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Abstract: Water is a resource that affects every aspect of life. Intentional or accidental contamination events in the water supply system could
have a tremendous impact on public health. Quick detection of such events can reduce the expected damage. Continuous online monitoring is the
first line of defense for reducing contamination-associated damage. One of the available tools for such detection is ultraviolet (UV)-absorbance
spectrophotometry, where the absorbance spectra are compared against a set of normal and contaminated water fingerprints. However, because
there are many factors at play that affect this comparison, it is an elusive and tedious task. This study presents a new scheme for early detection of
drinking water contamination events through UV absorbance. The detection mechanism is based on a new affinity measure, Fitness, which is
flexible enough to identify the source of the drinking water being monitored and alert if contaminants are present. The potential of the method is
presented in a set of comprehensive experiments with various contaminants in drinking water extracted directly from a real supply system with
mixed sources. DOI: 10.1061/(ASCE)WR.1943-5452.0000965. © 2018 American Society of Civil Engineers.
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Introduction

Ensuring the safety of drinking water is a primary objective of drink-
ing water suppliers and other stakeholders. Intentional contamina-
tions of drinking water by toxic substances as an act of war and
terrorism, as well as unintentional or accidental contaminations, were
recorded historically (Green et al. 2003; Winston et al. 2003; Gleick
2006). Rapid detection of such events close to their occurrence is a
key factor in reducing response times and applying effective re-
sponses that could prevent the contaminated water from reaching
the consumers or, in a less optimistic scenario, minimize the potential
risk and thus maintain public confidence in the water supply system.

Typically, ensuring the quality of drinking water in a water sup-
ply system is done by sampling and analyzing water samples in a
laboratory (Storey et al. 2011; Glassmeyer et al. 2017). Though
laboratory methods are accurate and precise, they are labor intensive
and costly. Furthermore, because laboratory analyses of samples are
conducted offline, results usually reflect only a very small portion of
the water supplied, and might arrive only after the water has been
consumed.

Advances in sensor and communication technologies have facili-
tated the development of water quality sensors that provide a denser
grid both temporally (sampling frequency) and spatially (locations
over the water network). These sensors allow continuous real-time
in-situ monitoring of water properties, such as oxidation-reduction

potential, electrical conductivity, residual chlorine concentration,
pH, and ultraviolet-visible (UV-Vis) absorbance (Ikonen et al. 2017;
Wang et al. 2017). These new data not only improve water security
and public health, they provide new means of water resource man-
agement and planning by allowing the network operator to plan for
and react in case of contamination in its very early stages.

Among the various pollutants, organic contaminants such as pes-
ticides, fuel residues, and organic solvents can cause acute poisoning
at relatively low concentrations within a relatively short exposure
time. Therefore, they are among the most important groups of con-
taminants requiring detection, for which instruments that can react
in real time to the presence of organic materials in water provide
important advantages.

A feasible means of monitoring organic and some inorganic
compounds (both natural and anthropogenic contaminants) is by
measuring indicators for such substances with online water quality
sensors and to use these measurements for quantification of these
compounds. This can be achieved by using a Ultra-Violet to VISual
light (UV-Vis) spectrophotometer (SP). The SP offers a fast and
simple method for this task and does not require advanced equip-
ment or chemical reagents (Albrektienė et al. 2012). Spectropho-
tometry is based on the Beer–Lambert law (Harris 2003), which
states that when light hits a sample, the irradiance decreases be-
cause some of the light is absorbed by the sample. To this end,
Albrektienė et al. (2012) found good correlations between total or-
ganic carbon (TOC) and UV254 (R2 ¼ 0.94), and between chemical
oxygen demand by potassium permanganate (CODMn) and UV254

(R2 ¼ 0.88) in groundwater. Etheridge et al. (2014) tested the use
of UV-Vis SP for estimating the concentrations of nitrate, total ni-
trogen, dissolved organic carbon (DOC), phosphate, total phospho-
rus, total suspended solids, and salinity in brackish water. Their
method applied regression models to examine the relationships
between the concentrations measured in the laboratory and the
UV-Vis absorbance. The regression models for all substances
except phosphate and total phosphorus showed R2 values higher
than 0.86. Zitko (2001) qualitatively evaluated the chlorination
dose at the treatment stage of surface water by examining drinking
water in a supply system with residual chlorine below the detection
threshold by measuring changes in UV spectra of natural organic
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matter. Hou et al. (2014) applied probabilistic principal component
analysis together with a multivariate monitoring chart to UV-Vis
absorption spectroscopy data in order to modulate contaminant
events in water supply systems. The USEPA (2012) tested two fluo-
rescent sensors as a contaminant detection tool in water with a
stable baseline. One sensor had a single excitation and emission
wavelength, whereas the other had multiple wavelengths and also
the capability to measure absorbance. The research found that the
tested fluorimeters alone were not as effective in detecting contam-
inants as standard water quality sensors. Still, both sensors detected
most contaminants. That study suggested that further research, with
more wavelengths, may expand the range of contaminants detected.
Recent studies (Hu and Wang 2017; Carré et al. 2017) associated
absorption patterns with the chemical characteristics of the sub-
stance by using a dynamic partitioning algorithm and partial
least-squares linear regression, respectively. However, in both
cases, in order to assess changes in absorption patterns, one must
acquire the routine background.

