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Abstract: The Macroscopic Fundamental Diagram (MFD) relates the number of circulating
vehicles (or accumulation) to a neighbourhood’s average speed or flow. In theory the MFD has
a well-defined maximum which remains invariant over time. Recent studies, however, suggest
that in practice this is not the case, and the MFD does present a variations over time. These
variations in the MFD render traffic simulations, modelling and control schemes inaccurate, as
these tools do not capture the dynamic nature of the MFD. This paper presents a dynamic model
for estimating the MFD, so it does capture the MFD’s time varying nature. A mathematical
Kalman-filter based framework for solving the model and estimating the MFD are also presented.
The application of the method on a small scale example shows the potential of the method.
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1. INTRODUCTION

Transportation infrastructure systems are critical to serv-
ing the needs of millions of people. Traffic congestion rep-
resents one of the major obstacles to an efficient operation.
In 2011, congestion caused urban Americans to travel 5.5
billion hours more and to purchase an extra 2.9 billion
gallons of fuel for a congestion cost of $121 billion, 0.7% of
the US GDP Schrank et al. (2012). This problem will only
worsen as the growth in demand has far outstripped the
rate of installed highway capacity. In fact, the US Federal
Highway Administration estimates that the number of
vehicle miles traveled increased by 76% from 1980 to 1999,
while total miles of installed highway capacity increased by
only 1.5% Noland and Cowart (2000). These challenges are
further exacerbated by population growth, concentrated
demand due to urbanization, and depletion of natural
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resources Rosenberg et al. (2010). Thus, arises the need for
better understanding and utilization of the transportation
network.

Since the seminal work of Greenshields et al. (1933), the
fundamental diagram has become one of the most common
tools for modelling a road segment and it flow-density,
speed-flow, and speed-density relations (e.g., Dervisoglu
et al. (2009); Helbing (2009); Wu et al. (2011)). The
fundamental diagram was the base for many studies, start-
ing from the work of Lighthill and Whitham (1955) and
Richards (1956), through the work of Gerlough and Huber
(1975) all the way to the work on the cell-transmission
model (CTM) Daganzo (1994, 1995), which adopted a
simplified fundamental diagram. All the aforementioned
work sought the fundamental diagram to time invariant.

Recent advances in computational, sensory and communi-
cation technologies have enabled the analysis of a network
segment, rather than a single stretch. To this end, the
following studies: Daganzo and Geroliminis (2008); Geroli-
minis and Daganzo (2007, 2008) showed, through the mov-
ing observer method, that the fundamental diagram can
serve as a tight bound for the average flow-density states
of any urban street or network. This work essentially has
extended the use of the fundamental diagram from a single
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road segment to a network. They dubbed this extension
as the Macroscopic Fundamental Diagram (MFD). Using
the MFD concept, traffic control is simplified enormously
as it offers an aggregate model approach that considers
the traffic dynamics of a large urban area. Their analysis,
however, assumed time invariant road conditions and ho-
mogenous spatial distribution of vehicle density over the
network Geroliminis and Sun (2011).

While the fundamental diagram is sought to be time in-
variant, many studies have shown that this is not the case
for the MFD. Ji et al. (2010) showed, by utilising a micro-
scopic simulation model, that the MFD shape is a property
not only of the network itself but also of the applied
traffic control measures, congestion and traffic demand.
Thus, traffic itself has an effect on the concurrent MFD
shape. Mazloumian et al. (2010) examined vehicle density
and its variability and its effect on urban traffic network
performance. They found the variability to be a key factor
in the process. Saberi and Mahmassani (2012) investigated
the impact of the spatial and temporal distribution of
congestion in a network on the shape and properties of
the flow-density relation. The research showed that the
maximum network average flow is not a constant value but
varies across different days. In addition, for the same value
of average network occupancy, a variation of occupancy
was observed. The variation was attributed to the for-
mation of fragmented queues and traffic instability. Vari-
ability was also observed when the spatial distribution of
densities over the network was inhomogeneous and the av-
erage network occupancy remained consistently high and
roughly unchanged for successive time intervals. Knoop
et al. (2012) recapitulated this notion and acknowledged
that the MFD does change over time. In a later work
Knoop et al. (2013) the impact of traffic dynamics on the
MFD was explored. The latter showed that the network
flow is not constant for a fixed number of vehicles as
predicted by the MFD, but decreases due to local queuing
and spill back processes around the congestion. Following
the above body of work, we conclude that the MFD is time
variant and is affected by time variant factors such as the
concurrent traffic conditions.

