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A B S T R A C T   

The timely detection of crop diseases is critical for securing crop productivity, lowering production costs, and 
minimizing agrochemical use. This study presents a crop disease identification method that is based on Con
volutional Neural Networks (CNN) trained on images taken with consumer-grade cameras. Specifically, this 
study addresses the early detection of wheat yellow rust, stem rust, powdery mildew, potato late blight, and wild 
barley net blotch. To facilitate this, pictures were taken in situ without modifying the scene, the background, or 
controlling the illumination. Each image was then split into several patches, thus retaining the original spatial 
resolution of the image while allowing for data variability. The resulting dataset was highly diverse since the 
disease manifestation, imaging geometry, and illumination varied from patch to patch. This diverse dataset was 
used to train various CNN architectures to find the best match. The resulting classification accuracy was 95.4 ±
0.4%. These promising results lay the groundwork for autonomous early detection of plant diseases. Guidelines 
for implementing this approach in realistic conditions are also discussed.   

1. Introduction 

Crop diseases such as Yellow Rust (YR), Powdery Mildew (PM), Late 
Blight (LB), Net Blotch (NB), septoria and others pose a threat to crop 
production worldwide. This scourge is often exacerbated when disease 
pathogens mutate and spread to new and unexpected locations. For 
example, the world global yield loss due to wheat pests is estimated to be 
21.5% (Savary et al., 2019). Since YR spreads very fast, with a latency 
period of two weeks, it is ranked fourth in terms of global yield loss (2% 
globally and represents about 5% of all losses in China and Western 
Europe (Savary et al., 2019)). Murray et al. (1994) reported that be
tween 1984 and 1987, Stripe (yellow) rust caused a wheat yield loss of 
up to 84% in southern New South Wales, Australia. PM causes a 1% 
global yield loss in wheat (1% globally with 2.5% in Europe and 3.25% 
in China (Savary et al., 2019)). Stem rust in wheat is a major concern in 
East Africa, causing a yield loss of 9%, which can even increase to a total 
yield loss of 50% in susceptible cultivars (Soko et al., 2018). NB is one of 
the most devastating diseases affecting barely. It can cause a loss of up to 
44% in specific regions (Jayasena et al., 2007). In Israel, the emergence 

of NB in the mid-1950s caused a shift in the major cereal crop from 
barley to wheat (Kenneth, 1960). LB affects potatoes, causing a 6% yield 
loss globally (Savary et al., 2019). 

Resistance genes have been used to mitigate the losses caused by 
these diseases (Adhikari et al., 2020; Akino et al., 2014; Hafeez et al., 
2021; Vanderplank, 2012; McIntosh et al., 2013). However, resistance 
often declines rapidly as the diseases mutate and spread to new and 
unexpected geographic regions. Hence, agrochemicals, such as fungi
cides, pesticides, and insecticides, are still essential in modern agricul
ture. While mitigating the disease, agrochemicals can harm the 
environment and impose an additional economic burden. This points to 
the need for an integrated pathogen management strategy that combines 
disease detection and an optimal agrochemical application. The first 
step towards this optimization is to treat the disease at its early stages 
before it spreads to large areas, so agrochemical use is restricted to lo
cations where they are needed. Unfortunately, few farmers apply this 
type of approach, and the usage of agrochemicals still depends on their 
knowledge and cooperation (Giomi et al., 2018). This underscores the 
need for reliable, accessible, automatic crop monitoring technologies. 

* Corresponding author. 
E-mail address: skendler@technion.ac.il (S. Kendler).  

