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Abstract 
Image and video enhancement is a core enabling technology in many fields. 

Nonetheless, several important questions such as multiframe restoration, enhancement 

and analysis of video streams, acquired in time-varying and unknown system and 

environmental conditions, remain unsolved. While many methods have been proposed 

throughout the years for solving multiframe restoration problems, well-established 

restoration methods exist for situations in which all sources of blur and degradation 

are known or easily predicted. When some of the parameters are unknown, however, 

the problem becomes much more difficult. The presented research addresses the 

following challenges: (i) efficient and robust motion estimation techniques; (ii) Real 

time methods for video stabilization and super-resolution in instable, due to camera 

and environmental noise, videos; and (iii) Motion-based scene analysis and reasoning.  

At first motion estimation techniques are evaluated through a novel comparison 

framework. Based on the evaluation of these methods, an improvement, through 

numerical exact derivation, is suggested for the optical-flow class of motion 

estimation techniques.  

Evaluation of the motion field and its statistical analysis allows a reliable 

segmentation of video frames into stable and moving components and subsequently 

stabilizing images, without harming real moving objects, and improving frames 

resolution. Along with the development of real-time methods for image stabilization 

and super-resolution, the potential and limitations of utilizing the motion field of 

instable sequences for super-resolution are sought. An important part in the process of 

resolution enhancement is signal reconstruction from sparse data accumulated from 

the set of randomly displaced image frames. The method used is improved by the 

theory of discrete signal reconstruction from sparse data. 

Finally, based on the earlier stages, the accurate motion analysis along with 

image stabilization and resolution enhancement methods are utilized for providing 

means for reasoning the scene observed. This, for example, allows detection of 

irregularity of the motion in the scene. In traffic application, this corresponds to 

congestion or accidents. 

The results presented are of both theoretical and practical interest and offer new 

efficient tools for substantial improvement of infrastructure of vision-based systems in 

general and of intelligent transportation systems in particular.  
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1.  Introduction and Scientific Technological 
Background 

Many methods have been proposed and studied for solving multiframe 

restoration problems. This chapter lays the concepts and principles of the 

research that have been carried till now and outlines the works done so 

far in the field. This survey was done in the light of applications for which 

multiframe restoration is utilized, without prior knowledge about the 

degradation characteristics.  

1.1. Scope of the work 
Recent development in video acquisition hardware has increased the number of 

applications which incorporate visual components. The development of such systems 

presents several challenges, among which one of the most challenging is visual 

enhancement. The challenges are getting bigger when the enhancement task requires 

scene analysis and the inference of a semantic description of the features extracted 

from the video stream (moving regions, trajectories, etc.). Even with the advancing 

camera and digital recording technology, there are many situations in which acquired 

images or videos suffer from severe visual degradations which hamper subsequent 

tasks such as scene reasoning and learning scene semantics.  

The scope of the research described, is multiframe image restoration and 

enhancement concerned with the improvement of imagery acquired in the presence of 

time-varying degradations. The degradations can arise from a variety of factors - 

common examples include under-sampling of the image data, system aberrations and 

instabilities, and wave propagation through turbid media. Acquired images and videos 

are intended for visual analysis by a human operator. For this imagery are subjected to 

perfection and enhancement by means of digital processing. This is illustrated in 

Figure  1-1. The digital camera acquires the footage of the scene observed where the 

light propagates through a turbid instable medium. The output image is a product of a 

digital image processing of a set of images of the scene.  

As depicted in Figure  1-2, the thesis is organized as follows. Chapter  3.  

establishes a novel comparison framework for motion estimation techniques and 

demonstrates that exact numerical derivation applied to optical flow yields superior 

results for estimating motion. Statistical analysis applied to this motion is used to 
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perform segmentation of the video frames into stable and moving components for 

image stabilization and improving frame resolution through super-resolution. This is 

elaborated on in chapters  4. and  5. respectively. Interpolation of data scattered due to 

randomly displaced image frames, completes the super-resolution process. To this 

end, the theory of discrete signal reconstruction from sparse data is formulated. 

Finally, the results of motion field analysis are applied to detect irregularity of scene 

motion with application to traffic. This is done through the evaluation, from traffic 

videos, of traffic flow theory parameters using the motion estimation, segmentation, 

stabilization and resolution enhancement methods developed within the scope of this 

thesis. 

Observed Scene Data acquisition System Multi‐frame image data

Digital Signal Processing

Propagation Medium

Restored Image(s)Human Observer  

Figure  1-1 - A general scenario in which multiframe data are recorded and a restored image is 

produced through digital image processing. 

Motion Estimation

Improved Optical Flow Accuracy 
through Precise Differentiation

Novel Comparison Framework

Improved Motion Estimation

Statistical Based Segmentation of the motion field

Video Stabilization Resolution Enhancement

Sparse Data Interpolation

Discrete Sampling Theorem

Applications

Applications in Traffic Scenarios
 

Figure  1-2 – Thesis road map 
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1.2. Image Acquisition through Turbid Media 
Ideally, image quality in any acquisition systems would be limited only by the 

optical setup used. However many applications the major cause for image distortion is 

turbid propagation medium. Turbulence causes spatially and temporally chaotic 

fluctuations in the index of refraction of the propagation of which the light propagates 

through [1,2]. 

In long distance observation system and remote sensing applications, for 

example, light propagates long paths through the lower atmospheric regions 

(troposphere). The troposphere layer is in constant motion due to winds and local 

temperature variations [3]. These variations cause formation air pockets, which have a 

uniform index of refraction and can be modeled as spherically shaped turbulent cells 

in a range of sizes and densities (referred to as “turbulent eddies”). This causes small 

neighborhoods in the image sequences to chaotically move in different directions in 

different frames. Endoscopy [4] or underwater photography [5], where video is 

acquired through liquids, define another class of applications that imagery might be 

subjected to turbulence degradations.  In all these cases, videos captured by optical 

sensors in the presence of turbulence are very unstable and degraded in their 

resolution and geometry. Visual analysis of such wavering output makes reliable 

detection and tracking of moving objects is practically impossible. This strongly 

motivates development of real-time methods for stabilization of turbulent videos. 

Astronomical systems also suffer from atmospheric turbulence. In astronomical 

systems, the observed scene has a narrow field of view. Therefore the turbulence 

effect can be modeled by the convolution of the entire frame with a single, though 

random, point spread function (PSF). Adaptive optics methods were suggested for 

dealing with turbulence in astronomical imaging systems [6,7], where aberrations 

induced by the atmosphere were compensated using mechanical means. Classical 

adaptive optics, which uses a single deformable mirror, provides correction for a 

limited field of view (FOV).  

Unlike astronomical systems, the images in the tasks described above, can be 

modeled by convolution of raw images with a space variant, pseudo-random PSF [8]. 

Therefore an adaptive optics solution for large FOV is desirable. Larger FOV 

corrections can be achieved by several deformable mirrors optically conjugated at 

various heights [9,10]. With that, multi-conjugate adaptive optics techniques require 
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complex structure and reconstruction processes, which make them unsuitable for 

operational systems. 

Some methods for turbulence distortions compensation of images acquired 

through turbulence suggest finding the Modulation Transfer Function (MTF) of the 

observed scene and inverse filtering the output image to obtain turbulent free images 

[11,12,13]. Extracting the MTF from the video sequences requires some particular 

knowledge of the image content beforehand.  

Naturally, atmospheric turbulence effects evolve with time. This evolution is 

characterized by a correlation time, cτ . Qualitatively we can think of the atmosphere 

as generating a new field perturbation realization every cτ  second. If an imaging 

system exposes the image plane detector for a large number of atmospheric 

correlation times, the image is called a long exposure image. Short exposure imaging 

refers to the situation in which the exposure time is short enough to freeze the effects 

of the atmosphere, typically about a few milliseconds. Short exposure images were 

found to have a significantly different character than long exposure images. In 

particular, the short exposure images were broader than the point spread function of 

the optics alone, possessing high spatial frequency modulation not present in long 

exposure images. Further, the centroid of the intensity of the short exposure images 

was observed to move randomly about the image plane [14]. The problem of restoring 

images, degraded by motion blur, in long exposure systems, has been previously 

addressed in [15,16], where Hadar et al. formulated the mathematical expression of 

the degrading MTF. This work addresses scenarios where the camera is mechanically 

vibrating. Mechanical vibrations are typically characterized by swift and abrupt 

motion, with respect to the acquisition system’s frame rate, hence long exposure 

conditions. Turbulent motion, on the other hand, is typically characterized by slow 

and moderating changes and therefore regarded as short exposure systems. In cases, 

where the acquisitioning conditions, do allow the system to be regarded as short 

exposure system, applying the inverse filter of the MTF described in [15,16], after 

applying the  stabilization methods unfolded within the scope of this research, might 

improve the visual output. This is issue is also relevant when we consider resolution 

enhancement limitations, as described in Sect.  5.5. 

Recently, several consumer and professional digital cameras incorporate anti-

shake mechanisms. Those are using one of the following stabilization principles: 

(a) Digital image correction 
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The camera motion is estimated from the digital input images captured by the 

camera and the movement correction is performed by digital processing of the camera 

images. The digital image correction methods can be classified into two groups: (i) 

full digital image correction, which is used in consumer video cameras [17] and (ii) 

video coding algorithms [18]. The first group deals only with compensation of certain 

types of translational image motion at rather low accuracy. The latter group uses more 

sophisticated algorithms, which can remove full first-order (affine) deformations 

between images in a sequence and assemble these aligned images within a single 

reference coordinate system to produce an image mosaic. The advanced algorithms 

applied, such as pyramid-based motion estimation and image warping [19] or fuzzy 

adaptive Kalman filtering [20], allow even subpixel accuracy, but require advanced 

processing hardware. 

(b) Sensor based image correction 

The camera motion is assessed with an external motion sensor and the movement 

correction is performed by digital processing of the camera images. The sensor-based 

image correction suffers from the fact, that the motion sensor is normally non-

collocated with the actual image sensor. Therefore any mechanical distortions 

(misalignment, structural deformations, vibration) result in image motion 

measurement errors, which affect the final quality of the corrected image. 

(c) Opto-mechatronic stabilization  

The camera motion is compensated by a mechanically driven optical system. The 

opto-mechatronic stabilization requires a motion sensor and a mechanical actuator. 

This is a disadvantage in aspects of camera-size and power consumption. In addition, 

the system can not help for blurs caused by moving objects.  

More recent digital image processing methods for turbulent video stabilization 

were suggested in [21,22]. The principal idea is to use, for reconstructing distortion 

compensated image frames, an adaptively controlled image re-sampling method based 

on the estimate of image local displacement vectors. Using those concepts, turbulence 

compensation algorithms which preserve genuine motion in the scene were suggested 

in [23,24,25]. However, those methods are computational complex and not suitable 

for real-time applications.  

Most of known methods dealt with turbulence compensation by optical means. 

However, adaptive optics methods, as described earlier, are not adequate for long 

distance observation systems. Mentioned MTF methods, on the other hand, require 
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some prior knowledge about the scene that might not be available, and cannot cope 

with space variant distortions. The digital image processing techniques, presented, are 

not suitable for real-time applications.  

1.3. Resolution Enhancement and Super-
resolution 

Super-Resolution (SR) is a general term for a set of methods for increasing image 

(or video) resolution. Most of SR techniques are based on the fact that no real 

observation platform can be absolutely stationary; hence consequent frames can differ 

also due to small local or global instabilities in the image plane caused by 

unsteadiness, such as atmospheric turbulence, in light propagation media. At the same 

time, the video frames usually contain information on stable scenes, which is not 

supposed to change from frame to frame. Therefore observed image instabilities can 

be, if properly evaluated, used for enhancing image resolution beyond the limits 

defined by the acquisition camera sampling ratio.  

Generally, SR techniques can be divided into three main stages:  

• Determination with sub-pixel accuracy the location of every pixel in each low-

resolution (LR) frames; this can be done by applying an optical flow or a motion 

estimation algorithm to the input LR video.  

• Accumulation of the data to a new image to obtain an up-sampled image.  

• Interpolation of the new image for obtaining a complete image and to remove 

aliasing.  

SR principles and general multi-channel image recovery are detailed in the works 

of T. J. Schultz [1], S. Srinivasan  and R. Chellappa [26], Galatsanos, Wernick and 

Katsaggelos [27] and R.R. Schultz [28]. Several researchers treat the problem of high 

resolution image recovery by designing an efficient multiframe filtering algorithms, 

that account for both intra-frame (spatial) and inter-frame (temporal) correlations, for 

restoring image sequences that are degraded both by blur and noise [29,30]. Others 

have formulated solutions to global motion problems, usually from an application 

perspective [31,32,33,34,35,36,37,38,39,40,41,42]. These can be broadly classified as 

feature-based and flow-based techniques.  

Feature-based methods extract and match discrete features between frames, and 

the trajectories of these features are fit to a global motion model. In flow-based 



Tel-Aviv University 
The Iby & Aldar Fleischman - Faculty of Engineering 
Department of Electrical Engineering – Physical Electronics  
 

 - 7 - 

algorithms, the optical flow of the image sequence is an intermediate quantity that is 

used for determining the global motion. 

Irani and Peleg [33], suggested a SR algorithm based on registration of several 

images and projecting their shifted samples into a new “initial guess” to create a SR 

image. SR for infrared image using global motion is presented in [34], where the 

forward looking infrared (FLIR) array detector is located on a moving object such as a 

car or an aircraft. In the latter image registration is used to place all the samples on a 

new grid and produce super resolved image. Other SR methods who rely on global 

motion (non-stationary camera) and image registration can be found in [39,41,42].  

A different kind of SR obtained from multiple images, this time through zooming 

instead of motion was suggested by Li [43]. In his work, the input LR frames are 

images of the same object zoomed. In each frame, the samples are slightly taken in 

different position. Fusing all those samples to a new denser grid creates a “synthetic 

zoom” image. Resembling idea was introduced by Nayar et al. who proposed the 

“jitter camera” for achieving super-resolution [44]. This video camera that samples 

the space-time volume at different locations without introducing motion blur. This is 

done by instantaneously shifting the detector (e.g., CCD) between temporal 

integration periods, rather than continuously moving the entire video camera during 

the integration. 

The impact of image wrapping methods on the quality of image resolution 

enhancement was studied by Chiang and Boult [45]. Image warping requires the 

underlying image to be “resampled” at non-integer locations; hence, it requires image 

reconstruction. When the goal of warping is to produce output for human viewing, 

only moderately accurate image intensities are needed. In these cases, techniques 

using bi-linear interpolation have been found sufficient. However, as a step for 

applications such as super-resolution, the precision of the warped intensity values is 

often important. For these problems, bi-linear image reconstruction may not be 

sufficient. To this end, a warping approach, based on the integrating resampler [46] 

which warps the image while both enforcing the underlying image reconstruction and 

satisfying the imaging consistent constraint [47], was suggested. The imaging 

consistent constraint requires that the image reconstruction yields a function which, 

when convolved with the imaging system’s point-spread function (PSF), is consistent 

with the input image.  
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In applications where the acquiring is held under turbulent conditions, the image 

sampling grid defined by the video camera sensor can be considered to be chaotically 

moving over a stationary image scene. As described in  1.2, in turbulence-degraded 

videos, consequent frames of a stable scene differ only due to atmospheric turbulence-

induced local displacements between images. This phenomenon allows generating 

images of such scenes with larger number of samples than that provided by the 

camera if consecutive image frames are combined by means of their appropriate re-

sampling. Resolution enhancement from turbulent videos was investigated by 

Charnotskii [48] who showed preliminary feasibility for SR in physical experiments 

taken under laboratory conditions. These experiments, based on taking photos of an 

object through turbulent medium, showed a certain potential for SR by using multiple 

turbulence distorted frames. Fraser el al. [49, 50] have suggested similar method for 

increasing image resolution by using turbulence distorted videos. In their work, the 

SR image is obtained by first creating relatively blurred reference frame of temporal 

average over the LR distorted frames, and then calculating the local shifts between 

each LR frame and the reference frame using local correlation or optical flow. Then, 

the reference frame is re-calculated using the corrected frames, and the process is 

repeated iteratively. This suggested algorithm requires high system resources and is 

not suitable for real time applications. Also, no interpolation method is used to 

remove all the aliasing and convergence is not discussed. 

1.4. Sparse Data Interpolation 
An important part of the process of resolution enhancement is signal 

reconstruction from sparse data accumulated from the set of randomly displaced 

image frames. The theory of discrete signal reconstruction from sparse data is 

addressed in a number of publications. In this chapter, the discrete sampling theorem 

is formulated.  