One of the first applications of the MFD were its uti-
lization in traffic network dynamic control. Zheng et al.
(2012) presented a dynamic pricing scheme, where tolls
are controlled by an MFD. Geroliminis et al. (2013) used
an MFD-based control mechanism to govern traffic flow
between two urban regions such that the number of trips
that reach their destinations is maximized. Zhang et al.
(2013) presented the use of the MFD for achieving optimal
adaptive traffic signal system. While all these applications
present an unprecedented tool for managing and control-
ling transportation facilities, they all assumed time invari-
ant MFD. Thus, the dynamic nature of the MFD, as traffic
state changes, has not been regarded. Using inaccurate
(or outdated) MFD to describe the network in question,
results in a suboptimal control and underutilization of the
network. Therefore, there is a great need to generate a
mechanism that follows traffic conditions and distribution
over the network and updates the MFD accordingly.

In this paper, a new mechanism to update the MFD in an
on-line fashion, through polynomial Kalman filter Zarchan
and Musoff (2005), is presented. Such a filter allows to

avoid the large computational cost usually required by
other approaches such as extended Kalman or particle
filters. Further, the polynomial Kalman Filter allows for
capturing the time varying nature of the MFD. Previous
studies that aimed at estimating the MFD Daganzo and
Geroliminis (2008); Geroliminis and Daganzo (2008, 2007);
Xie et al. (2013); Gayah and Dixit (2013); Knoop and
Hoogendoorn (2013) did not account for temporal vari-
ability, which manifested itself in a scattered pattern. For
example, Gayah and Dixit (2013) introduced a method-
ology to estimate the MFD from in traffic agents moni-
toring. Their work was shown accurate when the network
is congested, and less so, when the network was uncon-
gested. Ojeda et al. (2013) suggested Kalman filtering for
estimating road density. Their work estimated the density
state given MFD fixed model and stochastic perturbations.
Therefore we conclude that the MFD does change with
traffic and when the network is uncongested, there is
a small number of agents to get accurate estimation of
traffic.

Thus, the contribution of this paper is twofold: (i) it
presents a model for a continuous updating of the MFD
in traffic control applications, as traffic changes; and (ii) it
introduces a simple, yet efficient, mechanism for updating
the MFD as measurements acquired from the network are
gathered. Finally, a demonstration of the suggested scheme
is given on a real-life network. The paper is organized
as follows. The MFD concept is presented in Section
2. In Section 3, the design of the MFD based on the
polynomial Kalman filter is addressed, whereby a various
estimation schemes are proposed and discussed. Then
Section 4 describes the data processing. Several key issues
concerning MFD estimation are carefully investigated in
Section 5. Finally, Section 6 draws some conclusions and
future work.

2. MACROSCOPIC FUNDAMENTAL DIAGRAM

The macroscopic fundamental diagrams have been proven
to exist in small networks, relating the local flow and den-
sity Geroliminis and Daganzo (2007). A typical schematic
MFD is illustrated in Figure 1. The MFD describes the
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Fig. 1. Macroscopic fundamental diagram.

transition of the road network between three states: Free
flow - When the density is low and the the flow φ(t) is
undisturbed. This stage is described by the green part
shown in Figure 1. With the increase of the number of vehi-
cles, φ(t) rises up to the maximum, indicated by the point
(ρr(t), φmax(t)), called the sweet spot or critical density.
As the number of vehicles further increases, passengers will
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that reach their destinations is maximized. Zhang et al.
(2013) presented the use of the MFD for achieving optimal
adaptive traffic signal system. While all these applications
present an unprecedented tool for managing and control-
ling transportation facilities, they all assumed time invari-
ant MFD. Thus, the dynamic nature of the MFD, as traffic
state changes, has not been regarded. Using inaccurate
(or outdated) MFD to describe the network in question,
results in a suboptimal control and underutilization of the
network. Therefore, there is a great need to generate a
mechanism that follows traffic conditions and distribution
over the network and updates the MFD accordingly.