A practical example for UV-Vis SP is a commercial instrument
(Messtechnik, Vienna, Austria), that works online to measure the
absorption spectrum between 190 and 720 nm (UV-Vis); it detects
changes in water quality by monitoring the shape of the spectrum
and responding to abnormal changes (spectral alarms). The spec-
trum is also used to derive more specific parameters, such as
turbidity, nitrate concentration, spectral absorbance coefficient at
254 nm (SAC254), TOC, and DOC. To operate the device, a train-
ing round is required, in which a baseline of normal patterns is es-
tablished for all parameters relative to each other and alarm levels
are set. Additional software modules integrate all results into one
“anomaly detection module.” Alarms can be generated by using
four different approaches: static alarm thresholds, dynamic alarm
thresholds (time gradients), a pattern-recognition–based alarm
parameter, and composite alarms (Langergraber et al. 2004).

The above review strongly suggests that research on water con-
tamination detection through SP has proliferated in recent years.
However, though SP devices have shown a great potential, they
are still not mature enough to be deployed on a large scale (Storey
et al. 2011). A careful analysis of the methods that have been sug-
gested for analyzing UV-SP data reveals that many of them still have
major shortcomings. All the aforementioned methods essentially as-
sume that a routine, stable background does exist. However, because
the number of substances and factors that affect water quality is so
large, creating this routine pattern is challenging. The difficulty of
finding such a pattern may be amplified by the complexity of the
water supply system and the simultaneous use of several drinking
water sources (or drinking water types, depending on the context).
In Israel, for example, the drinking water supply system uses water
from several sources whose chemical composition varies: ground-
water from several aquifers with different water compositions,
desalinated brackish water and seawater, and surface water.

In this study, the UV-SP absorbances of drinking water that origi-
nated from various sources at three configurations are characterized.
(1) each water type tested alone; (2) several pesticide contaminants
added to drinking water from each of the sources, which served as
background water; and (3) mixtures of drinking water from the
various sources, in varied proportions, which simulated stochastic
background. All were applied to drinking water extracted from real
water supply systems and subjected to comprehensive laboratory
tests. The results of water spectral absorbance measurements served
as an index of changes in organic and inorganic contents in the
drinking water—both pollutants and natural. Thus, the contribution
of this paper to the current knowledge base is twofold. First, it
presents a new contamination detection scheme, which is evaluated
over a significantly large set of real samples. Second, the large data

set allows not only for the evaluation of the proposed detection
scheme, but for assessment of how the different contaminants in
different quantities affect the absorption spectra of various drinking
water types. Previous studies that suggested early detection schemes
either used synthetic [e.g., Pickard et al. (2011); Oliker and Ostfeld
(2014)] or limited experimental data (Hall et al. 2007; Kroll and
King 2007), limiting their findings.

Materials and Methods

Experimental Setup

Instrumentation
The Israeli water supply system uses water from several sources that
differ significantly in their chemical composition: desalinated sea-
water, treated surface water, and treated groundwater from several
aquifers. The various drinking water types contain organic and
inorganic compounds, according to their sources and treatment proc-
esses, and each water source has its typical characteristics. In
this study, we analyzed drinking water, extracted from the national
system itself and derived from surface water, groundwater, and
desalinated seawater. In addition, we also tested distilled water with
an electrical conductivity of 0.15–0.57 μS=cm, serving as a refer-
ence, that is, water with no substances. The surface water, which
originated from the Sea of Galilee (Lake Kinneret), was character-
ized by relatively high DOC levels, and its treatment was mostly
physiochemical, consisting of sedimentation and filtration. The
groundwater originated from two wells on the Mountain Aquifer,
and was characterized by relatively high concentrations of nitrates
and carbonates and low levels of TOC and DOC. Desalinated water
originated from the Mediterranean Sea, and was characterized by
low concentrations of organic and inorganic compounds. Water
of all types was chlorinated. Table 1 specifies the typical concentra-
tions of the main compounds in the three water types.