Images are usually represented in computers in a form of samples on a uniform 

rectangular sampling grid. However, in many applications, sampled data are collected 

in irregular fashion and/or it may frequently happen that some samples of a regular 

sampling grid are lost or unavailable. In these cases, it is required to convert 

irregularly sampled signals to regularly sampled ones or restore missing data. Typical 

examples are filtering “salt &pepper”-type noise in images transmitted through 

communication channels with error detection coding; reconstruction of surface 
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profiles from sparse data; wave front profile reconstruction from interferometric data 

in geophysics and optical metrology; restoration of image sequences acquired in the 

presence of camera or object vibrations or through a turbulent medium, and image 

super-resolution from multiple chaotically sampled frames, to name a few.  

There are two approaches to treat this problem. One approach is empirical in 

nature and is based on simple numerical interpolation procedures. For example, in 

Shepard’s interpolation method, which is one of the first methods for interpolating a 

2D irregularly sampled signal, a missing image sample is recovered by a weighted 

interpolation of close known samples [51]. The weights are inversely proportional to 

the distance of the samples from the missing one. Hence, closer samples will have 

larger weights and will be more influential in determining the missing samples. A 

review of these methods can be found in [52].  

The second approach is based on generalizations of the classical uniform 

sampling. It is assumed that the given samples are obtained from a continuous signal 

that belongs to a certain approximation subspace M (e.g., band-limited signals, splines 

subspaces, etc.) of the parent Hilbert space (usually,  2L  Hilbert space of finite energy 

functions). An interpolation procedure has to determine a continuous signal that 

satisfies two constraints:  1) the signal has to be in the subspace M and 2) its values 

are equal to the given samples in the same positions. Conditions for existence and 

uniqueness are dependent on the signal model (underlying approximation subspace) 

and the set of given samples.  For the band-limited case, Landau proved that a 

necessary and sufficient condition for the unique reconstruction of a continuous band-

limited 1D signal with bandwidth W from its irregularly spaced  samples is that the 

density of its samples should exceed the Nyquist rate W/1 [53].  It is also shown that 

this condition is necessary for D -dimensional signals with band limited Fourier 

spectrum. These results have been generalized to other shift-invariant subspaces by 

Aldourbi and Grochenig [54]. A comprehensive presentation of this approach can be 

found in [55]. Continuous band-limited signal reconstruction requires, however, an 

infinite number of samples. In addition, the sinc function used in the interpolation 

process is slowly decaying.  Splines subspaces have proved to be an attractive 

alternative approximation model [56]. However, due to their localized nature, their 

use is limited for the recovery of large gaps in data. A practical numerical algorithm 

for interpolation and approximation of 2D signals based on multilevel B-Splines is 

given by Wolberg et al. [57]. The algorithm approximates 2D functions from sparse 
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data by an iterative procedure based on lattice control points. At each iteration, the 

values of available samples are preserved (if possible) or approximated. At the next 

iteration, a denser grid of control points is created to approximate the reconstruction 

error, and the process continues iteratively. Similar Spline-based algorithm was 

suggested by Margolis and Eldar [58] which uses, for interpolation, non-uniform 

Splines.  

Hasan and Marvasti have suggested a method for recovery of missing samples, in 

the DCT transform domain [55]. In Ref. [59], the problem of nonuniform sampling in 

Fourier domain in multidimensional polar coordinates is addressed in connection with  

image reconstruction from projections. In yet another publication [60] Averbuch and 

Zheludev discuss image reconstruction from projections with omissions using 

biorthogonal wavelets over-complete bases functions. 

While a significant amount of research was put on this class of problems, each of 

these methods discussed the approximation of discrete signals, specified by their 

sparse samples, with respect to one or two signal representation basis functions. 

Hence, no generalize framework has been formulated to describe all methods by 

coherent formulation.  

1.5. Intelligent Transportation Video Systems 
Applications 

Visual surveillance for traffic systems requires short processing time, low 

processing cost and high reliability [61]. Under those requirements, image processing 

technologies offer a variety of systems and methods for Intelligence Transportation 

Systems (ITS) as a platform for traffic Automatic Incident Detection (AID). An 

extensive survey of the methods can be found in [62]. According to different traffic 

data sources, there exist two classes of AID methods mainly studied: one is based on 

inductive loops, radars, infrared sonar and microwave detectors [63] and the other is 

based on video images [64]. The first class of methods suffers from drawbacks in that 

they are expensive to install and maintain and they are unable to detect slow or 

stationary vehicles. Video sensors, on the other hand, offer a relatively low 

installation cost with little traffic disruption during maintenance. Furthermore, they 

provide wide area monitoring allowing analysis of traffic flows and turning 

movements, speed measurement, multiple-point vehicle counts, vehicle classification 

and highway state assessment, based on precise scene motion analysis.  
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The vast majority of traffic videos analysis methods segment the motion field 

into objects’ trajectories. Hence, scene’s motion reasoning is achieved by aggregating 

the specific objects’ motion information [65,66,67,68]. The different trajectories are 

then analyzed to detect slow motion, swift changes in speed or trajectories 

interference for generating alerts.  

Examination of each individual object’s motion in the scene is a complicated 

task, which might be not practicable under real-time constrains. When the acquired 

scene is a complex enough, as, for example, highway interchange or junctions, those 

problems become a real obstacle on the way to real-life implementations. Some of the 

methods and real life applications try to overcome this problem by limiting the 

examination area in the image to a single line or small neighborhood defined by the 

user [66]. The shortcoming of those solutions is that events outside those areas will 

not be detected. Additionally those methods are fundamentally limited by the 

accuracy that can be achieved by the motion estimation method used. The latter 

problem can be dealt with by regarding the entire motion field rather than the different 

vehicles’ trajectories. A recent work has suggested analyzing the entire motion field 

by wavelet decomposition and not by motion segmentation [69]. However the rigid 

structure of the wavelet basis functions might not be appropriate for the task in hand.  

Traffic models, which describe the relationship among traffic stream 

characteristics, such as flow, speed and concentration, are the foundations of traffic 

research for the last 40 and 50 years [70]. Those models consist of mathematical 

micro- and macroscopic description of road conditions. While a consolidate traffic 

theory is available, none of the image processing techniques, presented for traffic 

analysis problems, has suggested utilizing traffic flow models into traffic video 

systems. 

1.6. Outline of the Thesis 
The presented research focuses on developing restoration, enhancement and 

analysis methods for processing, in real-time, video streams, acquired in time-varying 

and unknown system and environmental conditions, in order to allow better 

presentation and characterization of the actions taking place and, in particular, to infer 

whether they present a threat that should be signaled. While many methods have been 

proposed throughout the years for solving multiframe restoration problems, well-

established restoration methods exist for situations in which all sources of blur and 
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degradation are known or easily predicted [1,29,71,72,73,74,75,76]. When some of 

the parameters are unknown, however, the problem becomes much more difficult 

because, in addition to the object intensity, the unknown system parameters must also 

be estimated. This problem is also referred to as the blind multiframe restoration 

problem. The mathematical foundations of the multi-frame restoration problem are 

given in Chapter  2.  

Efficient real motion extraction is mandatory for successful restoration and 

resolution enhancement and reliable scene reasoning. Numerous motion estimation 

techniques have been suggested for this goal in the last 20 years 

[77,78,79,80,81,82,83,84,85,86,87,88,89] to name a few. One of the goals of this 

research is the evaluation of these techniques and, based on this to develop one robust 

enough to atmospheric and optical noise and noise caused by vehicle or camera 

movements. Nowadays, motion estimation methods’ accuracy is tested on very few 

“ad hoc” test sequences [90] with no quantitative evaluation framework [91]. Those 

commonly used sequences do not necessarily represent typical scenarios. 

Additionally, those methods are not oriented to work under real-time constrains. This 

is elaborated, in Chapter  3.  

One common type of applications where multi-frame restoration is utilized is 

remote sensing (see Sect.  1.2). In the presented research, digital image processing 

techniques are further elaborated and improved upon in order to obtain turbulence 

compensation under real-time constrains. This is thoroughly described in Chapter  4.   

As described in Sect.  1.3, turbulent degraded video sequences are suitable 

candidates for SR applications. The idea of making a profit from atmospheric 

turbulence-induced image geometrical spatial/temporal degradations to compensate 

image sampling artifacts and for static and dynamic SR applications (for the definition 

of static and dynamic SR see [92]), is elaborated in Chapter  5. Additionally, Chapter 

 5. addresses the fundamental question “What can be achieved?” or “What are the 

potentials and limitations of SR under different constraints, such as number of input 

frames, camera’s PSF, etc. [93].  

Chapter  6.  addresses signal reconstruction from irregular samples and elaborates 

a new approach to the problem of optimal recovery of signals from irregularly 

sampled or sparse data.  

Finally, the motion fields and the stabilization and resolution enhancement 

algorithms are evaluated to provide means for reasoning the scene observed for 



Tel-Aviv University 
The Iby & Aldar Fleischman - Faculty of Engineering 
Department of Electrical Engineering – Physical Electronics  
 

 - 13 - 

detection of irregularity of the motion in the scene. The utilization of accurate motion 

analysis along with classical traffic theory in video-based traffic systems allows both 

improving system performance as well as giving tools for traffic researchers. Chapter 

 7. presents traffic applications for the technology developed within the scope of this 

research and the great potential of integration of classical traffic flow models into 

video-based intelligent transportation systems. 

The results have been achieved in the above line of work are of both theoretical 

and practical interest since they contribute to further development of advanced video 

processing methods and, specifically, offer new efficient tools for substantial 

improvement of infrastructure of vision-based intelligent traffic systems for traffic 

monitoring and alerting on traffic anomalies and law enforcement. The discussion can 

be found in Chapter  8. Conclusions are formulated in Chapter  9.  
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2.  Mathematical Formulation 
This chapter lays the mathematical formulations of the multiframe 

restoration problem. First it defines the environment time-varying and 

system’s sampling modulation transfer functions. Then, the mathematical 

depiction of the restoration problem for those systems is formulated. This 

formulation shows that under reasonable set of assumptions, the 

turbulence compensation problem and the resolution enhancement 

problem can be described through the same mathematical formulation. 

This important conclusion is exploited in subsequent chapters. 

2.1. Notations and Preliminaries 
Both continuous and discrete representations of motion and images will be used. 

Let ( )τυξφ ,,=
r

 be a spatial-temporal position of a pixel in a continuous coordinates, 

i.e. 3R∈φ
r

 within image limits, and let I denote image intensity. Image intensity, 

( ) RI ∈φ
r

, is referred to as a nonnegative function that represents an object’s ability to 

reflect or emit light (or other electromagnetic radiation) and is limited by the dynamic 

range of the sensing device (e.g., CCD). The continuous signal’s transform domain 

spatial coordinates are given by ( )υξ ff , .  

Before images can be manipulated digitally, they have to be sampled and 

quantized. Let ( )tyxp ,,=
r  be a discreted spatial-temporal position in the image that 

corresponds toφ
r

. The triplet ( )tyx ,,  belongs to a 3-D sampling grid, for example a 3-

D lattice. The same symbol I is used for continuous and quantized intensities; the 

nature of I can be inferred from its arguments. The discrete signal’s transform domain 

spatial coordinates are given by r and s. 

Motion can be described by a velocity vector ( )yx vvv ,=
r , whereas ( )pv rr is a 

velocity at position pr and tvr denotes a velocity or motion field, hence the set of all 

velocity vectors within the image, at frame t. 

2.2. Acquisition Systems’ Transfer Function 
The imaging problems discussed within the scope of the research, all involve the 

detection and processing of electromagnetic fields after reflection or emission from a 
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remote object or scene. Furthermore, the applications considered here are all 

examples of planar incoherent imaging, wherein the object or scene is characterized 

by its incoherent reflectance or emission function I . The central task of a multiframe 

image restoration problem, then, is the estimation of this intensity function from a 

sequence of noisy, blurred images. The need for image restoration is, in general, 

motivated by two factors: (i) detector sampling; and (ii) system and environmental 

deformations. These two stages of image formation are described in the proceedings 

sections. 

2.2.1. System and Environmental Transfer Function 
In all imaging applications, the signal available for detection is not the image 

intensity I. Instead, I is blurred by the imaging system, and the observed signal is: 

( ) ( )( ) ( ) uduIuhI e
rrrrr

∫= τθφτφ ;,,  ( 2-1) 

where ( )( )τθφ ;,uhe
rr

denotes the time-varying system and environmental PSF; 

( )21,uuu =
r is a two-dimensional spatial variable in the aperture plane ; ( )φrI denotes the 

time-varying resulted continuous-domain intensity; and ( )τθ denotes a set of time-

varying parameters that determine the form of the PSF.  In optical systems 

( )( )τθφ ;,uhe
rr

 is affected by the system’s diffraction, optical aberrations and the 

heterogeneity of the propagation medium.  

Wave propagation through an inhomogeneous medium, such as turbid media, 

induces image distortions, due to the medium’s refractive index. When taking the 

system’s diffraction and optical aberrations into consideration, turbid medium’s 

transfer function can be modeled in the following manner [2]: 

( )
( ) ( )

2

,
2

0)( ∫ =
⋅−

= udeeuAh uj
u

f
j rrr r

rr

ττθ
φ

λ
π

φ  ( 2-2) 

where ( )uA r is the system’s aperture function, λ is the nominal wavelength of the 

detected radiation, and f is the system focal length [94]. The notation φ
rr

⋅u denotes the 

inner product operation, and it is defined for two-dimensional variables as: 

υξφ 21 uuu +=⋅
rr  ( 2-3) 
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Finally, ( )urθ  is the aberration function which can vary with time. We will model 

the system and environmental PSF as the (possibly) space-variant function )(φ
r

h , and 

note that this model captures diffraction, system aberrations, time-varying translations 

and rotations, and environmental distortions such as turbulence. The parameter ( )urθ , 

may be a simple vector parameter, or a more complicated parameterization of a three-

dimensional function. Very frequently ( )urθ , will not be well known or predicted, and 

the identification of this parameter can be one of the most challenging aspects of a 

multiframe image restoration problem. 

2.2.2. Sampling Transfer Function 
The detection of imagery with discrete detector arrays results in the measurement 

of the (time-varying) sampled intensity:  

( ) ( ) φφφ
rrrrr

∫= dphIpI s ,)(  ( 2-4) 

where ( )φrI is the observed object, ( )phs
rr

;φ  is the sampling device’s transfer function 

of each point in the image and ( )pI r is the discrete-domain intensity that results from 

sampling of the continuous domain.  

The response function, ( )phs
rr

;φ , for most digital cameras is often of the form: 

( )
⎪⎩

⎪
⎨
⎧

Ω∉
Ω∈

=
p

p
s ph

r

r

r

r
rr

φ
φ

φ
,0
,1

,  ( 2-5) 

where prΩ , denotes the spatial region of integration for the detector element located at 

pr . The regions of integration for most detectors are typically square or rectangular 

regions centered about the detector locations. 

2.2.3. The Combined Modulation Transfer Function 
The combined effects of blur and sampling are modeled as: 

( ) ( )( ) ( )
( ) ( )( )[ ] ( )

( )( ) ( )∫
∫ ∫
∫ ∫

=

==

==

uduIuph

uduIduhph

duduIuhphpI

es

es

rrrr

rrrrrrr

rrrrrrrr

τθ

φτθφφ

φτθφφ

;,

;,,

;,,)(

 ( 2-6) 
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where ( )( )τθ;,uph rr  denotes the mixed-domain (continuous-discrete) PSF and is given 

by: 

( )( ) ( ) ( )( )∫= φτθφφτθ
rrrrrrr duhphuph es ;,,;,  ( 2-7) 

2.3. The Restoration Problem 
Stated simply, the restoration problem is one of estimating the image intensity 

( )pI r from the multiframe data set ( ) ( ){ }KtyxppI ,...,4,3,2,1,,; ==∀
rr . Statistical 

inference problems such as those encountered in multiframe image restoration are 

frequently classified as ill-posed problems [95]. An image restoration problem is ill 

posed, in the classical sense of Hadamard, if it does not have a unique solution. 

Multiframe image restoration problems that are formulated on infinite-dimensional 

parameter spaces are almost always ill posed, and their ill-posed nature is usually due 

to the discontinuity of the solution. Problems that are formulated on finite-

dimensional spaces (as ours is here) are frequently well posed. However, these 

problems are usually ill conditioned or badly behaved and are frequently classified as 

ill posed even though they are technically well posed. 

For problems that are ill posed or practically ill posed, the original problem's 

solution is often replaced by the solution to a well-posed (or well-behaved) problem. 