Contents lists available at ScienceDirect 

Computers and Electronics in Agriculture 

journal homepage: www.elsevier.com/locate/compag 

https://doi.org/10.1016/j.compag.2022.106732 
Received 24 May 2021; Received in revised form 17 November 2021; Accepted 17 January 2022   

mailto:skendler@technion.ac.il
www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2022.106732
https://doi.org/10.1016/j.compag.2022.106732
https://doi.org/10.1016/j.compag.2022.106732
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2022.106732&domain=pdf


Computers and Electronics in Agriculture 193 (2022) 106732

2

Crop diseases can be detected by biochemical testing of the plants, 
inspection by experts, and remote sensing followed by automated data 
analysis. Biochemical tests are accurate but are expensive and slow 
(Sankaran et al., 2010). Experts’ examination provides high reliability, if 
available, but only covers relatively small areas. Remote sensing, uti
lizing sensors mounted on satellites and aerial platforms, provides a 
solution since they can cover large areas (Atzberger, 2013; Chan and 
Paelinckx, 2008). To this end, both hyperspectral (Dhau et al., 2018) and 
multispectral (Yuan et al., 2017) imagers have been used for airborne 
spectral analyses in precision agriculture. The spatial resolution of such 
systems may suffice for plant growth and coverage estimation (Duveiller 
and Defourny, 2010) but fall short when it comes to detecting subtle 
changes in the field that can occur at the centimeter scale (such as 
textural or color changes in infected leaves) during the early stages of 
crop diseases (Aharoni et al., 2021). Furthermore, during these early 
stages, the size of the infected area in the field, might be smaller than a 
single pixel in the image, even for a high-resolution sensor (Houborg 
et al., 2015). 

Textural information may compensate for the reduction in spectral 
resolution of aerial imagery. Sub-millimeter textural information can be 
obtained by imaging from a short distance using commercially available 
RGB cameras. By fusing these spectral and spatial data, highly accurate 
classifications can be achieved. For example, Ferentinos identified 58 
diseases in 25 different plants using a convolutional neural network 
(CNN) trained on RGB images (Ferentinos, 2018). The images were 
obtained in laboratory conditions, i.e., with controlled illumination and 
background. Ferentinos used a freely available dataset (PlantVillage) 
comprising nearly 90,000 images of healthy and unhealthy plant leaves 
(Hughes and Salathe, 2015). The classification accuracy exceeded 99% 
for the PlantVillage dataset. The high accuracy obtained using CNNs is 
attributed to their flexibility to exploit non-linear association 
between features extracted from the image and the prevalence of the 
disease. Simpler models that assume linearity between these two phe
nomena apply strong assumptions on the problem, which often do not 
hold in reality. The strength of CNN is that the functional relationship 
between the two observed phenomena, i.e., image features and the 
presence of the disease, maybe of any nature and is captured by the CNN 
approach; therefore, there is no need to limit the possible connection to a 
linear relationship. The main limitation of CNNs is that they require 
large data sets for training. Hence, linear classification models are still 
attractive. For example, Shin and Balasingham compared hand-craft 
feature-based support vector machine (SVM) and CNN for automatic 
polyp classification during colonoscopy. Image features were extracted 
using a histogram of oriented gradient (HOG) and then classified using 
SVM. The resulting classification accuracy using the HOG/SVM method 
was 81.7%. In order to improve the accuracy, the hue histogram features 
were combined with the HOG features resulting in 84.2% accuracy. For 
comparison, using the same dataset, the CNN classification accuracy was 
92.7 without the need for hand-crafting the features (Shin and Bala
singham, 2017). Similar results were reported in the case of target 
recognition in infrared images. Visual features were hand-crafted using 
the strongest 80% features computed using Speeded-up Robust Feature 
Transform (SURF) and then classified using SVM resulting in classifi
cation accuracy of 90.8% compared to 97.9 with CNN (Yardimci and 
Ayyıldız, 2018). 

Boulent et al. surveyed 19 crop disease classification studies that 
implemented CNNs and found disease classification accuracies above 
90%. They pointed out that classification could be very accurate when 
the data are obtained in a highly controlled environment using even 
illumination, uniform background, and imaging geometry, as in 13 out 
of 19 studies surveyed. A more challenging situation is when the target is 
well focused and occupies a large portion of the image, but background 
and illumination are uncontrolled. The most challenging situation is 
when the image acquisition process is not optimized for a specific area or 
phenomenon. The first approach results in superior classification accu
racy but performs poorly on data from different sources (Boulent et al., 

2019). To this end, Mohanty et al. trained a CNN classification model 
using the PlantVillage database and obtained 99.35% accuracy. How
ever, the CNN classification accuracy dropped below 32% when the test 
was repeated on images downloaded from the internet that pertained to 
a different domain (Mohanty et al., 2016). Hence, high classification 
accuracy does not guarantee generalizability (Feng et al., 2019; Zheng 
et al., 2018). 