All experiments were performed in a 50-L mixing tank con-
nected to the UV-SP and equipped with a recirculating pump
and 1.27 cm (0.5 in.) input and output lines. Water was continuously
circulated between the tank and UV-SP during the experiments.
Data were acquired by an online continuous spectroscopy analyzer
(Real-Spectrum Analyzer, model PL3000-TOC-UVA-PC; Real-
Tech, Canada) with a deuterium lamp and a path-length (cell) of
1 cm, absorption range of 0.0–1.5 cm−1, and flow rate of
300–800 mL=min. Each measurement determined the absorbance
of UV light by the water at 117 different wavelengths within the
range of 197.8–370.8 nm at intervals of 1.4–1.6 nm.

Experimental Configurations
Three experiments were conducted with drinking water, extracted
from a real-life system and originating from the three different sour-
ces, measuring the absorbance of (1) nitrate and bicarbonate that
are naturally present in the water, (2) the contaminants to be tested,
and (3) the three different water types on their own and in various
mixed ratios.

The aim for the experiments with nitrate and bicarbonate was to
understand the natural background absorbance of the several types
of drinking water tested. Knowing the contents of the various water
types, we added the most prominent ones to distilled water simu-
lating their absorbance patterns. The tested components were
nitrate at 1, 3, 10, and 30 mg=L and bicarbonate at 150, 300,
450, and 600 mg=L. The absorbance results of these experiments
were compared with those obtained with drinking water from the
tested sources. This set of experiments identified the main natural
components that affected absorbance the most.
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Spiking experiments were performed with five different organic
pesticides, designated as A, B, C, D, and E. Table 2 specifies, ac-
cording to World Health Organization (WHO), the no-observed-
adverse-effect-level (NOAEL or NOEL) dosages, the oral lethal
dose that is expected to kill 50% of the exposed population
(LD50) values, and the pesticide groups of these contaminants
(U.S. Environmental Protection Agency 1998). Each of the experi-
ments comprised two or three stages, each taking 2 h. In the first
stage, uncontaminated drinking water—groundwater, surface
water, desalinated seawater, or distilled water—was continuously
monitored. Then, an organic contaminant was added to the water
at 1 mg=L, while monitoring continued. In the third stage, the same
water sample was monitored with a higher contaminant concentra-
tion that gave a total dosage of 2, 3, or 5 mg=L. This procedure was
repeated for each water type with each of the five contaminants.
Each such experiment yielded several tens of absorbance spectra
for each of the stages. This set of tests characterized the absorbance
of each of the contaminants with respect to each water type and
thereby facilitated evaluation of the effects on absorbance of inter-
actions between each water type and the various contaminants and,
within the examined range, with additional contaminants. The char-
acteristic absorbance spectrum of each of the contaminants with
respect to each water type was generated by computing the ele-
mentwise median of the obtained spectra for each combination
of water type and contaminant. The marginal contribution of
each of the contaminants was then computed by subtracting the
characteristic medians obtained in the first stage (background water
only) from those obtained in the second and third stages to obtain
the net medians of the contamination effect. These net medians
were normalized by dividing each spectrum by the contaminant
concentration. The resulting net-normalized medians were then
compared to evaluate the differences between them.

Mixed drinking water experiments were conducted to simulate
water mixtures that might flow in the supply system. The experi-
ments were conducted in several stages, with a different baseline
water type for each experiment. At successive stages, measured

Table 2. NOAEL or NOEL dosage, the oral LD50 values, and the pesticide group of the contaminants used at the spiking experiments

Pesticide group

Acute exposure—oral
LD50 values

(mg=kg of body weight) Criterion

NOAEL or NOEL dosage
(mg=kg of body
weight per day) Contaminant

Chlorophenol 27–177 NOAEL of short-term exposure 3 A
Carbamate 0.487–1.3 NOAEL of short-term exposure 0.05–0.06 B
Organophosphates 2.2–18 NOEL of chronic exposure 0.025 C
Carbamate 3–19 NOAEL of short-term exposure 0.22–0.3 D
Organophosphates 2 NOAEL of short-term exposure <1.5 E

Table 1. Concentration ranges and averages of the main compounds in the examined waters, as measured since 2010; average values are computed over n
samples and presented against the normal ranges for each water source

Drinking water source NO3 (mg=L) DOC (mg=L) TOC (mg=L) EC (μS=cm) HCO−
3 (mg=L) Turbidity (NTU)