This process is referred to as regularization, and the basic idea is to change the 

problem in a manner such that the solution is still meaningful but no longer badly 

behaved [96]. The consequence for multiframe restoration problems is that we do not 

seek to match the measured data perfectly. Instead, we settle for a more stable - but 

inherently biased - image estimate. 

In situations where the parameters ( )τθ  that characterized the MTF functions are 

time-varying and unknown or not easily predicted, the unknown parameters must be 

eliminated or estimated. Previously suggested methods for solving such multiframe 

blind restoration problems, have been tailored for specific blur models. In many cases 

it is assumed that the data collection interval for each frame is short compared with 

the fluctuation time of the parameter τ, so that each frame is recorded with temporal-

wise constant transfer function, ( )( )0;, ττθ =uph rr  as in ( 2-2). This suggests that image 

degradations due to the turbulence effect manifest themselves in image geometrical 

local deformations, rather than motion blur. In the light of this, ( 2-1) can be written in 

the following format: 
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( ) ( )( ) ( )( )( ) ( )∫ =Δ+⋅=−= − uduIuRAhI rrrrr
00

1 ττττφφ  ( 2-8) 

where ( )0ττ =Δ represents a two-dimensional translation on the aperture plane at time 

0τ , and  

( ) ( ) ( )
( ) ( ) ⎥⎦

⎤
⎢
⎣

⎡ −
=

ττ

ττ

αα
αα

τ
cossin
sincos

R  ( 2-9) 

is a time-varying rotation matrix (at angle τα ), representing the translations and 

rotations between the sensor and the scene at time 0τ .  

So the shift variant PSF can be written as: 

( ) ( )( ) ( )( )( )00
1 ττττφφ =Δ+⋅=−= − uRAhh rrr

 ( 2-10) 

and the parameters characterizing the PSF are then ( ) ( ) ( )( )ταττθ ,Δ= .  

While equation ( 2-10) was derived for turbulent scenarios, it resembles the PSF 

of micro-scanning applications [1]. Micro-scanning systems introduce small 

controlled global movements of the scene observed on the aperture plane. Those 

systems are designed to produce images with higher spatial resolution than that 

defined by the camera sampling grid. Following this notion, one can derive that the 

core base of the SR techniques designed for micro-scanning applications can be 

utilized, with the proper adjustments, in systems subjected to turbulence noise.  
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3.  Motion Estimation in Videos 
Efficient real motion extraction is mandatory for the success of the 

subsequent task: stabilization, resolution enhancement and video analysis. 

This chapter describes the fundamentals of motion estimation techniques 

and evaluates these techniques. Nowadays, motion estimation methods’ 

accuracy is tested on very few “ad hoc” test sequences. In this chapter a 

novel, more general, comparison framework is presented. Finally, an 

innovative approach for achieving improved optical flow accuracy 

through precise differentiation is suggested.  

3.1. Motion Estimation Techniques 
A video sequence is a much richer source of visual information than a still image. 

This is primarily due to the capture of motion; while a single image provides a 

snapshot of a scene, a sequence of images registers the dynamics in it. Motion is 

important for video processing and compression for two reasons. First, motion carries 

a lot of information about spatiotemporal relationships between image objects. This 

information can be used in such applications as traffic monitoring or security 

surveillance, for example to identify objects entering or leaving the scene or objects 

that just moved. Secondly, image properties, such as intensity or color, have a very 

high correlation in the direction of motion, i.e., they do not change significantly when 

tracked in the image (the color of a car does not change as the car moves across the 

image). This can be used for the removal of temporal video redundancy; in an ideal 

situation only the first image and the subsequent motion have to be transmitted. It can 

be also used for general temporal filtering of video. In this case, one-dimensional 

temporal filtering along a motion trajectory, e.g., for noise reduction or temporal 

interpolation, does not affect the spatial detail in the image. 

The above applications require that image points be measured how they move, 

this task is commonly referred to as motion estimation. Note that only two-

dimensional (2-D) motion of intensity patterns in the image plane, often referred to as 

apparent motion, are considered. Three-dimensional (3-D) motion of objects, on a 3D 

model space, is not treated.  
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Methods explicitly reducing the number of bits needed to represent a video 

sequence will be referred to as video compression techniques. For example, motion 

compensated hybrid (predictive/DCT) coding is exploited today in all video 

compression standards, i.e., H.261, H.263, MPEG-1, MPEG-2, MPEG-4. In contrast, 

methods that do not attempt such a reduction but transform the video sequence, e.g., 

to improve quality, will be considered to belong to video processing methods. The 

discussion of motion in this chapter will be carried out from video processing point of 

view. 

The above classification is important from the point of view of the goals of 

motion estimation, which in turn influences the choice of models and estimation 

criteria. In the case of video compression, the estimated motion parameters should 

lead to the highest compression ratio possible (for a given video quality). Therefore, 

the computed motion need not necessarily resemble the true motion of image points 

as long as some minimum bit rate is achieved. In video processing, however, it is the 

true motion of image points that is sought. Two families of motion estimation 

methods are available: block matching [77-83] and optical flow [84-89]. The 

principals of those techniques are detailed in Sect.  3.2 and Sect.  3.3, correspondingly.  

3.2. Block Matching Methods 
The underlying supposition behind motion estimation is that the patterns 

corresponding to objects and background in a frame of video sequence move within 

the frame to form corresponding objects on the subsequent frame. The idea behind 

block matching is to divide the current frame into a matrix of ‘macro blocks’ that are 

then compared with corresponding block and its adjacent neighbors in the previous 

frame to create a vector that stipulates the movement of a macro block from one 

location to another in the previous frame. This movement calculated for all the macro 

blocks comprising a frame, constitutes the motion estimated in the current frame. The 

search area for a good macro block match is constrained up to a certain number of n 

pixels on all fours sides of the corresponding macro block in previous frame. This n is 

called as the search parameter. Larger motions require a larger n, and the larger the 

search parameter the more computationally expensive the process of motion 

estimation becomes. Usually the macro block is taken as a square of side 16 pixels, 

and the search parameter n is 7 pixels. The idea is represented in Figure  3-1. The 

matching of one macro block with another is based on the output of a cost function. 
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The macro block that results in the least cost is the one that matches the closest to 

current block. There are various cost functions, of which the most popular and less 

computationally expensive is Sum of Absolute Difference (SAD) given by equation 

( 3-1). Another cost function is Mean Squared Error (MSE) given by equation ( 3-2). 

( ) ( )∑
Ω∈

−=
p

pIpISAD
r

rr '  ( 3-1) 

( ) ( )( )∑
Ω∈

−=
p

pIpI
N

MSE
r

rr 2
2 '1  ( 3-2) 

where N is the size of the macro block and a ( )pI r and ( )'pI r is the intensity levels in a 

corresponding neighborhoods Ω in two sequential frames. 

Current Macro 
Block

Search Block

Frame (t+1)Frame (t)

Block Size

n

 

Figure  3-1 – Block matching – a macro block is extracted from a given frame and is searched 

within a search block in the previous frame. The parameter n determines the size of the search area. 

Recently several new block-matching high efficiency algorithms were presented 

[80-83]. Those methods, by applying certain assumption on of the error function, such 

as smoothness and global minima, reduce the computational complexity. The number 

of checking points, examined within the search area, is reduced using efficient 

checking patterns, such as diamond or spiral. Additionally these techniques suggested 

several highly likely predictors. Finally, by introducing very reliable early-stopping 

criteria, the search is terminated before all sampling points’ error needs to be 

computed. However, those improved techniques, as described in Sect.  3.1, are 

designed for achieving higher compression rate and in many cases those 

enhancements result in noisier motion field. In compression tasks, commonly, this 
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motion estimation noise is dealt with in subsequent processing stages. In applications 

where motion estimation is the goal, additional processing or adjustments are 

required. Figure  3-2 depicts MPEG-4 motion field computed for a real-life video 

stream. Figures (b) is the motion field of the frame, presented in figure (a) and its 

subsequent one, computed using diamond search block matching algorithm [80] 

which commonly used in MPEG-4 codecs. The marking on figure (b), were added 

manually and represents the car’s position. As one can see, while the car’s motion is 

noticeable, there is a significant amount of additional false detection in the scene.  

Figure  3-2 – MPEG-4 block matching based motion extraction. Figure (b) represent the motion field 

computed for the frame presented in figure (a) and its following one. The motion field was computed 

by the diamond search block matching algorithm, which is commonly used in MPEG-4 codecs. The 

dotted line was artificially placed on figure (b) to show the car’s position on the motion field 

representation.  

 

(a) 

 

(b) 
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3.3. Optical Flow Methods 
Estimation of local motion in a set of images, which is based upon local 

derivatives, is commonly referred to as optical flow [84-89]. The basic principle of 

optical flow computation can be described as follows. During time interval τΔ  the 

intensity level at coordinates ( )υξ ,  moves to ( )υυξξ Δ+Δ+ , . It is assumed that the 

motion causes no changes in the intensity, and the changes may occur solely due to 

random factors such as additive signal independent white Gaussian noise that can be 

attributed to image sensor.  Then, given image intensity measurements ( )φrI  

and ( )φφ
rr

Δ+I , where ( )τυξφ ΔΔΔ=Δ ,,
r

, the statistically optimal maximum 

likelihood estimation of motion vector ( )υξ ΔΔ ,   is found as the solution of the 

equation: 

( )
( )

( ) ( )[ ]
( )
∫∫
∈ΔΔ

=
Δ+−=ΔΔ

ARM

ddII
υξυξ

ττ
υξφφφυξ

,

2

,
minarg,

0

rrr
 ( 3-3) 

where ARM  is the object Area of Rigid Motion centered at the point ( )υξ , . Within 

the accuracy of Taylor expansion of the image intensity function ( )φrI , equations ( 3-3) 

can be approximated by equation ( 3-4): 

( )
( )

( ) ( ) ( )
( )

( )
( )

( )
∫∫

∫∫

∈

•

ΔΔ

∈ΔΔ
=

⎟
⎠
⎞

⎜
⎝
⎛ •=

=⎥
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⎤
⎢
⎣

⎡
Δ

∂
∂

+Δ
∂
∂

+Δ
∂
∂

=ΔΔ
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ddI

ddIII

υξυξ

υξυξ
ττ

υξφφ

υξτ
τ
φυ

υ
φξ

ξ
φυξ

,

2

,

,

2

,

minarg

minarg,
0

rr

rrr

Δ

 ( 3-4) 

where φ
r

Δ  is a vector of space-time shifts  ( )τυξ ΔΔΔ ;;  and ( )..•  is a scalar (inner) 

vector product and ( )φr•

I  is a vector of image intensity space-time derivatives:  

( ) ( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

=
•

φ
τ

φ
υ

φ
ξ

φ
rrrr

IIII ;;
 

( 3-5) 

Two original algorithms of optical flow computation, Lucas-Kanade [84] and 

Horn-Schunck [85] implement modifications of equation ( 3-5). In the Lucas-Kanade 

algorithm, a weighting window function ( )ηξ ,W  is introduced: 

( )
( )

( ) ( )
( )
∫∫
∈

•

ΔΔ
= ⎟

⎠
⎞

⎜
⎝
⎛ •=ΔΔ

ARM

ddIW
υξυξ

ττ
υξφφυξυξ

,

2

,
,minarg,

0

rr
Δ  ( 3-6) 
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while in the Horn-Schunck algorithm an additional constrain on smoothness of the 

space shift vector is introduced and integration is extended to the entire image frame 

( ImgFr ): 

( )
( )

( )
( )
∫∫
∈

•

ΔΔ
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇+⎟
⎠
⎞

⎜
⎝
⎛ Δ•=ΔΔ

ImgFr

ddI
υξυξ

ττ
υξλφφυξ

,

22
2

,
minarg,

0

rr
 ( 3-7) 

where  
2222
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ηξυξ
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 ( 3-8) 

and 2λ  is a weight parameter of the smoothness constraint 2∇ . 

Since Horn-Schunck’s and Lucas-Kanade’s works, a number of modifications of 

these basic optical flow algorithms have been proposed aimed at the improvement of 

the accuracy and reliability of optical flow computations. Most of these efforts deal 

with the problem of local minima in the optimization process, possible intensity 

variations that cannot be described by the additive normal noise model, inaccuracies 

due to image sampling and improvement of numerical optimization schemes. The 

more recent method combining together some principles from the latest research of 

the optical flow algorithms [97,98,99,100,101,102] and reporting good results belongs 

to Brox et al [87]. This method exploits the intensity constancy and motion field 

smoothness assumption as in the Horn-Schunck method, and, in addition, introduces 

an assumption of constancy of image intensity gradient. Multi-scale minimization 

strategy is used as part of the entire iterative procedure. 

The optimization functional used is: 

( )
( )

( ) ( )([{
( )

( ) ( ) ) ] ( ) } ηξεαεηξηξγ

ηξηξ
ηξ

ddtIttyxI

tIttyxItyx
ImgFryx

2/1222/122

,

2

,

,,,,

,,,,minarg,,

+∇++∇−Δ+Δ+Δ+∇

+−Δ+Δ+Δ+=ΔΔ ∫∫
∈ΔΔ  ( 3-9) 

where 2∇  as in (5), 2ε is a user defined regularization constant and γα ,  - are 

weighting parameters. In addition, a multi-scale approach is applied with inter-scale 

updating as kkk dΔ+Δ=Δ −1 , where k is a scale index, 11 ),( −− ΔΔ=Δ kk yx  is the 

displacement vector found in the previous (coarsest) scales and kdΔ   is the 

displacement increment found in the current scale. 

Some modifications of this algorithm dealing with motion segmentation were 

suggested in [86, 103]. An improvement of the numerical schemes and real time 

implementations is suggested in [104]. 
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Figure  3-3 illustrates the optical flow method in real-life scenarios. Figure  3-3(b) 

depicts the motion field between the frame illustrated in Figure  3-3(a), and its 

subsequent frame, computed by the Horm and Shunck’s optical flow method [85]. 

The motion field’s x and y components are represented by the G and B components, 

respectively, of the RGB image of figure (b), the R component is zeroed. It is clearly 

seen that while the moving cars’ motion is estimated, no noise motion is present in the 

scene.  

3.4. Comparison Framework 

Since introducing differential optical flow methods, a number of efforts to 

evaluate their performance in quantitative terms have been reported. For the 

evaluation, synthetic as well as real-life test images sequences with known optical 

flow “ground truth” were used.  

In 1994, Barron et al. [88] presented the comparison overview of the optical 

flow methods described in [84,85,105,106,107,108,109,110,111]. The methods were 

compared using computer generated image “Translating Square” and real life test 

image sequences “Translating/Diverging Tree” with computer generated motion fields 

(methods of introducing artificial shifts were not reported in the paper). In addition, a 

“Yosemite” sequence suggested in [106], for which “ground truth” motion field was 

directly measured using digital terrain map of the “Yosemite” valley.  

In 1995, M. Otte and H. Nagel suggested another test real life image sequence 

for method benchmarking [102]. The sequence was recorded with a calibrated camera 

fixed on the arm of a robot, which moves along a precisely defined 3D-trajectory. The 

original “ground truth” motion field was obtained from the camera calibration data.  

In 1998, Liu et al. examined the accuracy/efficiency tradeoffs for algorithms 

described in [84,85,105,108,109,112,113,114] using the mentioned above 

“Translating/Diverging Tree” sequences for comparison [115].  

In 1999, B. McCane et al. proposed, for generating test image sequences, 

using computer graphics methods of rendering of consecutive frame and calculation 

of the motion vectors using ray-tracing techniques to synthetic test objects [91]. The 

authors also consider an option of semi-manual measuring the “ground-truth” motion 

on certain real-life cartoon videos.   

Most of recent publications on optical flow algorithms evaluate their performance 

using the aforementioned “Yosemite” sequence (see Figure  3-4), that is now provided 
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for common use (for instance, on ftp://ftp.csd.uwo.ca/pub/vision), though no data as to 

the accuracy of the “ground truth” motion field is available. Moreover, it was found 

recently, that the “ground truth” data provided for the “Yosemite” image sequence 

are, in fact, not always perfectly correct [103]. A common drawback of using this and, 

in fact, any other particular image sequence for comparison the optical flow methods  

is that it is not clear at all to what degree a particular image sequence represent all 

image sequences to which the methods are intended. Although researchers do 

appreciate this problem, (see, for instance [116]), no suggestion to solving this 

problem has been proposed. 

  
(a) (b) 

Figure  3-3 – Optical Flow motion estimation. Figure (b) is the motion field extracted from real-

life traffic video using Horn and Shunck’s optical flow method. Figure (a) illustrates the corresponding 

frame from the traffic video sequence. The motion field’s x and y components are represented by the G 

and B components, respectively, of the RGB image of figure (b), the R component is zeroed. 