In this paper, a new mechanism to update the MFD in an
on-line fashion, through polynomial Kalman filter Zarchan
and Musoff (2005), is presented. Such a filter allows to

avoid the large computational cost usually required by
other approaches such as extended Kalman or particle
filters. Further, the polynomial Kalman Filter allows for
capturing the time varying nature of the MFD. Previous
studies that aimed at estimating the MFD Daganzo and
Geroliminis (2008); Geroliminis and Daganzo (2008, 2007);
Xie et al. (2013); Gayah and Dixit (2013); Knoop and
Hoogendoorn (2013) did not account for temporal vari-
ability, which manifested itself in a scattered pattern. For
example, Gayah and Dixit (2013) introduced a method-
ology to estimate the MFD from in traffic agents moni-
toring. Their work was shown accurate when the network
is congested, and less so, when the network was uncon-
gested. Ojeda et al. (2013) suggested Kalman filtering for
estimating road density. Their work estimated the density
state given MFD fixed model and stochastic perturbations.
Therefore we conclude that the MFD does change with
traffic and when the network is uncongested, there is
a small number of agents to get accurate estimation of
traffic.

Thus, the contribution of this paper is twofold: (i) it
presents a model for a continuous updating of the MFD
in traffic control applications, as traffic changes; and (ii) it
introduces a simple, yet efficient, mechanism for updating
the MFD as measurements acquired from the network are
gathered. Finally, a demonstration of the suggested scheme
is given on a real-life network. The paper is organized
as follows. The MFD concept is presented in Section
2. In Section 3, the design of the MFD based on the
polynomial Kalman filter is addressed, whereby a various
estimation schemes are proposed and discussed. Then
Section 4 describes the data processing. Several key issues
concerning MFD estimation are carefully investigated in
Section 5. Finally, Section 6 draws some conclusions and
future work.

2. MACROSCOPIC FUNDAMENTAL DIAGRAM

The macroscopic fundamental diagrams have been proven
to exist in small networks, relating the local flow and den-
sity Geroliminis and Daganzo (2007). A typical schematic
MFD is illustrated in Figure 1. The MFD describes the

φ
max

(t)

ρ
c
(t)ρ

r
(t)

0

φ(t)

[veh/hour]

ρ(t)  [veh/km] 

Fig. 1. Macroscopic fundamental diagram.

transition of the road network between three states: Free
flow - When the density is low and the the flow φ(t) is
undisturbed. This stage is described by the green part
shown in Figure 1. With the increase of the number of vehi-
cles, φ(t) rises up to the maximum, indicated by the point
(ρr(t), φmax(t)), called the sweet spot or critical density.
As the number of vehicles further increases, passengers will
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(a) α3 > 0 (b) α3 < 0

Fig. 2. 3rd order polynomial MFD approximation - φ(t) as
a function of ρ(t)

experience delay. If vehicles continue to enter the network,
it will result in a congestion state where vehicles block each
other and the flow declines, indicated by the magenta part
in Figure 1.

3. RECURSIVE ESTIMATION OF MACROSCOPIC
FUNDAMENTAL DIAGRAM

3.1 The model

There are many functional forms to describe the shape
of the MFD in the flow density plane. A polynomial
form is chosen for reasons of simplicity. In this form, the
coefficients of determination can be found by using linear
least square or Kalman filter approaches.

In general, the function φ(ρ) should have an order of
more than two. To see this, one can consider a polynomial
function of the order two. Due to the symmetric property
of this function, the density ρr(t) of the sweet spot point
can be computed as

ρr(t) =
ρc(t)

2
(1)

where ρc(t) is the density of the standstill point, see Figure
1. Since this is typically not the case, the function φ(ρ)
should have an order of more than two. A third order
polynomial function is chosen as it is the simplest non-
symmetric, linear-in-the-parameters model for which the
Kalman filter is easy to work with. It is also known that
the density ρ(t) = 0 should give the zero flow. In the result,
the following equation is obtained,

φ(t) = α1ρ(t) + α2ρ
2(t) + α3ρ

3(t) (2)

It is useful to calculate the derivative of the flow φ(t) with
respect to the density ρ(t),

dφ

dρ
= α1 + 2α2ρ(t) + 3α3ρ

2(t) (3)

Clearly, α1 > 0, since dφ
dρ is positive at lim ρ(t) → 0+.

There are two cases which correspond to α3 > 0 and
α3 < 0, where the function (2) can have the MFD shape.
They are illustrated in Figure 2a and Figure 2b.