Surface water
Sample size 505 481 NM 22 41 479
Average value 0.006 2.49 1,164 139 0.13
Normal range 0–3 1.9–3.1 1,024–1,273 126.82–174.3 0.07–0.5

Groundwater Well Number 1
Sample size 10 NM 2 3 1 25
Average value 23 0.2 1,019 382.8 0.21
Normal range 21–24 — 1,014–1,026 — 0.1–0.5

Groundwater Well Number 2
Sample size 10 NM 1 2 1 19
Average value 27.2 <0.2 997 349.9 0.42
Normal range 23–29 — 975–979 — 0.27–0.69

Desalinated water
Sample size NM NM NM 3 453 981
Average value 238 110.4 0.19
Normal range LDT LDT 220–255 63.4–165.8 0.05–0.82

Note: NM = not measured; and LDT = less than detection threshold.

Table 3. Mixed water experiments: volumes and proportions of water
mixtures used

Surface
water (L)

Desalinated
water (L)

Groundwater
(L)

Surface
water
(%)

Desalinated
water (%)

Groundwater
(%)

Experiment Number 1
10 0 0 100.0 0.0 0.0
10 2.5 0 80.0 20.0 0.0
10 5 0 66.7 33.3 0.0
10 5 0.5 64.5 32.3 3.2
10 7 0.5 57.1 40.0 2.9
10 7 1 55.6 38.9 5.6
10 10 1 47.6 47.6 4.8

Experiment Number 2
0 10 0 0.0 100.0 0.0
2.5 10 0 20.0 80.0 0.0
5 10 0 33.3 66.7 0.0
5 10 0.5 32.3 64.5 3.2
7 10 0.5 40.0 57.1 2.9
7 10 1 38.9 55.6 5.6
10 10 1 47.6 47.6 4.8

Experiment Number 3
25 0 2.5 90.9 0 9.1
25 0 5 83.3 0 16.7
25 0 10 71.4 0 28.6
25 0 20 55.6 0 44.4
25 0 25 50.0 0 50.0

© ASCE 04018056-3 J. Water Resour. Plann. Manage.
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amounts of water of a certain type were added to the sample in pro-
portions that might normally occur in the water supply system. Each
step ran for at least 20 min, that is, 10 readings. These experiments
are described in more detail in Table 3. These tests were intended
to determine whether the natural compounds reacted additively or
otherwise when waters of differing types were blended.

Methodology

Fitness Measure
A new measure of affinity between records—the Fitness Measure—
was developed. It was tested as a means to distinguish between
drinking water sources and between contaminated and potable
water. The following notations are used to formulate the Fitness

Measure. Let St;k
�!

be the input absorbance spectrum acquired at time
t ∈ T. Each vector element of the spectra is the absorbance at the

k ∈ K wavelength, where, in the present study, jKj ¼ 117. LetM0
j;k

��!
be the median absorbance computed over all spectrum measure-
ments acquired for a specific drinking water type j ∈ J, where jJj ¼
3 in the present case, when no contamination was present. The

obtained M0
j;k

��!
is used to characterize drinking water type j. The

median is preferred over the mean because it is less sensitive to
extreme values that might bias the results. It is noteworthy that

samples of contaminated water may be used to generate M0
j;k

��!
, as

long as the lion’s share of the measurements are of potable water.
The Fitness Measure is a product of two components: the

Pearson correlation and the Euclidian distance, between a tem-
plate vector and a given measurement. Specifically, when there
is a set of jTj spectra acquired from a specific water sample,
the Pearson correlation between each of the spectra and the

median vectors, M0
j∈J;k∈K

�����!
of the drinking water types is com-

puted, resulting in a correlation matrix, CCMat, of the size

½T × J�, with CCMatðt; jÞ ¼ corrðSt∈T;k∈K����!
;M0

j∈J;k∈K
�����!Þ. Similarly,

a distance matrix, DistMat, of the size ½T × J�, is computed; it
represents at location (t; j), that is, DistMatðt;jÞ, the Euclidian

distance between St∈T;k∈K
����!

andM0
j∈J;k∈K

�����!
. The Fitness Matrix, which

expresses the overall compatibility between a measurement St;k
�!

and a median M0
j;k

��!
, is than calculated as follows:

Fitnessðt;jÞ ¼ ð1 − CCMatðt;jÞÞ ·× ðDistMatðt;jÞ ð1Þ

Fig. 1. Fitness measure usage to distinguish between (a) water sources; and (b) potable and contaminated water.
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where ð·×Þ = elementwise multiplication operator. In this formu-
lation, the closer the results are to zero, the better the fitness.