  

  
(a) (b) 

Figure  3-4 – The Yosemite ad-hoc optical-flow test sequence 
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In order to avoid those limitations and provide a firm base for comparison and 

evaluation of the accuracy of optical flow methods the following comparison 

framework was developed [117]. 

As derived from the above discussion, all optical flow methods rely on 

computing spatial derivatives of the image intensity function. As will be shown in the 

following section, the accuracy of numerical differentiation depends of the signal 

bandwidth. Therefore, in addition to the “Yosemite” image, a set of computer-

generated pseudo-random images of 256x256 pixels with uniform spectrum within a 

circular fraction of the base band defined by the image sampling rate is suggested.  

The method of generation of the images set is explained in Figure  3-5. A set of 

low-pass DCT domain filter masks is first generated. Each mask is specified by a 

parameter, α, the percentage of lower frequencies coefficients which are not filtered 

out. For example the mask which doesn’t filter any of the image frequencies 

corresponds to effective bandwidth of α=1. The masks which filter out half and 

quarter of the higher-frequency coefficients correspond to α=0.5 and α=0.75 effective 

bandwidths respectively. This set of filters is applied on a binary pseudo-random 

noise synthetic image, which takes values 1 and -1 with equal probabilities. This 

image is referred to as the set’s seed-image. Then the product of the seed image and 

low-pass filter mask is subjected to DCT transform thus producing images with 

uniform (in DCT domain) spectrum within a certain bandwidth defined by the filter 

mask. This is depicted in Eq. ( 3-10) and Figure  3-5. Figure  3-6 illustrates examples of 

such test images. 

( ) ( ){ }αα MaskLPFIDCTI seedtest ⋅=  ( 3-10) 

In order to generate sequences of shifted frames with known shifts, artificial 

shifts are introduced in the pseudo-random test images as well as in the “Yosemite” 

test image. First of all, image shifts by integer number of inter-pixel distance were 

used, which guarantied the absence of interpolation errors in the shifted test images. 

We also generated images with global sub inter-pixel distance shifts, using for this 

purpose discrete sinc-interpolation, which has been proved to be the perfect 

interpolation method for sampled data with finite number of samples [118]. 

Displacing source test images in this manner we obtain, for each specific test image, 

the consecutive frame with exactly known displacement vector for each pixel in the 

frame. 
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Figure  3-5 - The generation of the test images with known bandwidths. 

3.5. Improved Optical Flow Accuracy through 
Precise Differentiation 

An important issue in implementing and using differential optical flow 

methods is the accuracy of numerical estimation of the image derivatives. Although 

some authors did appreciate the importance of accurate computation of derivatives 

[116,119,120,121], no thorough quantitative analysis and comparison has been done.  

J.K. Kearney et al. [121] presented analysis of error sources of the gradient based 

optical flow methods with local optimization such as, for instance, for instance, Lucas 

and Kanade method [84]). In particular, this work analyses the contribution of the 

“forward difference” differentiator, which evaluates the derivative as an inverse 

difference between the current signal sample and the next one, to the overall error of 

this family of methods. Simoncelli [116] and Elad et al. [119] attempted to find the 

best matching of the differentiation kernel to the low-pass pre-filter that is commonly 

used to preprocess images in differential optical flow. Brandt [120] investigates 

influence of various aspects of the method with local optimization to its performance: 

size and weight function of the optimization window, low pass pre-filter, 
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differentiators, etc. and, in particular, discusses the impact of three commonly used 

numerical differentiation techniques on the performance of this method. 

In this section the use of DFT/DCT differentiation techniques for improving the 

accuracy of differential optical flow algorithms is suggested. This is justified by 

analytical and experimental results that demonstrate, in quantitative terms, the 

influence of the accuracy of numerical differentiation to the optical flow computation 

[117].  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure  3-6 - Examples of test pseudo-random images with different bandwidth. 
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3.5.1. Differentiation Methods 
For the evaluation of the differentiation methods impact on optical flow accuracy, 

5 standard, widely used, differentiation methods are used: D1, D2, D4 [89, 122], the 

Simoncelli Kernel [116] as well as DFT/DCT based methods (DCT and DFT) are 

compared. The first 4 methods are implemented as digital convolutions with the 

following convolution kernels: 

]1,1[1 −=Dh  ( 3-11) 

⎥⎦
⎤

⎢⎣
⎡−=

2
1,0,

2
12Dh  ( 3-12) 
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⎡ −−=

12
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12
14Dh  ( 3-13) 

[ ]108.0,283.0,0,283.0,108.0 −−=Simoncellih  ( 3-14) 

The PSF of the above numerical differentiation methods, D1, D2, D4 and 

Simoncelli are correspondingly given by:  
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DFT/DCT based differentiation algorithms were implemented as filtering in DFT 

and in DCT domains, correspondingly [118].  DFT domain numerical differentiation 

algorithm is described by: 

( ){ } ( ){ } ( ){ }( )( )xarxa diff
N

DFT FFTIFFT •= η&  ( 3-19) 

where ( ){ }xa  and ( )xaDFT&  are N samples of a signal and its derivative, 

respectively, { }( )Nx ,...,3,2,1= and 
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( 3-21) 

for even and odd values of N  respectively.  

DCT domain numerical differentiation algorithm is described by the equation: 
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( 3-22) 

The absolute values for the frequency responses for the filters described by Eqs. 

( 3-15)-( 3-18) and Eqs. ( 3-20)-( 3-22) are plotted for comparison in Figure  3-7. It is 

evident that the standard numerical differentiation methods (D1, D2, D4 and 

Simoncelli’s) tend to produce significant errors for signal with bandwidths higher 

than 0.5 of the base-band defined by the signal sampling rate, while the DFT and 

DCT domains numerical differentiation methods implement exact differentiation of 

sampled signals. The advantage of the DCT–based algorithm with respect to DFT is 

that it is substantially less vulnerable to boundary effects, which are unavoidable in 

digital filtering because of the finite number of signal samples [118].  

 

Figure  3-7 - Frequency responses of five numerical differentiation methods 
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3.5.2. Evaluation of the Error Associated with the Taylor 
Expansion  

The lower bound of error in estimating optical flow does not depend on the 

methods of solving Eq. ( 3-4) and is determined by two factors: errors in evaluation of 

spatial derivatives and errors due to truncation of Taylor expansion. For the sake of 

simplicity, these errors are analyzed in 1-D using Discrete Fourier Transform signal 

representation. Let ( ){ }xa  and ( ){ }rα  be the discrete signal of N  samples and its 

discrete Fourier transform, correspondingly: 
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The finite, p-difference, ( ) ( )xapxa −+ , then, can be computed via its DFT 

spectrum as 
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Therefore frequency response of the finite difference operator is given by: 
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Without loss of generality let us assume that a signal sampled at time tt Δ+  is a 

p-shifted version of the signal sampled at time t : 

t
px

tt
x aa +

Δ+ =  ( 3-27) 

In optical flow algorithms, the finite difference is computed via its approximation 

through signal Taylor expansion, which suggests, 

paaa t
x

t
x

t
px &=−+  ( 3-28) 

Representing Eq. ( 3-28) in the frequency domain results in:  

{ } { }paDFTaaDFT t
k

t
k

t
pk &=−+  ( 3-29) 

The discrete Fourier transform of the difference ( )t
k

t
pk aa −+  is given by Eq. ( 3-25), 

t
xa& is given by Eq. ( 3-19). Now one can find energy spectrum of the Taylor expansion 

approximation error: 
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By virtue of Parceval’s theorem for DFT, cumulative summation of this spectrum 

will give, for a given p-shift, the standard deviation of the Taylor approximation error 

as a function of the signal bandwidth. This will allow comparing, for different signal 

shifts, different differentiation methods in terms of the lower bound of error of optical 

flow computation.  

Figure  3-8 shows the estimation error for different shifts as a function of the 

signal’s bandwidths. As can be seen the optical flow computation using DFT/DCT 

differentiation outperforms all lower order numerical differentiators, especially for 

signals with broad bandwidth. For shifts larger than 0.4 signal inter-pixel distance, 

error’s nominal magnitudes are substantially larger. For larger shifts, lower order 

differentiators have lower Taylor approximation error, although, by its nominal 

magnitude, the errors increase substantially. Not surprisingly, for one-pixel shift 

approximation error for zero-order D1 differentiator is zero, as can be seen in Figure 

 3-8(f). The conclusion from this comparison is that the differentiation-based optical 

flow computation methods can work with reasonable accuracy only in the range of 

small displacements, which firmly motivates using their multi-scale versions. 

3.5.3. Comparison Results 
For the comparison purpose, multi-scale versions of two basic optical flow 

algorithms have been selected: (i) Lucas-Kanade (L&K) [84] and (ii) Horn-Schunck 

(H&S) [85] in which a multi-scale (multi-grid) framework was imbedded in order to 

enable measuring large scale shifts (up to 1-3 pixels). Additionally, the comparison 

was held with respect to one of the more recent methods presented by Brox et al 

(Brox) [87]. To this end, in-house implementation was used as the original 

implementation of the algorithm is not available. 

The following numerical parameters were opted for the best algorithm 

performance over the above-mentioned set of test images. For all algorithms there are 

10 scale levels with reduction factor of 0.8. The reduction was implemented using bi-

cubical interpolation. The optimization window size for the L&K method was 

selected to be (5x5) pixels. The smoothness parameterλ , for the H&S method, was 
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set to 103 and the number of Gauss-Seidel iterations to 50. 10 inner fixed point 

iterations and 20 successive over-relaxation-method iterations were used within the 

Brox method. The smoothness parameter, α, and the gradient constancy weight, γ, in 

Brox’s notation, were set to 80 and 100 respectively [87]. Image frame pre-filtering 

used in all methods was implemented with commonly used setting of the sigma-

parameter set to 1 ( 1=σ ) [87-89].  

  
(a) (b) 

(c) (d) 

 

(e) (f) 

Figure  3-8 – Lower bounds of shift estimation as a function of signal bandwidth for 1D optical 

flow computed using different differentiation methods for different shifts.  
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In all set of experiments, global as well as local shifts were used and statistics of 

optical flow coordinate shift evaluation errors (distribution density histograms, 

standard deviation and mean values) were found over the set of all image’s pixels. 

The errors were computed as the Euclidean difference between the pixels’ computed 

shifts, ( )yx, , found by the various optical flow methods, and the known ones, ( )yx, .  

( ) ( )22 yyxxe −+−=  ( 3-31) 

In order to avoid boundary effects in differentiation by means of DFT based 

algorithm, the errors were analyzed within “safe” internal area of images separated 

from image borders by margins of 32 pixels. 

For evaluation, the different differentiation methods were embedded into the optical 

flow schemes. As a test bed, pseudo-random images with effective bandwidth of 0.75 

(as depicted in Figure  3-6(f)), shifted in 0.5, 1, 1.5 and 2 pixels were used. The results 

are summarized in Figure  3-9 for the L&K (figure a) and the H&S (figure b) methods. 

As one can see, for both optical flow techniques the DFT and DCT differentiation 

approaches outperform the others.  

The accuracy gain factor, G, is defined as the ratio of the errors’ standard 

deviations, for a given optical flow technique, when the derivatives are computed with 

different derivations methods: 

( )( )
( )( ))2(,

)1(,

,

,

Diffyx

Diffyx
wOpticalFlo yxestd

yxestd
FactorGain

Ω∈

Ω∈=  ( 3-32) 

where ( )( ))1(,
, Diffyx
yxestd

Ω∈
 and ( )( ))2(,

, Diffyx
yxestd

Ω∈
 are the errors’ standard deviations , in 

neighborhood Ω, for a given OpticalFlow method embedding the Diff(1) and Diff(2) 

differentiation methods. Table  3-1 presents the accuracy gain factor for D2/DCT and 

D4/DCT embedded in the L&K and H&S optical flow techniques. The table suggests 

that a significant improvement is achieved when embedding the DCT exact 

differentiation method.  
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(a) (b) 

Figure  3-9 - Standard deviations of coordinate shift error, for different displacements (in the units 

of inter-pixel distance), of the L&K (figure a) and H&S (figure b) optical flow methods embedding the 

different differentiation methods. 

Table  3-1 – Accuracy Gain Factor for D2/DCT and D4/DCT embedded into the L&K and H&S 

optical flow methods for different displacements. 

Displacement (pixels) 
Optical Flow Method Differentiation Method 

0.5 1 1.5 2 

D2 2.22 2.71 3.01 3.02 
L&K 

D4 1.45 1.64 1.74 1.71 

D2 1.09 1.13 1.14 1.1 
H&S 

D4 1.04 1.05 1.04 1.02 

 

The effect of the different derivation methods on optical-flow techniques, with 

respect to the test-images’ bandwidths is depicted in Figure  3-10, where the error’s 

standard deviations are presented for test images with bandwidths of 0.03, 0.06, 

0.125, 0.25, 0.5 and 0.75, shifted in one pixel, for different differentiation methods 

and the two selected optical flow algorithms, L&K (a) and H&S (b). The gain factors, 

D2/DCT and D4/DCT, embedded into the L&K and H&S schemes, for the various 

bandwidths test images are given in Table  3-2. The plots and the table suggest that a 

substantial gain in accuracy can be obtained, when using better differentiation 

techniques, especially when the processed images contain substantial high frequency 

content. 
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(a) (b)

Figure  3-10 - Standard deviations of coordinate shift error of the L&K (figure a) and H&S (figure 

b) for pseudo-random test images, with ranging bandwidths (0.03, 0.06, 0.125, 0.5 and 0.75), applying 

shifts of one pixel. 

Table  3-2 - Accuracy Gain Factor for D2/DCT and D4/DCT embedded into the L&K and H&S 

optical flow methods for different images bandwidths. 

Image Bandwidth 
Optical Flow Method 

Differentiation 

Method 0.03 0.06 0.125 0.25 0.5 0.75 

D2 1.03 1.1 1.62 2.47 2.83 2.71 
L&K 

D4 1 1.02 1.13 1.42 1.66 1.64 

D2 1.01 1.58 1.89 2.1 1.47 1.13 
H&S 

D4 1 1.1 1.21 1.24 1.17 1.05 

 

The quantitative data on the standard deviation of the optical flow estimation 

error obtained on the “Yosemite” test image with global shift by one inter-pixel 

distance in each axis are summarized, for L&K and H&S in Table 3.  These data also 

demonstrate improvement in the accuracy of optical flow estimation achieved with 

more accurate differentiation techniques. 

Table  3-3 – Error Standard deviation for the Yosemite test sequence for the L&K and H&S 

optical flow methods, embedding the D2, D4 and the DCT differentiation methods. 

Differentiation Method 
Optical Flow Method 

D2 D4 DCT 

L&K 0.126 0.084 0.061 

H&S 0.057 0.046 0.040 

Figure  3-11 illustrates the impact of the use of the DFT/DCT exact derivatives 

impact on the Brox optical flow method using the Yosemite test image (see Figure 

 3-4). Figures (a) and (b) illustrate the pixel-wise gain factor which is given by: 
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Figure  3-11(c) presents local image intensities standard deviation (over 7x7 

window). Higher spatial local frequencies manifest themselves in higher standard 

deviation values, which correspond to brighter pixels. Evaluating figures (a) and (b) 

with respect to figurte (c), clearly shows that, generally, less accurate differentiation 

methods tend to produce higher optical flow estimation errors where image contain 

high frequencies. However, in some places, specifically, where the errors are small, 

this gain factor is less then 1, which can be attributed to the phenomenon, described in 

Sect.  3.5.2, that lower order derivation methods can give, for sufficiently large shifts, 

lower Taylor series expansion approximation error than higher order methods. 

The experiments show that the Brox algorithm provides the best accuracy of 

optical flow computation. With that, its accuracy, paradoxically enough does not 

practically depend on the differentiation method used.  This can be explained by the 

very high value of its smoothness-constrained weight compared to the gray-level-

constancy constraint, in which the precise differentiation plays an important role. For 

greater gray-constancy weights, however, the algorithm doesn't always converge. This 

implies that the method is applicable for very smooth motion fields only [86].  

The results demonstrate that the performance of L&K, H&S methods can be 

improved substantially provided accurate computation of spatial derivatives, 

especially for images characterized by high frequency content. Those conclusions, 

when applied on the L&K algorithm are significant. Since this algorithm is 

computationally light, easy to implement and more stable than methods implementing 

global iterative optimization procedures, like the H&S and the Brox methods, when 

implemented with the precise differentiation, it becomes an attractive option for 

optical flow computation. 