The main reason for the poor generalization of CNNs is the large 
number of parameters incorporated into the optimization of the CNN 
models compared to the number of samples, which may result in over
fitting. Generalization can be improved by using regularization tech
niques such as L1-, L2-norms and dropouts that reduce the CNN 
optimization to a simple solution with fewer parameters and a lower 
likelihood of overfitting (Feng et al., 2019). Zheng et al. developed a 
two-stage algorithm, where the first stage detects anomalies, and the 
CNN is retrained in the second stage using the anomaly detection results 
to regularize the feature boundaries by utilizing a loss function for 
outliers (Zheng et al., 2018). 

Diseases appear in many different ways in the image and are 
immersed in irrelevant information, making its accurate classification 
challenging. Recently, several attempts to deal with the large diversity 
of crop disease manifestation have been reported. A two-step approach 
for diseases classification was recently presented; in the first stage, the 
image is segmented to isolate suspected regions which are then classified 
using a CNN. This two-step approach significantly has increased the 
accuracy compared to a single-stage approach resulting in 94% classi
fication accuracy for ten diseases for a data set comprised of images 
taken in a controlled environment (60%) and uncontrolled environment 
(40%) (Arnal Barbedo, 2019). Tassis et al. have developed a three-step 
classification method, based on instance and semantic segmentation, 
to identify diseases and pests in coffee leaves. An R-CNN network is used 
for instance-segmentation followed by a semantic segmentation, using 
UNet and PSPNet networks. At the third stage, the image is classified 
using ResNet (Tassis et al., 2021). This three-step classification process 
of a single disease results in a classification accuracy of 94.25%. Sharma 
et al. have used segmented images to train CNN models for plant dis
eases classification. The classification accuracy for ten different diseases 
in tomatoes was 98.6% for the segmented dataset that focused on the 
phenomena of interest. Furthermore, the confidence for correct classi
fication was considerably increased by image segmentation (Sharma 
et al., 2020). 

This paper describes a new approach that responds to the need to 
effectively incorporate variability into training data by dividing each 
image into several patches - multipatch. In this fashion, the same phe
nomenon is sampled under different conditions, such as illumination 
intensity, focus quality, relative geometry, in the various patches. The 
multipatch approach, presented here, increases the amount of data 
presented to the CNN and retains the original images’ spatial resolution, 
thus providing more information to the CNN. The information gained by 
splitting each image into several patches results in a more variable 
dataset used to train the CNN, thus having a better chance to deal with 
realistic situations which are highly diverse. As a result of its improved 
generalizability, CNNs, trained using this method, have an improved 
generalization capability; thus, they can handle data from different 
sources collected on-site without modifying the scene, background, or 
illumination. 

2. Methodology 

2.1. Expanding data variability 

When imaging a diseased crop at millimeter resolution, signs of the 
disease may be manifested in several locations in the image as a function 
of disease severity. Fig. 1 shows an example of wheat infected with 
powdery mildew (PM), which appears as white or light brown spots in 
several places in the image. Note that different parts of the plant are 
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imaged at different angles and distances. Hence, some parts of the image 
are well focused, and others are not; similarly, the illumination intensity 
is not uniform. 