Fitness Application
The baseline of the water measurements may drift after a long
operating time because of fouling, which would lead to increased
absorbance values. Hence, each spectrophotometric application of
the Fitness Measure began with preprocessing: in light of the
knowledge that spectra of all drinking water types include some
wavelengths at which there is no absorption; for each measurement
St;k
�!

, the lowest absorbance value among those found for all wave-
lengths covered by the same measurement was subtracted, which
eliminated most of the drift effect.

In order to test the performance of the Fitness Measure in asso-
ciating readings with drinking water types, a randomly chosen 25%
of the data (293 ≤ n ≤ 631), where n is the number of readings per
water type, were used to calculate the medians, and the remaining
75% to perform classification.

The inference of whether a sample is of contaminated water was
carried out in two phases. At the first stage, the Fitness of the sam-
ple was computed against all medians of the drinking water types

with no contaminants, that is,M0
j∈J;k∈K

�����!
. Then, once the water type j

is determined, the decision about whether the water is contaminated
or potable is done by computing the sample’s Fitness against the

results obtained from the spiking experiments. A Fitness threshold
value was recommended based on the Fitness values obtained
for the potable and contaminated water. The building blocks of
the Fitness applications are described in Fig. 1.

Results and Discussion

Experiments with Natural Components

The aim of these experiments was to characterize the natural absorb-
ance of the tested drinking water when its contents, such as nitrate
and bicarbonate, were known. The addition of nitrate to distilled
water at 30 mg=L resulted in absorbance values very similar to
those of the tested groundwater from the twowells, which contained
23 and 27 mg=L of nitrate on average (Fig. 2). Adding bicarbonate
to distilled water at 150 mg=L resulted in increased absorbance
values that were slightly higher than those of the tested desalinated
water, which contained 110 mg=L of bicarbonate on average and
showed an absorption curve of similar shape (Fig. 3).

Differentiating between Drinking Water Types

The differences in the UV absorbance spectra between water types
are well observed (Fig. 4). The water types were classified using the

Fig. 2. Adding nitrate to distilled water at increasing concentrations of 1, 3, 10, and 30 mg=L. Results are averages of at least 10 readings per
concentration.

Fig. 3.Adding bicarbonate to distilled water at increasing concentrations of 150, 300, 450, and 600 mg=L. Results are averages of at least 10 readings
per concentration.
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Fitness Measure, and classification was performed without any
mistakes.

Differentiating between Potable and
Contaminated Water

Contaminant-Spiking Experiments
The data yielded by 19 different contaminated-water experiments
included 1,705 and 1,968 readings from uncontaminated and

contaminated water, respectively. Fig. 5 shows that some contami-
nant absorbance, for example, contaminant A, had noticeable im-
pacts on the absorbance spectra, whereas others, e.g., contaminant
B, elicited less pronounced effects and were hard to detect. For
all tested contaminants, the highest absorbance values occurred at
the shorter wavelengths, between 197.8 and 208.4–228.0 nm.
Groundwater from the tested wells absorbed UV light at wavelengths
between 197.8 and 220.5 nm above the measurement threshold.
Therefore, contaminants, which absorb mainly in this range, would
be very hard to detect in water from these wells (Fig. 6).

Fig. 4. Medians of the examined drinking water types (293 < n < 631).

Fig. 5. Surface water average absorption without any contaminants, and with contaminant: (a) A; and (b) B at 1 or 3 mg=L (for each series
43 ≤ n ≤ 78, σ < 0.05).

Fig. 6. Groundwater average absorption without any contaminants and with contaminant B at 1 and 3 mg=L, (for each series 58 ≤ n ≤ 87,
σ < 0.009).
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Fig. 7. Median absorbance of net-normalized contaminant concentrations of 1, 2, or 3 mg=L with different background waters: (a) contaminant A;
(b) contaminant B; (c) contaminant C; (d) contaminant D; and (e) Contaminant E. Graphs use different Y scales.

© ASCE 04018056-7 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2018, 144(9): 04018056 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
io

n 
Is

ra
el

 I
ns

tit
ut

e 
O

f 
T

ec
hn

ol
og

y 
on

 1
2/

22
/2

4.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Absorbance Patterns of Contaminants at Varied
Concentrations and from Different Drinking Water Sources
Different contaminants absorb light differently, according to their
chemical structure and the character of the chemical bonds within
and between the components of their molecular groups. We exam-
ined whether the absorbances of samples containing the tested con-
taminants differed when background drinking water from different
sources was used. Also, we examined whether the absorbance
caused by contaminants increased linearly with increases in con-
taminant concentrations within the examined range. Fig. 7 illus-
trates the results for the various tested contaminants. The results
show that, at short wavelengths (∼197.8–208.4 nm), there were
only minor differences between the absorbance of contaminants in
surface water and those in desalinated and purified water.