3.6. Summary 
Efficient real motion extraction is the first requirement in order to secure 

successful video restoration, resolution enhancement and scene reasoning. There are 

two classes of motion estimation techniques: block matching and optical flow 

methods. The first is based on dividing the current frame into a matrix of ‘macro 

blocks’ that are then compared with corresponding block and its adjacent neighbors in 

the previous frame. The latter is based upon local derivatives. In order to allow proper 
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evaluation of the various methods a comparison framework was suggested. The 

framework assumes using a set of test images with known bandwidths and mutual 

translations. Additionally, an improvement, through exact DFT/DCT-based 

derivatives, was suggested for optical flow methods. The gain in accuracy of the 

optical-flow methods was illustrated by embedding the exact derivatives into the 

L&K, H&S and Brox optical flow algorithms.  

 

  
(a) (b) (c) 

Figure  3-11 - Figures (a) and (b) illustrate the D2/DCT and the D4/DCT pixel-wise accuracy gain 

factors for the L&K and H&S methods respectively for global shift of one inter-pixel distance in each 

axis. Figure (c) depicts the ‘Yosemite’ test image’s local intensity levels standard deviation computed 

over (7x7) window. 
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4.  Video Stabilization 
In numerous applications, one would like to locate and track real 

moving objects in the scene. However, this task becomes difficult, when 

the scene contains motion not only due to the real moving objects, but also 

due to camera or turbulent light propagation medium motion. This 

chapter describes a real-time image stabilization algorithm. To preserve 

real motion in the scene, the scene is segmented to moving objects and 

static areas and the compensation is applied only to the static areas of 

images. This is achieved through a statistical analysis of the motion 

vectors’ magnitudes and angles, which results in formation of magnitude 

and angle motion segmentation driven masks. Performance evaluation of 

the algorithm is performed by simulation software which induces 

turbulence-like degradations on the input videos. 

4.1. Channel Characterization and Processing 
Principles  

As was described in Sect.  1.2, image processing based turbulence compensation 

algorithm that preserves real moving objects, without prior knowledge about the scene 

observed, were suggested in [21,22,23]. However, these methods do not comply with 

real-time constrains.  

The real-time algorithm, suggested here, consists of three processing stages, 

illustrated in Figure  4-1:  

(i) Estimation of the reference frames. 

(ii) Determination of the motion vectors for all pixels in image frames and 

motion vector analysis for real motion extraction. 

(iii) Generation of stabilized frames while preserving real motion in the scene.  

The processing stages are thoroughly described in sections  4.2,  4.3 and  4.4, 

respectively. 
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Figure  4-1 - Flow diagram of video processing in visual range channel 

4.2. Estimation of the Reference Frames  
In practice, in order to generate a stabilized sequence, one has to, for each time 

window, (i) take the current frame as the reference; (ii) compute motion vectors for 

each frame in the time window with respect to this reference frame; (iii) find pixel-

wise means for motion vectors; (iv) resample pixels of each frame to the positions 

defined be the means. However this is applicable only in the absence of true moving 

objects that will create outliers in evaluation of motion. 

The suggested solution generates the reference image using a pixel-wise rank 

filtering in a temporal sliding window.  Specifically, temporal median filter is used for 

estimation of the stable scene [61], although other rank filters such as alpha-trimmed 

mean can also be considered. The size of the window, or the number of frames N, 

over which the temporal rank filtering is carried out, is determined by the atmospheric 

turbulence correlation over the time domain, meaning that the longer the turbulence 

effect’s correlation, the larger the temporal sliding window. In addition, it is important 

that the number of the images be sufficient enough to efficiently remove the moving 

objects from the stable scene estimation. Figure  4-2 illustrates such an estimation of a 

stable scene from a real life turbulent video. Figure  4-2(a) presents a single frame 

taken from a turbulent distorted sequence (the entire sequence can be downloaded 

from [123]). Figure (b) presents the estimation of the stable scene calculated by 

temporal median over 117 frames. One can clearly see that chaotic geometrical 

distortions in (a) are removed in the stable estimation (b). 

4.3. Real Motion Extraction 
In order to avoid, in course of the turbulence compensation process, 

compensation of real motion, pixels that represent real moving objects must be 

extracted from the observed frames. A following two-stage decision-making 
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algorithm for moving object extraction meets requirements of efficient real-time 

computation.  

The first step is aimed at extracting areas, such as background, that are most 

certainly stationary and can be segmented in a very simple and fast way. In most 

cases, a great portion of the stable parts in the scene will be extracted at this stage. 

The rest of the pixels are dealt with at the second step.  

The second step improves extraction accuracy at the expense of higher 

computational complexity, but it handles a substantially smaller portion of the pixels. 

This stage uses, for motion segmentation, computing and statistical analysis of optical 

flow [124,125,126,127]. 

 

(a) 

 

(b) 

Figure  4-2 - Temporal Median Rank Filtering for estimation of the stable scene: (a) - a sample 

frame taken from a turbulent distorted video; (b) – the corresponding stable scene estimation.  

4.3.1. Real Motion Extraction – stage I 
At this phase, the gray-level difference between running value of each pixel of 

the incoming frame and its temporal median (Distance From Median, ( )pDFM r ),is 

calculated as “real-motion measure” (( 4-1)). 

( ) ( ) ( )
Ω∈

−=
t

pIpIpDFM rrr  ( 4-1) 

where ( )pI r is the temporal median computed over a temporal window (Ω) centered at 

t, the current processed frame: 

( ) ( ){ }pIMEDyxI
t

r
Ω∈

=,  ( 4-2) 
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If the distance ( )pDFM r  is below a given pre-defined threshold, the pixel is 

considered to be of a stationary object. All other pixels that are not resolved at this 

stage are processed at the next phase.  

Figure  4-3 illustrates real-motion extraction using the above distance measure 

from the reference frame. Figure  4-3(a) is a single frame taken from a turbulent 

degraded sequence. The frame presented in Figure  4-3(b) is the stable scene median 

estimation. Applying a difference threshold of 10 gray-levels, on the pixel-wise 

absolute difference between figures (a) and (b), results in (c) (Higher difference 

values are printed in white), which, as depicted in Figure  4-3(c), is sufficient for 

filtering most stationary areas effectively. Evaluating figure (c), the car is detected as 

real moving object, and 75% of the pixels in the frame are tagged as stationary and 

will not, therefore, be further processed. However, some areas on the background that 

contain no motion are also tagged as real moving objects; this movement is due to 

turbulence. Those areas are dealt with at the following stage. 

4.3.2. Real Motion Extraction – stage II 
The second motion extraction stage uses more sophisticated optical flow analysis 

methods in order to achieve better discrimination accuracy. The mapping of one 

turbulent image to a stable one can be obtained by registering a spatial neighborhood 

surrounding each pixel in the image in the reference image. Such a registration can be 

implemented using different motion estimation methods (see Ch.  3. ).  

Let ( )pI r  be a turbulent source image frame and ( )pI r  be the corresponding 

reference image, the vectorial difference between the pixel’s location in the original 

image and its location in the reference image be the motion 

vector{ }yyyxxx −=Δ−=Δ ; . For the subsequent processing stages, the translation 

vector is presented in polar coordinates, hence magnitude and angle ( ) ( ){ }ppM rr θ,  of 

the motion vector. Having the motion field, one can discriminate real motion from 

turbulent one through a statistical analysis of the Magnitude ( ){ }pM r  and Angle 

( ){ }prθ  components of the motion field. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure  4-3 - Magnitude Driven Mask (MDM) and Angle Driven Mask (ADM). Figure (a) 

presents a single frame extracted from real-life turbulent degraded sequence. Figure (b) is the estimated 

stable scene. Figure (c), (d) and (e) present real-motion extraction by applying DFM, MDM and ADM 

respectively. 
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4.3.2.1. Real Motion vs. Turbulence Caused Motion 
Discrimination through Magnitude’s Distribution Cluster 
Analysis 

Cluster analysis of the Magnitude distribution function for all (x, y), in a 

particular frame t, allows separating two types of motion amplitudes: small and 

irregular and large and regular. The first is associated with small movements caused 

by turbulence. The latter corresponds to movements caused by real motion. At the 

result, each pixel in the frame is assigned with a certainty grade between 0 and 1. This 

“Magnitude Driven Mask” ( ( )pMDM r ) characterizes magnitude based likelihood that 

particular pixels belong to objects in a real motion. Figure  4-4 presents a graph of the 

certainty as a function of the Motion vectors’ magnitudes. Small Motion Vectors’ 

magnitudes correspond to turbulent motion, while large magnitudes correspond to 

real-motion. The intermediate levels comprise motion vectors’ magnitude upon which 

concise decision can not be made. The magnitudes’ thresholds presented as TL and TH 

are application dependent and can be set by the user. In some applications, where the 

conditions are maintained, the system can set those thresholds automatically. Figure 

 4-3(d) presents the MDM extracted from the frame presented in Figure  4-3(a). Pixels 

where real-motion was detected are marked in white. In this example TL and TH were 

set empirically and are 2 and 4 pixels respectively. 

 

Figure  4-4 - Magnitude Driven Mask (MDM). MDM certainty level as a function of the motion 

vector’s magnitude 

4.3.2.2. Real Motion vs. Turbulence Caused Motion 
Discrimination through Motion Field’s Angle Distribution 

Pixel’s motion discrimination through motion vector angle distribution is 

achieved by means of statistical filtering of the angle component motion field. For 

each pixel, its neighborhood’s angle’s standard deviation is computed. Turbulent 

motion has chaotic directions. Therefore, a motion field, in a small spatial 
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neighborhood, distorted by turbulence, has considerably large angular standard 

deviation. Real motion, on the other hand, has strong regularity in its direction and 

therefore its angles’ standard deviation value over a local neighborhood will be 

relatively small. Homogeneous background areas contain no motion. Therefore the 

standard deviation of the zero motion vectors will be zero as well. The neighborhood 

size, in which the pixel’s angular standard deviation is computed, should be large 

enough to make angle based discrimination of turbulent from real motion possible, 

and as small as possible to meet the terms of real-time computing. In experiments 

with real database it was found that neighborhood’s size of 11x11-15x15 present a 

reasonable compromise.  

As it is illustrated in the graph presented in Figure  4-5, each pixel is assigned 

with “Angle Driven Mask” ( ( )pADM r ), which presents an angle distribution based 

likelihood that this pixel belongs to an object in a real motion. Both turbulent and 

background areas should be regarded as stable. This means that real moving objects 

have a bounded angular standard deviation. TL and TH are the decision boundaries. 

Pixels with angular standard deviation smaller than TL or higher than TH are regarded 

as stationary. Those values are set by the observer. 

Figure  4-3(e) presents the ADM extracted from the frame shown in (a), with 

low standard deviation values displayed with brighter pixels. One can see that 

background areas are tagged in white, hence contain low standard deviations. The 

signs on the road, which suffer most from turbulent in the acquired scene, have darker 

values, hence, high angular standard deviations. TL and TH were empirically assigned 

with 
3
π  and 

6
π  respectively. 

 

 

Figure  4-5 - Angle Driven Mask (ADM). ADM certainty level as a function of the motion 

vector’s local spatial standard deviation 
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4.3.2.3. Real Motion Separation Mask 

 Having both the ( )pMDM r  and ( )pADM r , a combined Real Motion Separation 

Mask ( ( )pRMSM r ) is formed as following: 

( ) ( ) ( ) ( )

( )⎪⎩

⎪
⎨

⎧
−>−

=
otherwisepMDM

pMDMpADMpADM
pRMSM

,
2
1

2
1,

r

rrr
r  ( 4-3) 

The MDM and ADM are certainty measures ranging from 0 (turbulent motion) to 

1 (real motion). Equation ( 4-3) implies that the ADM measure is more concise than 

the MDM when the term ( )
2
1

−pADM r  has a higher value than ( )
2
1

−pMDM r . In this 

case the ADM measure will be used; otherwise the MDM value will be applied.   

4.4. Generation of stable frames 
Based on the notations derived in the previous sections, the output frame ),,( tyxF  

is given by: 

( ) ( ) ( ) ( )( )[ ]{ }
( ) ( ) ( )( )[ ]pDFMpRMSMI

pDFMpRMSMpIpF

tyx
rr

rrrr

−••
+−•−•=

1
11

,,

 ( 4-4) 

where ( )pF r  is the output stabilized image, “• ” denotes element-wise matrix 

multiplication, DFM is the mask derived from the distance from the temporal median 

measure, as described in Sect.  4.3.1 and RMSM is the Real Motion Separation Mask 

detailed in Sect.  4.3.2. 

4.5. Simulation and Results 
For evaluating the suggested method, a testing visual database has been 

composed [123]. The database contains several typical thermal and visual real-life 

video sequences as well as synthetic ones. The synthetic sequences are generated 

from real-life sequences containing real-movement with no turbulent motion. 

Turbulent-like degradations are induced using computer software. The process of 

generating images with turbulence-like distortions is outlined in Sect.  4.5.1 and the 

image stabilization algorithm quantitative and qualitative results are respectively 

detailed in sections  4.5.2 and  4.5.3. Throughout this Sect., the dense-map was 

computed using the Horn and Schunck’s optical flow method [85].  
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4.5.1. Turbulence Simulation Software 
According the theory outlined in sections  1.2 and  2.2, the turbulence results in 

spatially and temporally correlated random geometrical distortions of the acquired 

image. In order to generate local correlated shifts for each pixel in the input image, a 

band limited correlated distortions field is generated. Figure  4-6 illustrates the 

process.  For each direction, X and Y, a 3D random white noise ‘cube’ is first created. 

Then, a 3D Low-Pass filter is applied to the generated noise to produce spatial-

temporal band-limited noise that defines a displacement field for each spatial 

coordinate. For shifting each pixel according to the displacement field, sliding 

window discrete sinc-interpolation algorithm [118] is applied. 

 

Figure  4-6 – Flow chart of the algorithm for generation of spatially and temporally correlated 

motion fields 

4.5.2. Turbulence Compensation - Quantitative 
Evaluation 

The synthesized test sequence is a turbulent free video stream with real motion in 

which a turbulent like degradation is induced. The compensation process aims at 

removing the turbulent motion while retaining real moving objects.  Figure  4-7 

illustrates the compensation results achieved on the test sequence. Figure  4-7(a) 

shows a frame of the initial non-distorted sequence, while figure (b) is the 
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corresponding frame from the sequence after applying turbulence-like degradations. 

Figure  4-7(c) shows the compensated corresponding frame of figure (b). Comparing 

Figures (a), (b) and  (c), one can see that while the vehicle, as a real moving object, is 

retained, the turbulence distortions visible, for instance, on road markings in figure (b) 

of the background are compensated.  

Quantitatively, the turbulence compensation quality can be evaluated using the 

peak signal to compensation error ratio (PSNR), as defined by ( 4-5): 

{ }( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

MSE
IPSNR

2

10
maxlog10  ( 4-5) 

where the MSE is the mean squared error computed over all image pixels and 

{ }Imax is the maximum value can be assigned to a pixel, hence 255.  

In the given example, the PSNR gives a high grade of 34.9 dB. Typical values for 

the PSNR in images are between 30 and 40 dB, where higher values than 34 are 

consider as good quality [128]. 

Yet another measure of the turbulence compensation quality is the ratio of 

compensation error energy to the original image energy. The error image’s energy to 

the original image’s energy ratio is given by:  

( ) ( )[ ]
( )∑

∑

Ω∈

Ω∈

−

p
O

p
O

pI

pIpI

r

r

r

rr

2

2ˆ

 ( 4-6) 

where ( )pIO
r  is the original image and ( )pI rˆ  is the image after inducing and 

compensating turbulence degradations, Ω  is the image plane. For the given example, 

this error-image’s energy to the original-image’s energy ratio is as low as 0.04.  

As described in Sect.  4.3 real motion extraction is based on assumptions made for 

the statistical behavior of turbulent motion. When those assumptions break, for 

example when winds speed up the turbulent motion and give it a strong regularity, 

turbulent motion will be regarded as real moving objects and will affect the visual 

output.  

4.5.3. Turbulence Compensation - Qualitative Evaluation 
In order to verify the method’s real-life applicability, turbulent degraded 

sequences which were acquired by operational long range observation systems were 

processed by the system. 
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(a) (b) (c) 

Figure  4-7 – Turbulence Simulation and Compensation. (a) Original Sequence with Real-Motion 

and no turbulent motion; (b) the same frame with turbulence-like distortions induced, using computer 

software; (c) the same frame after the turbulence compensation process. 

Figure  4-8 and Figure  4-9 illustrate the results obtained with real-life video 

sequences. Figure  4-8(a) and Figure  4-9(a) are both frames extracted from real life 

turbulent degraded sequences (see [123]). Corresponding figures (b) show the stable 

scene estimation computed by element-wise temporal median over of 117 frames. 