Modern cellphones take high-resolution images that can be split into 
several patches. Thus, each patch captures a specific manifestation of the 
crop disease and imaging conditions, providing a highly variable set of 
images that should result in a robust CNN for crop disease identification. 
The multipatch method also obviates the need to downsample the image 
(typically to ~ 224X224 pixels) and essentially degrades its resolution. 
Thus, fine details in the image are retained and potentially can improve 
classification as demonstrated for glioma and non-small-cell lung car
cinoma (Hou et al., 2015). Fig. 2 shows an example of the effect of such 
downsizing. It shows that while coarse details remain after the image 
has been downsized, finer details are lost. Hence, one can expect that 
trying to detect these details after downsizing will be difficult. 

Note that crop disease might only be manifested in a few patches out 
of the entire image in its early stages. Thus, a decision-making policy 
must be defined to analyze the CNN results that stipulate the number of 
positive indications required to consider the entire plot to be infected. 

At first, this process may appear to resemble the data-augmentation 
technique, which is ubiquitous in deep-learning applications (Shorten 
and Khoshgoftaar, 2019), including precision agriculture to cope with 
real-life situations in which data is limited (Hedayati et al., 2019). 
However, data-augmentation techniques involve several digital trans
formations such as scaling, rotation, noise injection, and translation. The 
underlying assumption is that the test set diversity can be explicitly 

predicted and digitally simulated in the training set. The multipatch 
method works around this assumption and increases the dataset di
versity by dividing high-resolution images into small patches that the 
CNN can process. 

Other methods to increase the dataset variability to improve CNN 
generalization capabilities have been reported. For example, Wang et al. 
collected a large and highly diverse dataset comprising of 49,700 im
ages. Agriculture experts manually annotated 264,700 bounding boxes 
for locating pests in various conditions (Wang et al., 2021). An alter
native approach to increasing the dataset diversity is to increase the 
CNN robustness towards domain changes using the domain-adversarial 
neural network – DANN (Ganin et al., 2017). The network is trained to 
accurately predict the labeled data in the source domain using features 
that are invariant to domain changes in the target domain. Elshamli 
et al. showed that crop detection using DANN outperforms traditional 
methods (Elshamli et al., 2017). Wu et al. showed that detecting oil trees 
using DANN is 9.04%-15.30% more accurate than other domain adap
tation methods (Wu et al., 2020). 

The multipatch approach, i.e., splitting the image into several 
patches, is a simple technique to increase dataset diversity using a 
relatively small dataset. It does not use physical modeling or artificial 
data augmentation, or any other assumption on the data. The resulting 
dataset is highly diverse since the disease manifestation, imaging ge
ometry, and illumination variations are retained and not degraded by 
image downsizing before presenting it to the CNN. The annotation 
procedure is simple; one must ensure that the phenomena of interest 

Fig. 1. An image of wheat leaves infected with powdery mildew (PM). The infection is manifested by white light- brown spots. Some of these spots are marked with 
ellipsoids. It shows that in some locations the image is well focused (red ellipsoids) but in others is more poorly focused (black ellipsoids). Similarly, the illumination 
is uneven, as shown by the two adjacent arrows indicating the bright area (yellow arrow) and the dark area (gray arrow). 

Fig. 2. Images of a wheat field. Left- original (4000x6000) image, right - downsized image to 224X224 pixels, typical of CNNs. The general view is similar, but the 
lower spatial resolution is obvious. 
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appear in the entire image. Once this is accomplished, the same label can 
be used for all patches. 

2.2. Materials and methods 

Images of wheat plants infected with PM were taken after inoculation 
of the wheat, according to the following protocol. Two near-isogenic 
lines (NILs) of bread wheat (Triticum aestivum), one with the Pow
dery Mildew resistance gene PmG3m (ZZPmR), and one susceptible to 
PM (ZZPmS), were inoculated with the highly virulent Bgt isolate #70. 
All plants were germinated simultaneously to avoid any bias due to plant 
age. About 500 plants were inoculated 15, 12, 10, and 5 days before the 
images were taken at 28 days after germination. A control experiment 
was conducted using susceptible and resistant lines (ZZPmR and ZZPmS) 
with no inoculation. 