Differentiating between Contaminated and Potable Water:
Fitness Measurement Results
Contaminated and potable water were distinguished by using the
Fitness method; Fitness values for drinking water with and without
contaminants were calculated for water from each source. The
median Fitness values of potable water derived from surface
water, desalinated seawater, and groundwater were 5.087 × 10−6,
8.89 × 10−5, and 3.31 × 10−7, respectively. These Fitness values

of potable water are between 1 and 4 orders of magnitude lower than
those of contaminated water, depending on the background drinking
water source and the contaminant and its concentration.

Table 4 illustrates the intuitive notion that contaminants with
high absorbance, such as contaminant A, had relatively high Fitness
values, whereas those with low absorbance, such as contaminant D,
had relatively low Fitness values, especially at low contaminant
concentrations.

Mixed Drinking Water Experiments

The data yielded by these experiments include 412 measurements of
drinking water from various sources, mixed in known proportions;
Fig. 8 presents an example of an experiment result. When the total
absorbance of a water mixture was calculated as the sum of the par-
tial absorbance of drinking water from each source, the results were
very similar to those measured for actual water mixtures. Over the
whole spectrum of 117 wavelengths, the range, median, and mean
of the absolute differences between the calculated and measured
absorbance were 0.00–0.3312, 0.0028, and 0.0141, respectively.
The Fitness value between each pair of the calculated and measured
absorbances was evaluated. The range, median, and mean of the

Fig. 7. (Continued.)
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Fitness values between them were 3.397 × 10−6 − 0.0028, 3.972×
10−4, and 5.957 × 10−4, respectively. It can therefore be concluded
that there was no interaction between water types; that is, their effects
were additive.

Conclusions

This paper presents a comprehensive characterization of drinking
water, encompassing the presence of natural and contaminant sub-
stances, the source of the water, and changes in the mixing
ratios of the different types due to operational practices at the
water supply system. This was obtained using three different
arrays of experiments that used spectrophotometry to measure
UV absorbance, from 197.8 to 370.8 nm, of drinking water from
three different sources: surface water, desalinated seawater, and
groundwater. Specifically, these sets of experiments enabled the
evaluation of UV absorbance patterns of water from the drinking
water supply system that are affected by: (1) natural substances that
may be found in drinking water, i.e., bicarbonate and nitrate;
(2) various contaminants introduced into the drinking water from
several different sources; and (3) mixtures of drinking water from
different sources that differed in their dissolved contents.

A measure of affinity between records, dubbed Fitness, was also
developed. This suggested measure was shown to allow for a dis-
tinction to be made between drinking water from different sources
and between contaminated and potable water. Additionally, by
evaluating the Fitness between the calculated and measured absor-
bances, it can be concluded that there is no interaction between the
different water types.

The findings of the experiments with nitrate and bicarbonate
indicate that the UV absorbance at wavelengths ranging from
197.8 to 240 nm in the groundwater from the Mountain Aquifer
that was used in the present study could be attributed to the pres-
ence of nitrate and bicarbonate, which absorb mainly at these UV
wavelengths. The absorbance at wavelengths from 197.8 to 215 nm
in desalinated Mediterranean seawater could be attributed to the
presence of bicarbonate.

Tests with five different organic pesticides, representative of
contaminants that might reach drinking water, revealed that these
contaminants significantly absorb in a UV wavelength range of up
to 228 nm. We therefore recommend that for testing water contain-
ing nitrate or other components that significantly absorb UV light at
short wavelengths, a spectrophotometer with a path-length cell
narrow enough to account for the natural background and the con-
taminant absorbance should be used. However, it also should be
considered that the narrower the cell, the lower the measurement
sensitivity and consequently the lower the ability to detect
contamination.

A comparison between the increases in UV absorbance caused
by addition of the various contaminants to drinking water from the
various sources revealed only minor absorbance differences at short
wavelengths, about 197.8–208.4 nm when tested with the water
originating from surface water only. Thus, it can be concluded that
absorbance of water from all sources—but perhaps from the tested
surface water and only at the short wavelengths—and for all tested
contaminants was proportionally affected by increasing contami-
nant concentrations within the tested range.