Figures (c) display the Distance From Median Masks (DFM) and (d) display the Real 

Motion Separation Masks (RMSM). Comparing figures (c) and (d) in both Figure  4-8 

and Figure  4-9, one can notice how the real motion extraction process is refined. 

Background areas which were tagged as real-motion by the DFM in (c) are removed 

from the RMSM in (d). The stable output of the non-turbulent background and 

unaffected vehicles with real moving objects are given in, Figure  4-8(e) and Figure 

 4-9(e). 

4.6. Real-time Applicability 
The number of operations, needed to complete a computational task is platform 

independent, while other measures, such as execution time, are resources and platform 

dependent. Therefore the real-time applicability is evaluated through the number of 

operations1. The analysis of the number of calculations in the following sections is 

given in terms of operations per pixel. 

4.6.1. Stable Scene Estimation Computation 
Generally, the rank filtering and, specifically, median filtering has high 

computational complexity since a sorting operation is carried out for each median 

                                                 
1 A tool, which helps examining if the number of operations for an algorithm complies with real-time constrains on 
a specific machine, can be downloaded from the author’s site [123] 
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computation. Exploiting the fact that the median computation is held over a temporal-

wise sliding window allows utilizing a fast recursive method for median filtering. The 

fast median recursive computation method used is a variation of the method described 

in [129]. First it holds an initialization process, in which odd number of N frames 

comprising the temporal window are read and the temporal histograms are computed 

for each pixel.  
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure  4-8 - Real-time Turbulence Compensation – Trucks Sequence. (a)-Real-life atmospheric 

turbulence degraded image; (b)- the stable scene estimation; (c)- DFM; (d) - RMSM; (e) - the output 

image 
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure  4-9 - Real-time Turbulence Compensation – Bird Sequence. (a)-real-life atmospheric 

turbulence degraded image; (b)-the stable scene estimation; (c)- DFM; (d)- RMSM; (e)- the output 

image. 
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Having completed the initialization process, for each pixel the following data is 

maintained:  (a) The temporal window gray-level histogram; (b) The actual gray-level 

median value (b-parameter); (c) The number of pixels in the window having the same 

intensity level as the median (c-parameter); (d) The number of pixels in the temporal 

window, which have lower gray-level values than the median (d-parameter). 

Upon new frame acquisition, for each pixel, these data are updated according to 

the new and departing values of the moving window. If the departing or new values 

equal to the median then the c-parameter for that pixel is decreased or, respectively, 

increased by one; if the departing or new values have lower value than the current 

median then d -parameter is decreased or increased in the same manner. Upon 

completion of the update process, one can be determined if the conditions described 

by equations ( 4-7) and ( 4-8) are fulfilled. 

2
1+

<
Nd

 
( 4-7) 

[ ]
2

1+
≥+

Ndc  ( 4-8) 

If this is the case, then the pixel has preserved its median value (b). If this is not 

the case, for a given pixel, the median is calculated using the temporal histogram (a) 

and the pixel’s corresponding b-, c- and d- parameters are updated. Typically, the 

median values do not change significantly over time. Therefore the need for 

calculating the histogram for every pixel in every incoming frame will be notably 

smaller, thus decreasing the load derived due to the median computation.  

Figure  4-10 contains three different frames (a), (c) and (e), taken in different 

times, from a real-life turbulent sequence (see [123]). The same location is marked 

with a cross on each of those images. Images (a), (c) and (e) are taken before, 

throughout and after the bird passes through the marked pixel. The corresponding 

temporal histograms, computed (over 117 frames) in a temporal window centered at 

the corresponding frame, of this location are given in figures (b), (d) and (f). The 

dashed line in those images represent the median’s gray-level value. The median 

gray-level’s standard deviation throughout the entire sequence was 3.05 gray-levels, 

which, for the human, is an insignificant difference. The median value itself rarely 

changes throughout the sequence. In this specific example, the median was 

recalculated for less than 1% of the pixels.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure  4-10 – Temporal Median. Figures (a), (c) and (e) are images taken from a turbulent 

degraded real-life sequence. Figure (b), (d) and (f) are the corresponding temporal histograms for the 

pixel marked by a cross and pointed by an arrow. The dashed line on the histogram represents the 

temporal median gray-level value. 

4.6.2. Real Motion Extraction 
The first real-motion discrimination phase consists of a simple subtraction of the 

median from the input frame and applying threshold on the result, therefore the 

number of operations per pixel is 2. 

The second phase consists on optical flow computation. Optical Flow methods 

require the minimization of an energy functional (see Sect.  3.3). In order to solve 

these large sparse systems numerically, classical iterative methods such as the Gauss–

Seidel algorithm are commonly used. While they are simple to implement, their 

convergence is not very fast, and often thousands of iterations may be necessary to get 

sufficiently close to the minimum of the energy functional. This is the reason why 

optical flow methods are too slow for time-critical applications.   
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As derived from the theory, the turbulence distortions are modeled by spatial, and 

temporal, random local shifts. This means that the motion of a pixel should be derived 

from its local neighborhood in the acquired and reference frames, rather than the 

entire image. While the general purpose of optical flow methods is computing the 

entire dense-map, it is suggested, for the sake of reducing the computation load, to 

apply the optical flow computations to only certain pixels rather than to the entire 

image. As pixels tagged as stationary by phase I are not processed by phase II, the 

number of pixels processed by this phase will be small enough to allow real-time 

applicability. If the number of pixels processed in this phase is too big so the 

computational complexity exceeds the processing machine capabilities, the estimation 

of phase I is used solely. The magnitude and angles computation and thresholding are 

regarded as part of the computations needed for optical flow.  

4.6.3. Generation of the Output Frames 
According to equation ( 4-4), the generation of the stable frames requires 8 

operations per pixel. 

4.6.4. Total Computational Complexity 
Table  4-1 shows the number of operations per pixel for each task of the 

algorithm’s tasks. As the number of pixels processed by phase II of the real motion 

extraction is content dependant, the maximum and minimum number of operations is 

indicated.  

Table  4-1 – Number of Operations per Task 

Task Maximum Minimum 

Median ~770 7 

Real Motion Extraction – Phase I 2 2 

Real Motion Extraction – Phase II ~170 0 

Generation of the Output Frames 8 8 

Total ~950 17 

The acquisition system, acquires interlaced 4CIF format images of 704x576 

pixels [130,131]. The method disclosed here eliminates the need for computing the 

entire dense-map, applying a hierarchical motion segmentation technique. If the 

number of pixels processed on the second stage of the real-motion extraction is less 

than 10% of the total number of pixels in the frame then the performance is equivalent 
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to processing 25 frames per second on a standard 3.0-GHz PC. Further improvement 

to processing time can be achieved by utilizing the interlaced property of the 

incoming video. This is achieved by processing the odd and even fields individually 

on multi-processor/multi-core architectures. 

4.7. Summary 
A real-time video stabilization scheme which preserves real motion in the scene 

was presented. For preserving real motion in the scene, moving objects are located 

and the compensation for the distortion of the turbulence is applied only to the static 

areas of images. To this goal, for each pixel in the incoming frame it is decided 

whether it is of a moving or a stationary object. This is done by a hierarchical two-

stage decision making mechanism. In order to evaluate the algorithm’s performance 

envelope, computer simulation software was written. The software induces 

turbulence-like distortions on any input sequence. Finally, the real-time applicability 

of the algorithm was discussed and the condition under which the algorithm complies 

with real-time constrains were formulated. While the algorithm can be utilized in 

various applications, the discussion in this chapter revolved around motion presented 

by turbulence or camera’s random ego motions. The utilization of the described 

method in a different class of applications is described in Chapter  7.  
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5.  Video Resolution Enhancement 
A frequent distortion, in videos, is image instability in the form of 

chaotic global and local displacements. Those degraded videos contain 

tremendous redundancy that potentially can be used for image resolution 

enhancement, through elastic registration with sub-pixel accuracy, of 

segments of video frames that represent stable scenes. In this chapter two 

novel practical super-resolution schemes for monochrome and color 

turbulent degraded videos and their utilization in real-time are presented. 

More than that, the potentials and limitations of such resolution 

enhancement schemes are studied by means of the achievable resolution 

enhancement possible, under given imaging setup parameters, such as the 

camera fill factor, the intensity of pixel displacements and of the number 

of image frames. This study results in useful insights for the design of such 

systems. 

5.1. Super-resolution in Turbulent Videos 
Principals 

In turbulence-corrupted videos, consequent frames of a stable scene differ only 

due to small atmospheric-turbulence-induced movements between images. As a 

result, the image sampling grid defined by the video camera sensor may be considered 

to be chaotically moving over a stationary image scene. This phenomenon allows the 

generation of images with larger number of samples than those provided by the 

camera if image frames are combined with appropriate re-sampling 

[49,50,127,132,133,134].  

Generally, such a SR process consists of two main stages [26,33,37 

,42,127,133,134]. The first is determination, with sub-pixel accuracy, of pixel 

movements. The second is combination of data observed in several frames in order to 

generate a single combined image with higher spatial resolution. A flow diagram of 

this stage of processing is shown in Figure  5-1. 
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Figure  5-1 - Flow diagram of the process of generation of stabilized frames with SR 

For each current frame of the turbulent video, inputs of the process are: a 

corresponding reference frame, obtained as a pixel-wise temporal median over a time 

window centered on the current frame (see Sect.  4.2), and the current frame 

displacement map. The latter serves for placing pixels of the current frame, according 

to their positions determined by the displacement map, into the reference frame, 

which is correspondingly up-sampled to match the sub-pixel accuracy of the 

displacement map. For up-sampling, different image interpolation methods can be 

used. Among them, discrete sinc-interpolation is the most appropriate as the one with 

the least interpolation error and may also be computed efficiently [118].  As a result, 

output stabilized and enhanced, in its resolution, frame is accumulated. In this 

accumulation process it may happen that several pixels of different frames are to be 

placed in the same location in the output enhanced frame. In order to make best use of 

all of them, the median of those pixels is computed in order to avoid the influence of 

outliers that may appear due to possible errors in the displacement map. The data 

accumulation process is illustrated in Figure  5-2, where figures (a), (b), (c) and (d) 

represent the accumulated data after the 1, 25, 100 and 200 frames. For the sake of 

clarity, pixels, which were not substituted in this process, are represented in black 

pixels.  
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(a) (b) 

  
(c) (d) 

Figure  5-2 – Super-resolution data accumulation process. Figure (a) is the data accumulated after 

the first frame; figure (b) represents the accumulated data after 25 frames and figures (c) and (d) are the 

representations of the data accumulated over 100 and 200 frames, correspondingly. Pixels, which were 

not substituted, in this process, are represented in black pixels. 

After all available input frames are used in this way, the enhanced and up-

sampled output frame contains, in positions where there were substitutions from input 

frames, accumulated pixels of the input frames and, in positions where there were no 

substitutions, interpolated pixels of the reference frame. Substituted pixels introduce 

to the output frame high frequencies outside the base-band defined by the original 

sampling rate of the input frames. Those frequencies were lost in the input frames due 

to the sampling aliasing effects. Interpolated pixels that were not substituted do not 

contain frequencies outside the base-band. In order to finalize the processing and take 

full advantage of the SR provided by the substituted pixels, the iterative re-

interpolation algorithm, depicted in Figure  5-3 was used [135, 136]. 
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Figure  5-3 - Flow diagram of the iterative signal recovery procedure 

 

This algorithm assumes that all substituted pixels accumulated, as described 

above, are stored in an auxiliary replacement map containing pixels values and 

coordinates. At each iteration of the algorithm, a transform of the image obtained at 

the previous iteration is computed and then zeroed in all its components outside of the 

selected enhanced bandwidth, say, double of the original one. After this, the inverse 

transform is performed on the modified spectrum and corresponding pixels in the 

resulting image are replaced with pixels from the replacement map thus producing an 

image for the next iteration. In this process, the energy of the zeroed outside spectrum 

components can be used as an indicator when the iterations can be stopped. The 

iterative signal recovery process is illustrated in Figure  5-3, where the output after 1, 

5, 15 and 75 iterations is depicted in figures (a), (b), (c) and (d) respectively. The 

considerations for which transform to use are discussed in Ch.  6.  

Once iterations are stopped, the output-stabilized and resolution-enhanced image 

obtained in the previous step is sub-sampled to the sampling rate determined by 

selected enhanced bandwidth and then subjected to additional processing aimed at 

camera aperture correction and, if necessary, denoising.  
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(a) (b) 

  
(c) (d) 

Figure  5-4 – The visual output of the iterative signal recovery process after 1 (figure (a)), 5 (b), 15 

(c) and 75 (d) iterations. 

5.2. Objective Criterion of Image Sharpness 

5.2.1. Preface 
Image evaluation, quality measurements and characterization are fundamental 

components in all image processing applications and techniques. The emergence of 

new technologies for displays panels, cameras and mobile devices and the growth in 

the number of manufacturers have emphasized the need for comparison and 

evaluation techniques, especially in the evolution of image restoration and 

compression algorithms. There are basically two classes of objective quality or 

distortion assessment approaches. The first are mathematically defined measures of 

error between the evaluated image and its ideal prototype. Typical examples of such 

measures are  MSE, peak signal to noise ratio (PSNR), root mean squared error 

(RMSE), mean absolute error (MAE), and signal-to-noise ratio (SNR) [137]. The 

second class of measurement methods considers human visual system (HVS) 
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characteristics in an attempt to incorporate perceptual quality measures [138]. The 

required ideal image or a model, as a reference that the evaluated image can be 

compared to, in many cases, is not available. 

 Visual quality assessment through image spectra is widely used and plays a 

significant role in image assessment applications [138,139]. Additionally, image 

acquisition systems’ quality is commonly determined by the optics or detector cutoff 

frequencies and bandwidth. However, none of the methods suggest a quantitative 

scalar evaluation for the effective image bandwidth. One can not compare two 

acquisition devices, scanners for example, and have a scalar criterion.  

Image quality metrics that do not require a reference can be found in the literature 

[140]. The quality assessment is based, in those methods, on the evaluation of image 

edge sharpness. These metrics are sensitive to the choice of the edge detector, as well 

as to the presence of noise. To be edge detector invariant, a method which estimates 

image quality through the image blur effect was suggested [141].  The method 

compares the variations between neighboring pixels of the image before and after 

low-pass filtering. High variation between the original and the blurred image means 

that the original image was sharp whereas a slight variation between the original and 

the blurred image means that the original image was already blurred. The perceptual 

blur measure (PBM) ranges from 0 to 1 has shown to very well correlate with 

subjective evaluation of  image sharpness degradation with 0 corresponding to the 

lowest sharpness degradation and 1 to the highest degradation [141].  

This Sect. presents a new image quality analysis method, derived from the PBM-

method. The method suggests a new image quality attribute, image effective 

bandwidth (IEBW), which connects the image’s energy distribution in the frequency 

domain with perceptual image quality.  

5.2.2. Image Effective Bandwidth 
In order to obtain numerical data that one can use to associate image bandwidth 

with PBM, the set of test pseudo-random images with uniform spectrum in certain 

fraction of the base-band, which is described in Sect.  3.4, is suggested. Five test sets, 

each consisted of 256 images with different bandwidths, were generated. Hence, for a 

given bandwidth, α, there were 5 different test images, one from each set. Those five 

images are referred to as bandwidth-group. The PBM was computed for each of the 

images. The PBM average of each bandwidth-group is depicted in Figure  5-5. In our 
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tests the average PBM standard deviation for the five testing sets is 0.0006. For a 

larger number of test sets the standard deviation practically converges to zero. As one 

can see, the function described in Figure  5-5 is a monotonic one, which implies a 

direct association of effective bandwidth with a specific PBM value. The inverse 

relation can be used for estimation of image’s effective bandwidth from its PBM. A 

complete Matlab software package that computes image’s PBM and corresponding 

effective bandwidth can be downloaded from [142].  

The PBM computation process is based on local features of the image. This 

means that the size of the image has no effect on the PBM. Figure  5-6 shows the PBM 

computation for two test sets. The first set, is one of the five sets used to generate 

Figure  5-5 and it consists of 256x256 images with different 256 bandwidths. The 

second set consists of 512x512 images with 512 different bandwidths. As the 

effective bandwidth is normalized to the image base-band, both data sets can be put 

on the same graph, which is presented in Figure  5-6, where, for better presentation, 

the PBM0.7 as a function of the effective bandwidth is shown for the 256x256 (solid) 

and 512x512 (dashed) test sets. Since the difference is barely noticeable, a fragment 

of the graph is magnified. The average difference, in our tests, was 0.0007. This 

implies that the IEBW measure is universal and can be used to compare effective 

bandwidths of images with different sizes.  
 