Images of wheat infected with yellow rust (YR) were obtained from a 
freely available collection: the CGIAR, Computer Vision for Crop Disease 
(Hussain, 2020). The experiments with YR were conducted in Bet- 
Dagan, Central Israel, during the 2017–2018 cropping seasons where 
YR was artificially inoculated. Images of wheat infected with stem rust 
(SR) were also obtained from the CGIAR collection. Images of the 
healthy wheat plants were obtained from all the above sources. Images 
of both healthy wild barley (Hordeum spontaneum) and plants infected 
with net blotch (NB) were obtained in a wild field near Kiryat Tivon, in 
northern Israel. Both healthy and infected potato images with late blight 
(LB) were taken in the central part of the Israeli Negev. 

Most photos were taken using commercially available cellphones 
(such as Oneplus 6, Redme, and others); the remainder (about 10% of 
the PM images) were taken using a Nikon D850 with a Nikon 24–70f/2.8 
lens. Images using the cellphone were taken in the automatic mode, 
whereas photos taken with the DSLR camera were taken at f/8, focal 
length 28 mm, shutter speed 1/320 s, and auto iso (auto gain). All im
ages were labeled by an agriculture expert who is familiar with these 
diseases. The labels used for this study are listed in Table 1. 

The dataset was then randomly split into training, validation, and 
test sets (64%, 16%, and 20%, respectively). The images were divided 
into 36 patches. In the case of potato plants, late blight is manifested in 
the center of the image. Thus, only the nine patches located in the center 
of the image were used. In all the other crops, uninformative patches 
containing sky, soil, and other irrelevant objects were manually 
removed from the dataset. Each patch was labeled according to the 
original image label. The number of patches pertaining to each label in 
the dataset appears in Table 1. Fig. 3 presents a few images of each label. 

Using the same CNN architecture, the multipatch method is 
compared against full image analysis, i.e., processing the entire image 
without splitting the images into patches. In most cases, the disease is 
manifested all over the image, resulting in a fairly convenient situation 
for the whole image approach. A more complicated situation occurs 
when the CNN is faced with an image that the disease is manifested in a 
small portion of the image. For that purpose, an additional date set of 
wild barley (Hordeum spontaneum) was used. These images were taken 
at the early stages of infection with net blotch. In this set, the infection is 
manifested in only a fraction of the entire image. In most cases, only 2–3 
lesions were observed in the entire image, typical of fungal diseases that 

start with small foci and spread unevenly. 

2.3. CNN classification model calculation and testing 

Several well-established CNN network architectures were used for 
the classification process: AlexNet (Krizhevsky et al., 2012), Inception 
v3 (Xiaoling Xia et al., 2017), GoogleNet (Ballester and Araujo, 2016), 
ResNet50 (Mukti and Biswas, 2019; Saleem et al., 2019), and ResNet101 
(Saleem et al., 2019). A transfer learning strategy was applied to refine 
the network parameters and adapt them to the problem at hand (Pan and 
Yang, 2010). Table 2 lists nine sets of hyperparameters that were used 
during the multipatch method evaluation. These hyperparameter sets 
were also used to compare the performance of the multipatch with the 
whole image approcach. 

The hyperparameters sets performance are compared using the net
works’ classification accuracy, which is defined as: 

Accuracy =
Number of correct predictions
Total number of predictions

(1) 

A false-negative (FN) event was said to occur when the CNN model 

Table 1 
List of plants, conditions, labels, and the total number of patches in the dataset.  

Plant Condition Label number of patches 

Wheat PM D_PM 9160 
SR D_SR 4650 
YR D_YR 5820 
Healthy H 14,430 

Potato Healthy Po_H 2980 
LB Po_LB 920 

Wild barley Healthy WB_H 4250 
NB WB_NB 11,250  

D_PM

D_SR

D_YR

H

WB_H

WB_NB

Po_H

Po_LB

Fig. 3. A few examples of patches associated with different labels (see Table 1 
for the labels). 
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incorrectly labeled an image of diseased plants as healthy, regardless of 
the actual disease displayed in the image. A false-positive (FP) event was 
defined as the case where the CNN model incorrectly labeled an image as 
diseased, irrespective of the disease type. The uncertainty in the accu
racy calculation is estimated by a k-fold cross-validation process (k = 5) 
and taking the standard deviation. 