With regard to mixtures of drinking water derived from several
different sources, no interaction was found among the tested water
types. This means that when drinking water from several different
sources was mixed in order to simulate the mixing in a drinking
water supply system, the absorbance increments were additive.T
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Use of the Fitness Measure to identify the source of the drinking
water was 100% successful. Also, the Fitness Measure enabled us
to distinguish between contaminated and potable water; because all
the tested contaminated drinking water exhibited Fitness values
higher by at least 1 or 2 orders of magnitude than those of potable
water from the same source, even contaminants with a low spectral
absorbance could be detected at concentrations as low as 1 mg=L.

In light of our findings with the drinking water tested in the
present study, we recommend that in cases where absorbance of
potable water is below the measurement threshold for all UV wave-
lengths, a threshold Fitness value more than 2 orders of magnitude
greater than that of the potable background water be used to dis-
tinguish between potable and contaminated water. Thus, it is con-
cluded that using the Fitness Measure for UV-spectrophotometry
readings is a highly effective means for identifying water sources
and classifying water as potable or contaminated. Further research
is needed to enable expansion of the use of the Fitness Measure as
presented here to drinking water from supply systems that use
mixtures of water from several sources in unknown, varying
proportions.

Acknowledgments

The authors would like to acknowledge the professional and finan-
cial support of Mekorot, Israel’s national water company, and its
WaTech division; Real-Tech Inc., Whitby, Ontario, Canada and
the Canada-Israel Industrial Research and Development Foundation.

References

Albrektienė, R., M. Rimeika, E. Zalieckienė, V. Šaulys, and A. Zagorskis.
2012. “Determination of organic matter by UVabsorption in the ground
water.” J. Environ. Eng. Landscape Manage. 20 (2): 163–167. https://
doi.org/10.3846/16486897.2012.674039.

Carré, E., J. Pérot, V. Jauzein, L. Lin, and M. Lopez-Ferber. 2017.
“Estimation of water quality by UV/Vis spectrometry in the framework
of treated wastewater reuse.” Water Sci. Technol. 76 (3): 633–641.

Etheridge, R. J., F. Birgand, J. A. Osborne, C. L. Osburn, M. R. Burchel,
and J. Irving. 2014. “Using in situ ultraviolet-visual spectroscopy to
measure nitrogen, carbon, phosphorus, and suspended solids concentra-
tions at a high frequency in a brackish tidal marsh.” Limnol. Oceanogr.
Methods 12 (1): 10–22. https://doi.org/10.4319/lom.2014.12.10.

Glassmeyer, S. T., et al. 2017. “Nationwide reconnaissance of contaminants
of emerging concern in source and treated drinking waters of the United
States.” Sci. Total Environ. 581–582: 909–922. https://doi.org/10.1016
/j.scitotenv.2016.12.004.

Gleick, P. 2006. “Water and terrorism.” Water Policy 8 (6): 481–503.
https://doi.org/10.2166/wp.2006.035.

Green, U., J. Kremer, M. Zillmer, and C. Moldaenke. 2003. “Detection of
chemical threat agents in drinking water by an early warning real-time
biomonitor.” Environ. Toxicol. 18 (6): 368–374. https://doi.org/10.1002
/tox.10138.

Hall, J., A. D. Zaffiro, R. B. Marx, P. C. Kefauver, E. R. Krishnan, R. C.
Haught, and J. G. Herrmann. 2007. “On-line water quality parameters as
indicators of distribution system contamination.” Am. Water Works As-
soc. 99 (1): 66–77. https://doi.org/10.1002/j.1551-8833.2007.tb07847.x.

Harris, D. C. 2003. Quantitative chemical analysis. New York: W. H.
Freeman and Company.

Hou, D., S. Liu, J. Zhang, F. Chen, P. Huang, and G. Zhang. 2014. “Online
monitoring of water-quality anomaly in water distribution systems
based on probabilistic principal component analysis by UV-Vis absorp-
tion spectroscopy.” J. Spectrosc. 2014 (1): 1–9. https://doi.org/10.1155
/2014/150636.

Hu, Y., and X. Wang. 2017. “Application of surrogate parameters in char-
acteristic UV-vis absorption bands for rapid analysis of water contam-
inants.” Sens. Actuators, B 239 (1): 718–726. https://doi.org/10.1016/j
.snb.2016.08.072.

Ikonen, J., T. Pitkanen, P. Kosse, R. Ciszek, M. Kolehmainen, and I. T.
Miettinen. 2017. “On-line detection of Escherichia coli intrusion in a
pilot-scale drinking water distribution system.” J. Environ. Manage.
198 (1): 384–392. https://doi.org/10.1016/j.jenvman.2017.04.090.