 

 
Figure  5-5 – The Average of the PBM computed for five test sets with known IEB 
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. 

  
Figure  5-6 – The PBM computed for two test sets. The PBM of 256x256 pixels images is shown 

in solid line, while the PBM as a function of the effective bandwidth of the 512x512 test set is 

presented in dashed line.  

5.2.3. Results 

For validating the effective bandwidth measure, the four real-life images, presented in Figure  5-7, 

were used. The PBM and the effective bandwidth, for each image, are given in Table  5-1, which 

suggests that the houses image have the widest effective bandwidth, the panorama image has an 

intermediate bandwidth followed by the Lenna and the Peppers image which has the narrowest 

bandwidth of the four. This is supported by Figure  5-8, where the energy of the row-wise DCT 

coefficients normalized to the image total energy for the four real-life test images is depicted. In all 

graph the arrows point the corresponding image’s IEBW. As one can see higher IEBW measures do 

correspond to larger portion of the image energy in its higher frequencies. This is presented 

quantitatively in  

Table  5-2, where the total energy portions sited in the higher half of the DCT 

base-band as well as the portion of the energy from the images’ IEBW onwards are 

given. Those results support the notion that the PBM measure suggested in [141] is 

suitable for measuring the image effective bandwidths. 
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Houses Panorama 

  
Lenna Peppers 

Figure  5-7 – 4 Real-life images used in the validation process: Houses, Panorama, Lenna and Peppers 

5.3. Super-resolution in Monochrome Videos 
Figure  5-9 illustrates the feasibility of the method. Figure (a) is a frame extracted 

from turbulent degraded real-life sequence, while figure (b) is its super-resolved 

stable one. Figures (c) and (d) are corresponding magnified fragments from figures (a) 

and (b). The fragments are marked with black boxes on (a). In both, figures (c) and 

(d), the original fragments are shown on the left-hand side, while the super-resolved 

fragments are shown on the right-hand side.  

Atmospheric turbulence also affects thermal range videos. Figure  5-10  

demonstrates application of the method to an intermediate infrared wavelengths (3-

8 µm), turbulent video sequence. Figure  5-10 (a) is a frame extracted from turbulent 

degraded thermal video, while figure (b) is the corresponding super-resolved frame 

generated from the thermal sequence. The marked fragments of figure (a) are 

presented in figures (c) and (d), in which fragments with initial resolution are given 

on the left-hand side, while the super-resolved fragments are given on the right-hand 

side. 
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Figure  5-8 – energy of the row-wise DCT coefficients normalized to the image total energy for 

the four real-life test images. the arrows point the corresponding image’s IEB. 

Table  5-1 – Real-life images PBM and effective bandwidth measures 

Image Houses Panorama Lenna Peppers 

PBM 0.21 0.23 0.33 0.37 

Effective Bandwidth 0.44 0.41 0.27 0.25 

 

Table  5-2 - Energy of higher frequencies DCT coefficients as a fraction of the total energy of 

images and their effective bandwidth 

Image Houses Panorama Lenna Peppers 

Effective Bandwidth 0.44 0.41 0.27 0.25 

Normalized energy of higher half of the 

DCT coefficients 
0.0183 0.0102 0.0038 0.0036 

Normalized energy of the higher DCT 

coefficients  beginning from IEB 
0.0231 0.0142 0.0112 0.0132 

 

For quantitative evaluation of the resolution improvement we used a method for 

numerical evaluation of image effective bandwidth (IEBW) suggested, by the author 

in [143], and thoroughly explained in Sect.  5.2. The IEBW factors for the images 

shown in Figure  5-9 and Figure  5-10 are given in Table  5-3, which suggests that the 
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super-resolved images do have higher effective bandwidths, hence more information 

in higher frequencies. 

Table  5-3 – Quantitative evaluation of the super-resolved images through Image Effective 

Bandwidth (IEBW) 

 Original Super-Resolved 

Visual Range video - Figure  5-9 

Entire Original Image (Figure  5-9(a)) Vs. 
Entire Super-Resolved Image (Figure 
 5-9(b)) 

0.1645 0.2366 

Fragment (c) 0.1044 0.174 

Fragment (d) 0.0983 0.1868 

Thermal-range video - Figure  5-10  

Entire Original Image (Figure  5-10 (a)) 

Vs. Entire Super-Resolved Image (Figure 

 5-10 (b)) 

0.1343 0.188 

Fragment (c) 0.1067 0.1492 

Fragment (d) 0.1542 0.1998 

5.4. Super-resolution in Color Videos 
In this section, the theory laid for the monochrome case is extended to turbulent 

color videos and it is shown that, while SR in color images is somehow limited, due 

to the color video acquisition mechanism, compared to gray-scale images, image 

resolution enhancement is achievable as well. 

A color image can be represented by combining three separate monochromatic 

images. Ideally, each image pixel contains three data measurements; one for each of 

the three color bands, R, G and B. In practice, commonly used digital camera with a 

single charge coupled device (CCD) array provides only one color measurement (red, 

green, or blue) per pixel. The detector array, in such cameras, is a grid of CCDs, each 

made sensitive to one color by placing a color filter array (CFA) in front of the CCD. 

The Bayer pattern, shown on Figure  5-11, is a very common example of such a color 

filter arrangement. The values of missing color bands at every pixel are synthesized 

using some form of interpolation from neighboring pixel values. This process is 

referred to as color demosaicing.  
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(a) 

(b) 

(c) 

(d) 

Figure  5-9 - SR through Turbulent Motion – Visual-range Sequence. (a) shows a raw video frame, 

(b) shows a super-resolved frame generated from a visual range turbulent degraded real-life video. (c) 

and (d) are the magnified fragments marked on (b) – the left-hand side shows the fragment with simple 

interpolation of the initial resolution and the right hand side shows the fragment with super–resolution.  
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(a) (b) 

 
(c) 

 
(d) 

Figure  5-10 - SR through turbulent motion. (b) is the super-resolved frame generated from a 

thermal range turbulent degraded real-life video, which one of its frame is presented in figure (a). 

Figure (c) and (d) are the magnified fragments marked on (b) – the left-hand side shows the fragment 

with simple interpolation of the initial resolution and the right hand side shows the fragment with super 

–resolution. 
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Figure  5-11 – Bayer Color Filter Array (CFA) 

Linear demosaicing methods can be represented by three sets of weights for 

neighborhoods with R,G or B pixel in the center. For (x,y)-th pixel it is given by:  
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where ( )
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yxI ,,
,  are either the R,G or B interpolated values, ( )
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yxC ,,

, 21 Δ+Δ+ are the R,G 

and B sampled output values of CCD cells covered by the Bayer filter, Ω is a 
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Applying the Fourier transform on ( 5-1) gives the modulation transfer function 

(MTF) of the interpolation procedure: 
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where r and s are the image spatial frequencies (see Sect.  2.1) and ( )srH , is the MTF of 

monochrome 2D rectangular pixel [93,144]. Considering ( 5-2), one can derive that: 
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( 5-4) 

which implies that ( 5-3) is bounded by ( )srH , , hence: 

( ) ( ){ }srHH sr
BGR

sr ,;,
,,

, ∀≤
 ( 5-5) 

Equations ( 5-3) and ( 5-5) show that the color MTF for R, G or B pixels is a 

weighted average of monochrome MTF’s, hence the camera fill factor, which 

determines the MTF, has the same impact on the achievable SR results in color 

images as in monochrome ones. Additionally, ( 5-5) suggests that the achievable 

results for color images are bounded by the gray-level ones.  
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In commonly used color video cameras, JPEG image compression standard is 

used in which color images are first transformed from raw RGB-representation to the 

YCbCr representation [145]. In this representation, most of the energy is concentrated 

in the luminance (Y) component, with little energy in the chrominance (Cb, Cr) 

components [33]. Therefore, for processing color turbulent videos one can apply the 

above described monochrome SR algorithm to only the Y component, and use simpler 

processing of the Cb and Cr components. In our proposed method, the Cb and Cr 

components are computed using a pixel-wise temporal median filtering, which was 

shown to be a good estimation of the stable scene (see Sect.  4.2). For JPEG images, 

the Y component is given by [146]: 

Y = 0.299 R + 0.587 G + 0.114 B ( 5-6) 

The Y component’s MTF depends on the interpolation method. In JPEG 

encoding standard, the bilinear interpolation is used and each color channel is 

interpolated independently. Substitution of ( 5-6) into ( 5-3) yields the Y components’ 

MTFs for that the cases when the central pixel is red, green and blue, respectively: 
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where for each equation the corresponding Bayer scheme setup is illustrated  and N 

and M are the image dimensions for each axis.  

One important conclusion derived from ( 5-7) through ( 5-10) is that the MTF of 

the interpolation process is shift variant. The different Y MTFs are depicted in Figure 

 5-12, where the Y MTF for red, green and blue are given in solid red, dotted green or 

cyan and dash-dot blue plots, which correspond to Eq. ( 5-7), Eqs. ( 5-8) and ( 5-9) and 

Eq. ( 5-10). As one can see, for neighborhoods centered in blue or red pixels, some 

frequencies of the Y component are completely lost (marked with arrows on figures 

(b) (c) and (d)). In the case at hand, the acquisition is held under turbulent conditions; 

therefore the same information is likely to be acquired by adjacent, but different, 

pixels in subsequent frames. This means that frequencies totally suppressed in a 

certain pixel, are likely to be recovered when the same information is acquired by 

neighboring pixel with different color filter (red, green or blue), in a subsequent 

frame. A similar idea was suggested in [71]. 

The entire processing was experimentally tested on real-life turbulent degraded 

color videos. The experimental setup is illustrated in Figure  5-13. Colored tiles are 

laid on the bottom of a water tub, filled with water to the height of 30 cm, while the 

turbulent motion of the water is caused by the filling water. The light propagates 

through the water turbulent medium and is acquired by the single-CCD camera, which 

has Bayer filter on its sensor. The results are shown for two different sequences: The 

first, referred to as the ‘duck’ sequence, is 100x160 pixels in size with average inter-

frame turbulent motion magnitude of 1.9 and standard deviation of 1.19 pixels. The 

second sequence, the ‘star’ sequence, is 200x200 pixels with average turbulent inter-

frame motion magnitude of 2.5 and standard deviation of 1.3 pixels.  

Figure  5-14(a) presents a fragment of a turbulent deformed frame from the ‘duck’ 

sequence. Figure  5-14(b) is the estimation of the stable scene, computed over 300 

frames of the original sequence and interpolated to twice of its original size. Figure 

(c) is the resolution enhanced image after applying aperture correction by unsharp 

masking. As visually resolution improvement can be appreciated only on a high 

quality display, image in Figure  5-14(d) presents the difference between images of 

figures (b) and (c) that clearly shows edges are enhanced. For allowing better 

evaluation, figures (d) through (h) represent corresponding fragments extracted from 

figures (a) – (d) respectively.  
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(a) 

 
(b) 

 
(c) 

Figure  5-12 - Sensor frequency response for fill factor of 1 – 2D and cross Sect. views. Figures 

(a), (b) and (c) are the cross sections of the Y components frequency responses along the diagonal, R 

and S axes respectively; the green and cyan, red and blue lines represent the Y component frequency 

response for green, red and blue pixels in the Bayer scheme. The arrows mark the frequency where for 

the blue or red channel all luminance information is lost. 
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Figure  5-13 – Acquisitioning Setup 

Figure  5-15 illustrates the efficiency of the SR process through images’ spectra. 

Figure  5-15(a) presents the estimation of the stable scene of a turbulent degraded 

frame extracted from the ‘star’ video, interpolated to twice of its original size. The 

corresponding super-resolved image, after aperture correction, is depicted in Figure 

 5-15(b). Figures (c) and (d) show corresponding image spectra intensities. It is evident 

that information in higher frequencies outside the base band of original images is 

reconstructed in the process.  

 For quantitative evaluation of the IEBW measure was used (See Sect.  5.2). The 

IEBW factors for the images shown in Figure  5-14 and Figure  5-15 are given in Table 

 5-4, which suggests, similarly to the monochrome case, that the super-resolved 

images do have higher effective bandwidths. 

In conclusion, one can state that the presented results confirm that color 

sequences subjected to turbulence and acquired by commonly used camera with 

single CCD array can be considerably enhanced in their resolution using the SR 

process.  

 

 

 

Table  5-4 – The effective bandwidth measure for Figure  5-14 and Figure  5-15 for the interpolated 

and super-resolved images, both are twice in size than the original image 

 Figure  5-14 Figure  5-15 

Interpolated Image 0.2050 0.1459 

Super-Resolved Image 0.2074 0.1814 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure  5-14 – The SR process. Figure a) is the original turbulence degraded color image, (b) is the 

reference frame computed in the first processing stage, interpolated to twice of its original size. Figure 

(c) is the super-resolved image Figure e) is the absolute difference of (b) and (c). Figures (e)-(h) are a 

magnified matching fragment from figures a) through d) respectively.  

5.5. Potential and Limitation 
In the evaluation of the results obtained in the previous sections, for real-life 

video SR, one should take into account several parameters such as variance of 

turbulence local displacements, fill factor of video camera, the number of frames 

involved in the process and the number of re-interpolation iterations. This section 

presents results of investigation, by means of computer simulation, into how those 

parameters affect the SR results.   

5.5.1. Computer Model 
In order to understand the potentials of SR from distorted video, the computer 

simulation software, presented in  4.5, was extended so it could examine the influence 

of the different parameters on the maximum achievable performance. The following 

parameters were investigated: Camera fill factor, turbulence intensity, the number of 

input frames, the number of iterations in the process of re-interpolation. Those are 
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discussed, correspondingly, in sections  5.5.1.1- 5.5.1.4. The generation of the output 

synthetic frame is described in Sect.  5.5.1.5. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure  5-15 – SR through turbulent water currents. Figure a) is the stable reference frame 

interpolated to twice of its original size, while Figure b) is the super-resolved image.  Figures c) and d) 

show corresponding image spectra intensities of a) and b). 

5.5.1.1. Camera Fill Factor 
The camera fill factor is the ratio of the active detection area (the size of the light 

sensitive photodiode) to the inter pixel distance, as shown in Figure  5-16, where a 

pixel consists of sensitive detection area (white) and insensitive areas (gray), due to 

the electronics needed for the sensor’s operation. The fill factor value is smaller than 

or equal to 1 (the ratio between the gray area to the entire sensor area). Camera photo 

detectors introduce low pass filtering to the images captured by the camera. Large fill 

factor means better light energy efficiency of photo detectors, which in return, results 

in higher degree of low pass filtering and loss of image high spatial frequencies. 

Figure  5-17 illustrates frequency responses of photo detectors with different fill 
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factors. The resolution of images acquired by cameras is ultimately limited by this 

low pass filtering.   

In the evaluation of the results obtained for real-life video, in sections  5.1 and 

 5.2, one should take into account that substantial resolution enhancement can be 

expected only if the camera fill-factor is small enough. The camera fill-factor 

determines the degree of low-pass filtering introduced by the optics of the camera. 

Due to this low pass filtering; image high frequencies in the base-band and aliasing 

high frequency components that come into the base-band due to image sampling are 

suppressed. Those aliasing components can be recovered and returned back to their 

true frequencies outside the base-band in the described SR process, but only if they 

have not been lost due to the camera low pass filtering. The larger fill-factor is, the 

heavier unrecoverable resolution losses will be. 

Effective detection areas

Se
ns

or

Inter-Pixel Distance  

Figure  5-16: Illustration of the fill factor and the inter pixel distance 

 

Figure  5-17 – Camera frequency responses for large and small fill factors. Frequency axis is 

normalized to the width of the camera base band 
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5.5.1.2. Turbulence Intensity 
Pixel displacements due to atmospheric turbulence are chaotic and therefore are 

characterized by their statistical moments. In our study, the intensity of the turbulence 

was specified by the standard deviation of the motion vector length. Weak turbulence 

with low standard deviation of the motion vector magnitude causes small shifts. In 

this case, the low-resolution (LR) video will virtually appear static and the frames will 

be nearly identical. Intensive turbulence with standard deviation by the order of the 

inter-pixel distance may cause substantial aliasing.  

5.5.1.3. The number of processed low resolution frames 
The quality of the resolution-enhanced frames depends on the amount of data 

used for their formation. More frames can potentially produce better quality. 

However, when the number of frames is becoming large enough, having more frames 

will not necessarily supply more (or significantly more) new pixels, while it will 

require more processing time. 