3. Results 

3.1. Hyperparameter tuning 

Table 3 lists the accuracy obtained in the multipatch method with the 
GoogleNet, ResNet 101, and InceptionResNetv2. The latter is a large 
CNN, and therefore, only a few computations are reported. 

The accuracy obtained with the ResNet 101 CNN is, in most cases, 
the highest, for seven out of the nine hyperparameter sets, the accuracy 
is above 90% and above 95% for four sets with an uncertainty of ± 0.4%. 
The accuracy obtained with the GoogleNnet is lower in all cases and 
failed to converge for hyperparameter set #5. The InceptionResNetv2 
performed similarly to the ResNet 101 CNN and was not used for further 
computations. Sets #3, #4, and #7 were also used to evaluate other 
CNNs and compare them to the classical method that uses the entire 
image for training and testing. 

3.2. Method evaluation 

Fig. 4 presents the classification results obtained with sets Sets #3, 
#4, and #7 with the multipatch method compared to the whole image 
approach. It shows that the multipatch method provides, in most cases, 
accuracies higher than 90%. Using AlexNet and GoogleNet CNN com
bined with hyperparameter set #7 reduces the accuracy below 90%. 
With CNN ResNet 101 accuracy of 95.4 ± 0.4% is achievable. 

Compared to the whole image analysis, the accuracy obtained with 
the multipatch method is higher and more consistent over different CNN 
architectures and hyperparameter sets. Note that this comparison was 
performed using images in which the disease is manifested over the 
entire image. In a more challenging comparison, a trained CNN 
(ResNet101, set #3, trained and tested using the whole image) was 
challenged with a date set of wild barley (Hordeum spontaneum) images 
at the early stages of infection with a net blotch in which only 2–3 le
sions were observed in the entire image. Our efforts to classify the entire 
image at this stage of the disease resulted in a high false-negative rate. In 
comparison, the multipatch method succeeded in identifying the 
diseased patches demonstrating the robustness of the multipatch trained 

CNN. 
In Fig. 5, the classification results, obtained with the multipatch 

method, are depicted in the form of a confusion matrix (using 
ResNet101, set # 3) that compares the true class (y-axis) to the class 
predicted by the CNN (x-axis). The diagonal terms represent the number 
of accurately classified patches, and the off-diagonal represents incor
rect classifications. The chart is accompanied by a row-normalized 
summary and a column-normalized summary. The vertical row- 
normalized summary represents the true-positive and false-positive 
rates (representing the class-wise recalls, i.e., the percentages of 
correctly/incorrectly classified observations for each true class). The 
horizontal column-normalized summary represents the positive predic
tive values (representing the class-wise precisions, i.e., the percentages 
of correctly and incorrectly classified observations for each predicted 
class). 

Note that out of the total patches classified as healthy (H), 4.6% were 
diseased, in most cases due to infection by PM or YR. Since this classi
fication was made at the single patch level, the patches making up the 
frame classification results could be examined before making the final 
decision. This examination relied on the occurrence of a certain class in 
an image. It seems reasonable to assume that as the number of patches in 
the same image that belong to the same class increases, this classifica
tion’s validity should also increase. To test this hypothesis, the proba
bility distribution of obtaining repeated true or false patch 
classifications from a single image was calculated. The analysis showed 
that correct identification occurred in most cases; for example, in images 
of healthy wheat, the maximum number of wrongly identified patches 
(false positive) was five, whereas true negatives occurred in most 
patches. A similar difference in the probability distribution was found 
for other cases studied here. These differences can be used to further 
improve this method by setting a static or adaptive threshold value for 
the number of patches from the same image that belongs to a specific 
class to classify the entire image. 

