable of offering
interesting information to concerned citizens.

4. Conclusions

Wehave evaluated the performance of commercial low-cost sensors
(AQMesh v3.5) measuring four gaseous pollutants (NO, NO2, O3, CO)
and particulate matter (PM10 and PM2.5). We performed the tests in
Fig. 4. Relative expanded uncertainty of AQMesh nodes 688
the laboratory against traceable gas standards and controlled ambient
conditions and in the field where 24 AQMesh nodes were co-located
against reference instruments and tested under real-world conditions
for 6 months (April to September 2015). We found high correlations
for all the gaseous pollutants in the laboratory (r N 0.9) when the sen-
sors were tested under steady temperature and relative humidity con-
ditions, while in the field the correlations were significantly lower.
Our results clearly show that a good performance in the laboratory is
not indicative of a good performance under real-world conditions.

Particulate matter measurements were only evaluated in the field.
Our results show better agreement at sites with low traffic than at
high traffic sites. This might be related to the conversion factors
employed by the AQMesh platform manufacturer to the OPC data,
when converting the measured particle number concentrations to
mass concentrations. Use of realistic conversion factors adapted to the
location (background or traffic) might help to improve this issue.

In carrying out this evaluation, we identified a main technical chal-
lenge associated with current commercial low-cost sensors, regarding
the sensor robustness and measurement repeatability. Our results
show that laboratory calibration is not able to correct for realworld con-
ditions and that it is necessary to perform a field calibration for each
sensor individually. Moreover, the calibration parametersmight change
over time depending on themeteorological conditions and the location,
i.e., once the nodes are deployed it will be difficult to determine if they
are under-or over-estimating the pollutant concentrations. Thus, it is
necessary to evaluate rigorously low-cost sensor platforms under di-
verse environmental conditions.

The evaluation of the sensors' uncertainty revealed that for some
pollutants and nodes, as NO, PM10 and PM2.5, the expanded uncertainty
meets the DQO criteria as defined in the Air Quality Directive. However,
other pollutants, e.g., CO, NO2 and O3, show a highly expanded uncer-
tainty that exceeded the DQO for indicative methods. The high sensor-
to-sensor variability of the performance measures and the major
150 and 751150 against reference NO concentrations.



Fig. 5.Daily concentration cycle averaged duringApril–September 2015, forNO (left) and PM10 (right) by sensor node688150 (blue) and the reference instrument (red). The shaded areas
represent the 95% confidence interval.
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variations in the nodes' response to the varying weather conditions or
emission patterns make them currently unsuitable for air quality legis-
lative compliance applications or applications that require high accura-
cy, precision and reliability, such as scientific evaluations of exposure
estimates. However, recent studies show that the application of field
calibrations based on machine learning techniques can reduce the ex-
panded uncertainty.

The outlook for commercial low-cost sensors is promising, and our
results show that currently some sensors, i.e., NO and PM10, are already
capable of offering coarse information about air quality, indicating if the
air quality is good, moderate or if the air is heavily polluted. This type of
information could be suitable for applications that aim to raise aware-
ness, or engage the community by monitoring local air quality, as such
applications do not require the same accuracy as scientific or regulative
monitoring.
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