Kroll, D., and K. King. 2007. “Operational and laboratory verification
testing of a heuristic on-line water monitoring system for security.”
Int. J. High Speed Electr. Syst. 17 (4): 631–642. https://doi.org/10
.1142/S0129156407004849.

Langergraber, G., A. Weingartner, and N. Fleischmann. 2004. “Time-
resolved delta spectrometry: A method to define alarm parameters from
spectral data.” J. Water Sci. Technol. 50 (11): 13–20.

Oliker, N., and A. Ostfeld. 2014. “A coupled classification—Evolutionary
optimization model for contamination event detection in water distribu-
tion systems.” Water Res. 51 (1): 234–245. https://doi.org/10.1016/j
.watres.2013.10.060.

Pickard, B. C., A. J. Haas, and S. C. Allgeier. 2011. “Optimizing opera-
tional reliability of the Cincinnati contamination warning system.”
Am. Water Works Assoc. 103 (1): 60–68. https://doi.org/10.1002/j
.1551-8833.2011.tb11382.x.

Storey, M., B. Gaag, and B. Burns. 2011. “Advances in on-line drinking
water quality monitoring and early warning systems.” Water Res.
45 (2): 741–747. https://doi.org/10.1016/j.watres.2010.08.049.

U.S. Environmental Protection Agency–Office of Pesticide Programs.
1998. Exposure and risk assessment on lower risk pesticide chemicals.
Arlington, VA: U.S. Environmental Protection Agency–Office of
Pesticide Programs.

USEPA. 2012. Detection of contamination in drinking water using fluores-
cence and light absorption–based online sensors. Washington, DC:

Fig. 8. Mean absorbance by mixtures of water sources in various proportions—groundwater, desalinated seawater and surface water—measured
during a mixed water experiment (for each series, 11 ≤ n ≤ 13, σ < 0.031).

© ASCE 04018056-10 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2018, 144(9): 04018056 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
io

n 
Is

ra
el

 I
ns

tit
ut

e 
O

f 
T

ec
hn

ol
og

y 
on

 1
2/

22
/2

4.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

https://doi.org/10.3846/16486897.2012.674039
https://doi.org/10.3846/16486897.2012.674039
https://doi.org/10.4319/lom.2014.12.10
https://doi.org/10.1016/j.scitotenv.2016.12.004
https://doi.org/10.1016/j.scitotenv.2016.12.004
https://doi.org/10.2166/wp.2006.035
https://doi.org/10.1002/tox.10138
https://doi.org/10.1002/tox.10138
https://doi.org/10.1002/j.1551-8833.2007.tb07847.x
https://doi.org/10.1155/2014/150636
https://doi.org/10.1155/2014/150636
https://doi.org/10.1016/j.snb.2016.08.072
https://doi.org/10.1016/j.snb.2016.08.072
https://doi.org/10.1016/j.jenvman.2017.04.090
https://doi.org/10.1142/S0129156407004849
https://doi.org/10.1142/S0129156407004849
https://doi.org/10.1016/j.watres.2013.10.060
https://doi.org/10.1016/j.watres.2013.10.060
https://doi.org/10.1002/j.1551-8833.2011.tb11382.x
https://doi.org/10.1002/j.1551-8833.2011.tb11382.x
https://doi.org/10.1016/j.watres.2010.08.049


Office of Research and Development National Homeland Security
Research Center.

Wang, K., Y. Wei, D. Hou, P. Huang, J. Yu, and G. Zhang. 2017.
“Contamination event detection method based on the longest common
subsequence analysis using multiple water quality parameters.”
In Proc., World Environmental and Water Resources Congress.
624–636. Reston, VA: ASCE.

Winston, G., S. Lerman, S. Goldberger, M. Collins, and A. Leventhal. 2003.
“A tap water turbidity crisis in Tel Aviv, Israel, due to technical failure:
Toxicological and risk management issues.” Int. J. Hygiene Environ.
Health 206 (3): 193–200. https://doi.org/10.1078/1438-4639-00206.

Zitko, V. 2001. “First derivative UV spectra of surface water as a monitor of
chlorination in drinking water treatment.” Sci. World 1 (1): 39–43.
https://doi.org/10.1100/tsw.2001.13.

© ASCE 04018056-11 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2018, 144(9): 04018056 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
io

n 
Is

ra
el

 I
ns

tit
ut

e 
O

f 
T

ec
hn

ol
og

y 
on

 1
2/

22
/2

4.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

https://doi.org/10.1078/1438-4639-00206
https://doi.org/10.1100/tsw.2001.13