4. Discussion and conclusion 

This study illustrates the advantages of using consumer-grade RGB 
cameras to identify crop diseases from a short distance, typically 
0.75–0.3 m. The images were cropped into separate patches and then 
utilized to train and test a CNN using various popular network archi
tectures. Note that the training was performed on a uniform set of im
ages; in other words, all the patches belonged to the same label. The 
resulting classification accuracy for the test set was 95.4 ± 0.4% using 
the ResNet 101 CNN, with other CNNs architectures providing similar 

Table 2 
List of transfer learning hyperparameter sets used for the multipatch method development and comparison to the classical method that uses the full image.   

Hyperparameter set 

Property Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 

solver Stochastic Gradient Descent with Momentum (Qian, 1999) 
Initial learning rate 0.0015 0.01 0.003  0.01 
Learning rate schedule piecewise 
Learning rate drop factor 0.5 0.5 0.5  0.5  0.2  0.2  0.2  0.2  0.2 
Learning rate drop period 2 5 
L2 regularization 0.005 0.05 0.005  0.05  0.05  0.005  0.0001 
Max Epoch 30 
MiniBatch size 32 32 64  

Table 3 
The accuracy obtained in the multipatch method for different sets of hyperparameters.   

Hyperparameter set 

CNN Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 

GoogleNet 94  77.1  92.9  85.1  – 76  93.7  94.1 94 
ResNet101 95.4  91.1  95.4  94.8  73.6 81.7  95.4  95.3 93.6 
InceptionResNetv2 94.9  94.2         
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results. Both the train and test images were taken in the field without 
modifying the background, illumination, or manipulating the scene. A 
similar level of crop disease classification accuracy and even higher have 
been reported using images taken in controlled situations (Ferentinos, 
2018; Hughes and Salathe, 2015). This finding is not surprising, as 

Boulent et al. pointed out that controlling the imaging (illumination, 
sensor object distance, angle, background) improves classification ac
curacy but decreases generalizability (Boulent et al., 2019). Indeed, it 
has been shown that CNN trained and tested with images obtained at 
controlled conditions can achieve 99.35% classification accuracy for 

Fig. 4. Classification accuracies obtained with different CNNs and hyperparameters sets 3, 4, and 7. Results obtained with the multipatch method are in red shades 
bars compared to the classical method in blue shade bars (see graph legend). 

D_PM
D_SR

D_YR H
Po_H

Po_LB
WB_H

WB_NB

Predicted Class

D_PM

D_SR

D_YR

H

Po_H

Po_LB

WB_H

WB_NB

Tr
ue

 C
la

ss

1591

2

11

80

1

893

25

3

1

3

34

1113

50

1

1

238

13

1

594

18

2

164

1

1

849

2

1

1

2753

2245

13.2%

4.0%

4.4%

4.6%

0.3%

10.9%

0.1%

0.2%

86.8%

96.0%

95.6%

95.4%

99.7%

89.1%

99.9%

99.8%

5.6% 3.1% 7.4% 8.4% 3.1% 1.8% 0.4% 0.1%

94.4% 96.9% 92.6% 91.6% 96.9% 98.2% 99.6% 99.9%

Fig. 5. The confusion matrix obtained when classifying diseased and healthy wheat (D), wild barley (WB), and potatoes (Po) using the CNN ResNet 101 (set 3). See 
Table 1 for the labels. 
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these images but less than 32% for data obtained under uncontrolled 
conditions, e.g., illumination, sensor-to-object geometry (Mohanty 
et al., 2016). The manifestation of the disease was the same regardless of 
the imaging procedure. However, the number of possible variations in a 
real-life situation remains considerable. Even in the same image, the 
light intensity and focus quality can change dramatically. When 
following the standard procedure and using the entire image for 
training, the algorithm processes an averaged dataset that smooths these 
variations. Additionally, if the disease manifestation is localized, its ef
fect on the entire image can be small. Valuable information is also lost 
when downscaling the images to reduce CNN computational 
complexity. By contrast, splitting the images into several patches retains 
the fine details and preserves the variability, resulting in a highly diverse 
training set leading to a robust CNN. This splitting can be harnessed to 
account for situations in which the disease manifestations are restricted 
to a small portion of the image, typical of the early stages of several crop 
diseases. The capability of the multipatch method to handle such situ
ations is a result of an improved generalization capability that is also 
reported in this study. 