For the case α3 > 0, using Figure 2a, it follows that

• The function (2) has a local maximum and a local
minimum at densities greater than zero, while the
density at the local maximum is less than the density
at the local minimum.

• The function (2) has three roots, one root is zero and
two other roots are greater than zero. The density
at the standstill point corresponds to the positive
smallest root.

• Using the Vieta’s theorem Vinberg (2003), it follows
that α2 < 0 since the function (2) has three non-
negative roots and the the assumption this case that
α3 > 0.

Analogously, for the case α3 < 0, from Figure 2b, it is clear
that

• The function (2) has the local maximum at the
density greater than zero and the local minimum at
the density smaller than zero.

• The function (2) has three roots, one root is less than
zero, one root is zeros and one root is greater than
zero. The density at the standstill point corresponds
to the positive root.

The density of the sweet spot point ρr(t) and the density
at the standstill point ρc(t) can be computed as follows,

• If α3 > 0, ρr(t) is the positive smallest root of the
following equation

α1 + 2α2ρ(t) + 3α3ρ
2(t) = 0

Hence

ρr(t) =
−α2 −

√
α2
2 − 3α1α3

3α3
(4a)

And ρc(t) is the positive smallest root of the following
equation

α1 + α2ρ(t) + α3ρ
2(t) = 0

Hence

ρc(t) =
−α2 −

√
α2
2 − 4α1α3

2α3
(4b)

• If α3 < 0, analogous to equation (4), (4b), the
densities at the sweet spot point and at the standstill
point are computed as follows

ρr(t) =
−α2 −

√
α2
2 − 3α1α3

3α3
(5a)

ρc(t) =
−α2 −

√
α2
2 − 4α1α3

2α3
(5b)

Using equations (4) and (5), it is worth noticing that ρr(t)
and ρc(t) have the same expression, regardless of the sign
of α3. Thus, the consideration of the sign of α3 does affect
the computational flow and complexity.

The interpretation of α1, α2, α3 as well as ρr(t), ρc(t) and
φ(t) for traffic characteristics is shown in Table 1:

Table 1. Interpretation of the variables
Description Symbol Equation Unit

1st order term α1 km/hour

2nd order term α2 km2/(veh× hour)

3rd order term α3 km3/(veh2 × hour)

Sweet spot density ρr(t) Eq. (5a) veh/km

Sweet spot flow φmax(t) φ(ρr(t)) veh/hour

Standstill density ρc(t) Eq. (5b) veh/km

Defining 


α = [ α1 α2 α3 ]
T
,

c(t) =
[
ρ(t) ρ2(t) ρ3(t)

]T
,

y(t) = φ(t)

Equation (2) can be rewritten as

y(t) = c(t)Tα (6)
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3.2 Recursive least squares and the Kalman filter approach

In least square estimation unknown parameters are chosen
in such a way that the sum of the squares of the difference
between the actually observed and the computed values, is
minimized Ljung (1999); Åström and Wittenmark (2008).
This translates into finding the parameters that minimizes
the following loss-function, for the model (3):

V (α, n) =
1

2

n∑
t=1

(y(t)− c(t)Tα)2 (7)

where n is the number of data points, and y(t) and c(t)
stand for te variables measured at time t. The closed form
solution to the problem (7) at time n can be obtained as
follows:

α(n) =

(
n∑

t=1

c(t)cT (t)

)−1 ( n∑
t=1

c(t)y(t).

)
(8)

As far as we are interested in real-time parameter estima-
tion, it is desirable to make the computation recursively to
save computational time. Computation of the least square
estimate can be arranged in such a way that the results
obtained at time instant n − 1 are updated to get the
estimates at time n. The recursive form is given by Ljung
(1999); Åström and Wittenmark (2008),

α(n) = α(n− 1) +K(n)
(
y(n)− cT (n)α(n− 1)

)
(9a)

where

K(n) = P (n)c(n) =

= P (n− 1)c(n)
(
I + c(n)TP (n− 1)c(n)

)−1 (9b)

and
P (n) = P (n− 1)− P (n− 1)c(n)

·
(
I + c(n)TP (n− 1)c(n)

)−1
cT (n)P (n− 1)

= (I −K(n)cT (n))P (n− 1)

(9c)

P (n) is the covariance matrix (for more details on the
above derivation, see Ljung (1999); Åström and Witten-
mark (2008)).

In the least square model (6), the estimates α are assumed
to be constant. However, in the MFD model, the param-
eters may vary depending on the traffic conditions. One
pragmatic approach in this case is simply to replace the
least squares criterion (7) with

V (α, n) =
1

2

n∑
t=1

λt(y(t)− c(t)Tα)2 (10)

where 0 < λ ≤ 1 is called the forgetting factor. It operates
as a weight which diminishes for the more remote mea-
surement data. The scheme is known as least-square with
exponential forgetting and α(n) can also be calculated
recursively using the same update equation (9a) but with
different K(n) and P (n), see for example Ljung (1999);
Åström and Wittenmark (2008). A main disadvantage of
exponential forgetting is that data is discounted even if
y(n) does not contain any new information about the
parameter α Åström and Wittenmark (2008).

An alternative approach of dealing with time-varying
parameters is to use the Kalman filter approach Grewal
and Andrews (2011) for the following random walk model,

{
α(t+ 1) = α(t) + w(t),
y(t) = c(t)Tα(t) + v(t)

(11)

where {w(t)} and {v(t)} are discrete-time Additive White
Gaussian Noise with covariances

E(w(t)wT (k)) = Rδtk, E(v(t)vT (k)) = Qδtk

where δtk is the Kronecker delta:

δtk =

{
1, if t = k,
0, if t �= k,

,

and the matrices R � 0 and Q � 0 are tuning parameters
in our case. The least squares estimator will then be the
Kalman filter.

The algorithm of the Kalman filter approach is summa-
rized as follows

α(n) = α(n− 1) +K(n)(y(n)− cT (n)α(n− 1)) (12a)

where

K(n) = S(n− 1)c(n)(cT (n)S(n− 1)c(n) +R)−1 (12b)

and
P (n) = S(n− 1)− S(n− 1)c(n)·

·(cT (n)S(n− 1)c(n) +R)−1·
·cT (n)S(n− 1)

(12c)

and
S(n) = P (n− 1) +Q (12d)

Clearly, we need to choose an initial values for α(0) and
P (0). A good choice is α(0) = 0 and P (0) = 0.

4. APPLICATION OF THE METHOD

To demonstrate the capability of the method to follow the
MFD’s behaviour, a synthetic traffic data derived from two
assumed MFDs representing two week-days with AM and
PM peaks were used. In this simulation the covariance
matrices following Eq. (11) were tuned to Q = 1 · 10−8

and R = 900. Our extensive studies with simulations and
real-life data strongly suggests that weather conditions and
other factors affect traffic and consequentially the MFD.
Therefore the two days present different traffic regimes.
One can think of day 1 as a clear day and day 2 as
a rainy day. The input to the system - 4, 404 synthetic
density and flow records representing 48 hours’ worth of
data, thus, a sample every 90 seconds, are presneted in
Figure 3a. The corresponding MFDs for day 1 (in blue)
and day 2 (in red) are given in Figure 3b. It is evident that
indeed day 1 presents different MFD than day 2. Using the
Kalman filter approach, described in Section 3.1, the third
order polynomial model (Eq. 2) is used to approximate the
MFD.

Figure 4a presents α(t) as a function of time. It is evident
that the α coefficients do change over time. Similar notion
is observed in Figure 4b,which presents sweet spot density
and flow as a function of time. Similarly to the conclusion
that was drown from Figure 4a, the sweet spot parameters
do change over time. It is worthwhile noting the big
changes in the α coefficients and in ρ and φ. These changes
occur in the transient between the two traffic regimes, i.e.,
the two days. There are several methods to overcome this
and we do expect this phenomenon to be less dramatic
with real data.
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between the actually observed and the computed values, is
minimized Ljung (1999); Åström and Wittenmark (2008).
This translates into finding the parameters that minimizes
the following loss-function, for the model (3):
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n∑
t=1

(y(t)− c(t)Tα)2 (7)

where n is the number of data points, and y(t) and c(t)
stand for te variables measured at time t. The closed form
solution to the problem (7) at time n can be obtained as
follows:

α(n) =

(
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c(t)cT (t)

)−1 ( n∑
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c(t)y(t).