Recently, multiple-step CNNs showed a great promise to increase 
classification accuracy in such highly diverse situations. These CNNs 
first target the phenomena in the image and then classify them (Sharma 
et al., 2020). Hence, our future work will combine the multipatch 
method with a multistep image classification CNN. 

Once an optimal classification method is developed, aggregation of 
the multipatch classification results is required. Basing the decision on a 
single patch result yields a high detection rate but is also more vulner
able to false alarms. On the other hand, only a few patches will be 
positively classified in the early stages of the disease, and setting a high 
threshold will result in a high false-negative rate. Hence, setting a policy 
to aggregate the classification results is crucial to developing an inte
grated system. In addition to the classification result aggregation, the 
final decision should also consider other sources of information such as 
climate conditions, agricultural data including disease prevalence in 
other plots, crop bread, and previous use of agrochemicals. 

Compared to imaging using an airborne camera, this method benefits 
from the high spatial resolution that enables accurate classification 
using a low-cost sensor. Today, digital cameras are an accessible tech
nology in cellphones and autonomous vehicles. Thus, short-range im
aging can help growers detect crop diseases without the need for 
sophisticated instrumentation or support from agriculture experts. 
However, handheld imaging from a short distance lacks the throughput 
of airborne sensors. Mounting cameras on ground-based, autonomous 
mobile platforms could improve imaging throughput without sacrificing 
resolution. Future work will include the research and development of 
methodologies aimed at real-time optimization of the search path. An 
adaptive search path that can be modified according to real-time clas
sification results will further increase the scanning throughput. Such an 
automatic system can provide a high-throughput estimation of the de
gree of infection in the field. This estimation, combined with environ
mental parameters (such as humidity, leaf wetness, and temperature), 
can be used for plants diseases forecasting(Dong et al., 2020). Improving 
the throughput improves the chances of detecting the disease before it 
spreads to large areas. Thus, mitigating acts can be taken before sig
nificant damage to the crop has occurred. 

Funding 
This work was supported by the Israel Ministry of Science and 

Technology Research. 
Data availability 
Data is available via the following link: Crop Data. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Adhikari, A., Steffenson, B.J., Smith, K.P., Smith, M., Dill-Macky, R., 2020. Identification 
of quantitative trait loci for net form net blotch resistance in contemporary barley 
breeding germplasm from the USA using genome-wide association mapping. Theor. 
Appl. Genet. 133 (3), 1019–1037. https://doi.org/10.1007/s00122-019-03528-5. 

Aharoni, R., Klymiuk, V., Sarusi, B., Young, S., Fahima, T., Fishbain, B., Kendler, S., 
2021. Spectral light-reflection data dimensionality reduction for timely detection of 
yellow rust. Precis. Agric. 22 (1), 267–286. https://doi.org/10.1007/s11119-020- 
09742-2. 

Akino, S., Takemoto, D., Hosaka, K., 2014. Phytophthora infestans: a review of past and 
current studies on potato late blight. J. Gen. Plant Pathol. 80 (1), 24–37. https://doi. 
org/10.1007/s10327-013-0495-x. 

Arnal Barbedo, J.G., 2019. Plant disease identification from individual lesions and spots 
using deep learning. Biosyst. Eng. 180, 96–107. https://doi.org/10.1016/j. 
biosystemseng.2019.02.002. 

Atzberger, C., 2013. Advances in remote sensing of agriculture: Context description, 
existing operational monitoring systems and major information needs. Remote Sens. 
5, 949–981. https://doi.org/10.3390/rs5020949. 

Ballester, P., Araujo, R.M., 2016. On the performance of googlenet and alexnet applied to 
sketches, 30th AAAI Conference on Artificial Intelligence, AAAI 2016. 
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