)
(8)

As far as we are interested in real-time parameter estima-
tion, it is desirable to make the computation recursively to
save computational time. Computation of the least square
estimate can be arranged in such a way that the results
obtained at time instant n − 1 are updated to get the
estimates at time n. The recursive form is given by Ljung
(1999); Åström and Wittenmark (2008),
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cT (n)P (n− 1)

= (I −K(n)cT (n))P (n− 1)

(9c)

P (n) is the covariance matrix (for more details on the
above derivation, see Ljung (1999); Åström and Witten-
mark (2008)).

In the least square model (6), the estimates α are assumed
to be constant. However, in the MFD model, the param-
eters may vary depending on the traffic conditions. One
pragmatic approach in this case is simply to replace the
least squares criterion (7) with

V (α, n) =
1

2

n∑
t=1

λt(y(t)− c(t)Tα)2 (10)

where 0 < λ ≤ 1 is called the forgetting factor. It operates
as a weight which diminishes for the more remote mea-
surement data. The scheme is known as least-square with
exponential forgetting and α(n) can also be calculated
recursively using the same update equation (9a) but with
different K(n) and P (n), see for example Ljung (1999);
Åström and Wittenmark (2008). A main disadvantage of
exponential forgetting is that data is discounted even if
y(n) does not contain any new information about the
parameter α Åström and Wittenmark (2008).

An alternative approach of dealing with time-varying
parameters is to use the Kalman filter approach Grewal
and Andrews (2011) for the following random walk model,

{
α(t+ 1) = α(t) + w(t),
y(t) = c(t)Tα(t) + v(t)

(11)

where {w(t)} and {v(t)} are discrete-time Additive White
Gaussian Noise with covariances

E(w(t)wT (k)) = Rδtk, E(v(t)vT (k)) = Qδtk

where δtk is the Kronecker delta:

δtk =

{
1, if t = k,
0, if t �= k,

,

and the matrices R � 0 and Q � 0 are tuning parameters
in our case. The least squares estimator will then be the
Kalman filter.

The algorithm of the Kalman filter approach is summa-
rized as follows

α(n) = α(n− 1) +K(n)(y(n)− cT (n)α(n− 1)) (12a)

where

K(n) = S(n− 1)c(n)(cT (n)S(n− 1)c(n) +R)−1 (12b)

and
P (n) = S(n− 1)− S(n− 1)c(n)·
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(12c)

and
S(n) = P (n− 1) +Q (12d)

Clearly, we need to choose an initial values for α(0) and
P (0). A good choice is α(0) = 0 and P (0) = 0.

4. APPLICATION OF THE METHOD

To demonstrate the capability of the method to follow the
MFD’s behaviour, a synthetic traffic data derived from two
assumed MFDs representing two week-days with AM and
PM peaks were used. In this simulation the covariance
matrices following Eq. (11) were tuned to Q = 1 · 10−8

and R = 900. Our extensive studies with simulations and
real-life data strongly suggests that weather conditions and
other factors affect traffic and consequentially the MFD.
Therefore the two days present different traffic regimes.
One can think of day 1 as a clear day and day 2 as
a rainy day. The input to the system - 4, 404 synthetic
density and flow records representing 48 hours’ worth of
data, thus, a sample every 90 seconds, are presneted in
Figure 3a. The corresponding MFDs for day 1 (in blue)
and day 2 (in red) are given in Figure 3b. It is evident that
indeed day 1 presents different MFD than day 2. Using the
Kalman filter approach, described in Section 3.1, the third
order polynomial model (Eq. 2) is used to approximate the
MFD.

Figure 4a presents α(t) as a function of time. It is evident
that the α coefficients do change over time. Similar notion
is observed in Figure 4b,which presents sweet spot density
and flow as a function of time. Similarly to the conclusion
that was drown from Figure 4a, the sweet spot parameters
do change over time. It is worthwhile noting the big
changes in the α coefficients and in ρ and φ. These changes
occur in the transient between the two traffic regimes, i.e.,
the two days. There are several methods to overcome this
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Fig. 3. Synthetic Traffic Data

5. CONCLUSION

In this work, we show that the Microscopic Fundamental
Diagram, MFD, while believed to be constant over time,
it does vary. The paper provides an on-line estimation
method for the MFD, using Kalman filter. Then an exam-
ple of the MFD’s dynamic estimations is presented. The
results clearly show the time-varying nature of the MFD.
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