5.5.1.4. The number of iterations in the process of re-
interpolation 

Once the motion vectors for each available low resolution frame are known, 

pixels in the sub-sampled reference frame are replaced with known pixels from those 

frames. As a result, an up-sampled reference frame that contains pixels (samples) 

from all the low resolution images is obtained. At this stage it is required finally to 

perform image re-interpolation to remove aliasing and to generate the best 

approximation to the image from the given set of pixels. This is achieved by the 

iterative interpolation algorithm, which converges to the best band limited 

approximation of the image. Larger number of iterations means that the final image 

will be closer to the best possible approximation within a given bandwidth. However, 

iterations consume time, and therefore a compromise should be sought between the 

resulting image quality and computation time. 

5.5.1.5. Creating a Low-Resolution Turbulent Video 
The input parameters for the simulation were camera fill factor and the frame-

wise pixel translation maps for simulating the turbulence effect. The realizations of 

the motion vector maps were generated in the form of X- and Y-shift arrays of 

pseudo-random Gaussian random numbers with a given standard deviation as 
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described in Sect.  4.5.1. As illustrated by Figure  5-18, for each realization of the pixel 

translation map, a corresponding low-resolution frame was produced by means of 

down-sampling of up-sampled low pass filtered high-resolution image according to 

the sampling grid specified by the corresponding motion vector map.  

The up-sampling factor used in the model was M=10, and the down-sampling 

factor was N=20. Once low resolution frames were obtained, they were used as an 

input sequences for the SR algorithm. The computer model’s out frames are presented 

in Figure  5-19, where figure (c) is the low resolution turbulence degraded output 

generated from the original high resolution test image (a), using the motion vector 

map presented in figure (b). Similarly, Figure  5-20(a) and (b) are, correspondingly, 

high-resolution text image and its corresponding low-resolution degraded output.   

Test HR
Input image

Image up‐sampling (by factor M) 
Using Discrete SINC interpolation

Low‐pass 
Filtering

Fill 
Factor

Local 
shifting

Image sub‐sampling (by factor N)
LR Turbulent 

Frames

Motion 
Field

 
Figure  5-18 Flow diagram of the computer model 

   
(a) (b) (c) 

Figure  5-19 – Computer generated test sequence: Figure (c) is the low resolution output generated 

from figure (a), which is the original high resolution test image, using the motion vector map presented 

in figure. 
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(a) (b) 

Figure  5-20: (a) Original HR Text Image (b) Turbulent LR Text image 

5.5.2. Simulations, Results and Conclusions 
This Sect. discusses the SR results obtained when processing the simulated 

turbulent videos generated by the simulation software. Those results allow evaluating 

the potential and limitations of the proposed algorithms.  

5.5.2.1. Camera Fill Factor 
As described in Sect.  5.5.2.1, the camera fill factor determines the degree of low 

pass filtering of images acquired by the camera. Figure  5-21 illustrates results of 

generating super-resolved images from sequences of turbulence distorted low-

resolution images acquired with cameras with fill-factors 0.05, 0.5 and 0.95. In all 

cases, the number of low-resolution frames used was 30, the standard deviation of the 

motion vector length was 0.5 pixels and 50 iterations were used for re-interpolation. It 

can clearly be seen that as small the fill factor as better the results achieved. Figures 

(d)-(f) illustrate the same notion through images’ spectra and demonstrate that images 

acquired with larger fill factor have less content in higher frequencies. 

5.5.2.2. Turbulence intensity 
Results of studying influence of turbulence intensity on the efficiency of image 

resolution recovery through the SR process are illustrated in Figure  5-22. Super-

resolved images shown in Figure  5-22 were obtained from 30 low resolution frames, 

the camera fill factor was 0.05 and 100 iterations were used in the interpolation. 

Examining these images, it is evident that turbulence with standard deviation of 

motion vector lengths of about 0.5 inter-pixel distances creates a sort of optimal 

conditions for image resolution recovery. Rarely, the physical conditions which affect 

turbulence can be governed. With that, the camera’s zoom can be adjusted so the 
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motion field’s standard deviation becomes 0.5 pixels. Furthermore since the motion 

field and its characteristics can be computed in real-time, the camera’s zoom settings 

can be adjusted autonomously by the observation system. 

 
(a) (b) (c) 

  
(d) (e) (f) 

Figure  5-21– Super-resolved images obtained from low resolution images acquired by cameras 

with different fill factors: a) - fill factor 0.05;  b) - fill factor 0.5; c) - fill factor 0.95. Figures (d)-(f) 

show corresponding image spectra intensities displayed in pseudo colors. 

5.5.2.3. The number of processed frames  
Obviously, the number of processed low-resolution frames directly affects the SR 

performance, as more frames provide more additional samples forming denser sample 

grid. The question, should be addressed with this respect, is how many frames are 

needed to enable resolution improvement for a given turbulence intensity? Ideally, to 

obtain two times higher resolution one needs to supply 3 additional samples for each 

initial low resolution sample which means 3 additional frames for each low resolution 

frame. Our simulation, however, has shown that in reality the number of additional 

frames must be much larger. This allows elimination of outliers which might be a 

result of system noise or abnormal errors in the motion estimation schemes which was 

integrated as a part of the SR method (see Chapter  3. ). This finding is illustrated in 

Figure  5-23 which presents two test images. In these experiments, camera fill factor 
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was 0.05, standard deviation of motion vector length was 0.5 and 50 interpolation 

iterations were used.  

  

(a) (b) (c) 

 
(d) (e) (f) 

Figure  5-22 – SR results obtained from low resolution images distorted by atmospheric turbulence 

with different intensity: (a) standard deviation (STD) of 0.1 inter-pixel distance; (b) STD of 0.4 inter-

pixel distance; and (c) STD of 0.8 of inter-pixel distance. (d) Motion vectors magnitudes’ standard 

deviation of 0.1 inter-pixel distance; (e) STD 0.45 of inter-pixel distance; and (f) STD 0.9 of inter-pixel 

distance. 

5.5.2.4. The number of iterations in the process of re-
interpolation 

Image re-interpolation is the final stage of the SR process aimed at recovery of 

those samples in the dense sampling grid that were not obtained from the accumulated 

low resolution frames. It is implemented through an iterative interpolation algorithm, 

which converges to the best band limited approximation of the image. The latter claim 

is justified and dealt with, thoroughly, in the succeeding chapter.   

Figure  5-24 (a) through (c) show how the number of iterations influences the 

quality of final super-resolved image. In this experiment, camera fill factor was 0.05, 

standard deviation of vector motion lengths was 0.5 of inter-pixel distances and 30 

low resolution frames were used. Figure  5-25 illustrates the iteration process. It shows 
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a typical dependence of the energy of the difference between subsequent images in 

course of iterations from the number of interpolation iterations. From these figures 

one can see that the number of iterations is a quite critical parameter of the restoration 

process and that, to achieve a good restoration quality, one needs about 100 iterations. 

Figure  5-25 shows the convergence of the process. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure  5-23 - Results of image resolution enhancement from 5 (figures (a) and (d)), 15 ((b) and 

(d)), and 30 ((c) and (f)) low resolution turbulent images. 

 

 

(a) (b) (c)

Figure  5-24– The SR process as a function of the number of iterations of the re-interpolation 

scheme. The number of iterations used to compute figures (a), (b) and (c) are 5, 20 and 100 iterations, 

respectively. 
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Figure  5-25: Energy of the difference between subsequent images in course of iterations as a 

function of the number of interpolation iterations 

5.6. Super-resolution in Real-time 
Nowadays most digital footage data is transmitted and stored using the 

International Telecommunication Union (ITU) and Moving Picture Experts Group 

(MPEG) coding standards [130,131]. SR techniques that have been designed for raw, 

uncompressed, video may not be effective when applied to compressed video because 

they do not incorporate the compression process into their models. This has raised the 

need for SR techniques which utilize the standards' various features. A real-time SR 

method, over video encoder hardware, was presented in [147]. Yet, the suggested 

method utilized proprietary compression standard and exploited only the sequence's 

motion field. Using a common compression standard, such as ITU H.264 or MPEG-4 

presents several benefits, such as real-time compatibility and broad availability of 

software and hardware implementations. In this section a practical SR scheme, which 

utilizes MPEG-4 features for producing, in real-time, good quality higher-resolution 

videos is described [148].  

5.6.1. Super-resolution within the MPEG-4 Framework 
MPEG-4 Part 10 or MPEG-4 AVC (for Advanced Video Coding) is a standard 

for video compression [149]. It is also known as, H.264. The intent of H.264/AVC 

was to create a standard capable of providing good video quality at substantially 

lower bit rates, without increasing the complexity of design so much that it would be 

impractical or excessively expensive to implement. An additional goal was to provide 

enough flexibility to allow the standard to be applied to a wide variety of applications 
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on a wide variety of networks and systems, including low and high bit rates, low and 

high resolution video, broadcast, DVD storage, RTP/IP packet networks, and ITU-T 

multimedia telephony systems. 

A digital image sequence coded at a low bit rate using a motion-compensated 

video compression standard should contain little data redundancy. However, the 

success of a particular SR enhancement algorithm is predicated on sub-pixel-

resolution overlap (i.e., redundancy) of moving objects from frame-to frame. If an 

MPEG bit stream is coded at a relatively high bit rate (e.g., a compression ratio of 

15:1), enough data redundancy exists within the bit stream to successfully perform SR 

enhancement, as a part of the decoding process held by the video decoding hardware. 

5.6.1.1. Video Object Coding 
One of the key contributions of MPEG-4Visual is a move away from the 

‘traditional’ view of a video sequence as being merely a collection of rectangular 

frames of video. Instead, MPEG-4 Visual treats a video sequence as a collection of 

one or more video objects (VO). MPEG-4 Visual defines a video object as a flexible 

‘entity that a user is allowed to access (seek, browse) and manipulate (cut and paste) 

[150]. An instance of a VO at a particular point in time is a video object plane (VOP). 

A VOP is defined by its texture (luminance and chrominance values) and its shape. In 

general, MPEG-4 coding of a VOP involves coding of motion, texture, and shape 

information. To enable access to an arbitrarily shaped object, such an object has to be 

separated from the background and the other objects.  

MPEG-4 video object coding consists of shape coding (for arbitrarily shaped 

VOs), motion compensated prediction to reduce temporal redundancies, and DCT-

based texture coding of the motion compensated prediction error data to reduce spatial 

redundancies. The video coding is performed at the macroblock level. VOPs are 

divided into macroblocks, such that they are represented with the minimum number of 

macroblocks within a bounding rectangle. Similar to MPEG- 1 and MPEG-2, MPEG-

4 supports intracoded (I), temporally predicted (P), and bidirectionally predicted (B) 

VOPs, all of which are described in the following section.  

5.6.1.2. MPEG Picture Types 
MPEG-encoded image sequences are divided into groups of pictures (GOPs) 

composed of primarily three different frame types: intra-coded frames (I-pictures), 

predictive-coded frames (P-pictures), and bi-directionally predictive-coded frames (B-
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pictures). I-pictures are coded independently without reference to other pictures, using 

block-DCT (discrete cosine transform) compression. P-pictures obtain predictions 

from temporally preceding I- or P-pictures, while B-pictures are predicted from the 

nearest preceding and/or upcoming I- or P-pictures.  

In the video observation model, the I-picture which begins a particular GOP is 

the reference frame. The SR algorithm requires motion vectors between the reference 

frame and all other frames. Therefore, only the neighboring frames up to and 

including the first P-picture in the current GOP and the frames down to and excluding 

the last P-picture in the previous GOP are integrated with the I-picture.  

5.6.1.3. Computing the Reference Frame  
The stable estimation of the scene is computed through pixel-wise temporal 

median (see  4.2). Since all motion vectors are computed with respect to the last I-

frame, the suggested solution takes the first I-frame since the following frames have 

predictions which are directly connected to macro-blocks within the I-picture. 

Integration of more than one GOP into the SR process is desired, therefore, for every 

new I-frame the translations with regards to the reference I-frame have to be 

computed.  

5.6.1.4. Motion analysis  
Estimating accurate sub-pixel-resolution motion vectors is a critically important 

component in SR enhancement algorithms. The goal is to compute the motion fields 

as quickly and as accurately as possible, so that SR enhancement becomes practical 

desktop computing application. As described in Sect.  5.1, the SR process requires 

fractional translations rather than just integer values. The MPEG-4 standard defines 

half-pixel vectors in MPEG-4 Simple Profile and quarter-pixel vectors in Advanced 

Simple profile and H.264. Sub-pixel motion estimation requires the encoder to 

interpolate between integer sample positions in the reference frame. Interpolation is 

computationally intensive. Calculating sub-pixel samples for the entire search window 

is not usually necessary. Instead, it is sufficient to find the best integer-pixel match 

(using one of the fast search algorithms discussed in  3.2) and then to search 

interpolated positions adjacent to this position. In the case of quarter-pixel motion 

estimation, first the best integer match is found; then the best half-pixel position 

match in the immediate neighborhood is calculated; finally the best quarter-pixel 

match around this half-pixel position is found. 
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5.6.1.5. Real Motion Extraction 
The pixel displacement map is analyzed and segmented to separate pixels of the 

real moving objects from those that belong to the stable scene and are displaced solely 

due to the atmosphere turbulence. Using the MPEG-4 scene segmentation for 

different VOP’s, a video scene may be made up of a background object and a number 

of separate foreground objects. The separate objects may be exploited for efficient 

background separation. One drawback, however, is the fact that the MPEG-4 standard 

was designed for natural videos, therefore the presence of turbulent motion might lead 

to a significant number of errors in the process of segmenting the scene into VO's. 

This results in more areas that are regarded as real moving objects (see  4.3) and are 

omitted from the data accumulation process. This is coped by accumulating more low 

resolution frames in the process.  

5.6.1.6. Global Motion Extraction 
Macro blocks within the same video object may experience similar motion. For 

example, camera pan will produce apparent linear movement of the entire scene, 

camera zoom or rotation will produce a more complex apparent motion and macro 

blocks within a large object may all move in the same direction. Global Motion 

Compensation (GMC) enables an encoder to transmit a small number of motion 

(warping) parameters that describe a default ‘global’ motion. Additionally, the GMC 

can provide improved motion analysis and real motion extraction.  

5.6.2. Generation of super-resolved stable frames 
Once the data accumulation and interpolation stages are done, the output-

stabilized and resolution-enhanced image obtained might be subjected to additional 

processing aimed at camera aperture correction, denoising and reducing blocking (de-

blocking) and ringing effects (de-ringing). The goal of a de-blocking or de-ringing 

filter is to minimize the effect of blocking or ringing distortion whilst preserving 

important features of the image. MPEG-4 Visual describes a deblocking filter and a 

deringing filter: these are ‘informative’ parts of the standard and are therefore 

optional. Both filters are designed to be placed at the output of the decoder. With this 

type of post-filter, unfiltered decoded frames are used as the reference for motion-

compensated reconstruction of further frames. This means that the filters improve 

visual quality at the decoder but have no effect on the encoding and decoding 

processes. 
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5.6.3. Results 
Figure  5-26 and Figure  5-27 present experimental results, in which decoded 

pictures from MPEG-4 bit streams containing translations due to global and turbulent 

motions. Figure  5-26 depicts the SR process, through MPEG-4, applied on a real-life 

sequence containing global motion. The sequence was acquired with 320x240 pixels 

webcam. Figure  5-26(a) presents the first frame extracted from the sequence 

interpolated to twice, on each axis, of its original size. Figure  5-26(b) is the super-

resolved image after accumulation of 50 frames. The translation of each frame with 

regards to the first frame, which is the first I-frame broadcasted, was computed using 

the MPEG-4 diamond search with quarter pixel accuracy. Figure  5-26(c) and (d) 

present fragments extracted from figures (a) and (b) respectively. The left-hand side 

parts of (c) and (d) are interpolated (Figure  5-26 (a)), while the right-hand parts are 

the corresponding super-resolved fragments.  

A super-resolved frame computed using 150 frames of a turbulent degraded 

sequence is presented in Figure  5-27(a). Figure (b) depicts the absolute difference of 

the super-resolved image and the reference frame interpolated to four times of its 

original size.  As one can see, most of the difference's energy is located in the vicinity 

of edges. The right-hand side of Figure  5-27(c) shows a fragment extracted from the 

interpolated reference frame, while the left-hand side is the corresponding super-

resolved one. As one can see the later contains finer details of the scene. Finally, 

Figure  5-27(d) presents both spectra of the interpolated (on the left-hand side of 

Figure  5-27(d)) and of the super-resolved frames. It can be seen that the SR process 

enhance data in higher frequencies.  

5.7. Summary 
The chapter has shown theoretically and practically that distortion caused by 

turbulence or camera motions can be used to increase image resolution beyond 

camera’s limitation. In order to obtain good results, it is required to have some motion 

in the scene to allow sub-pixel re-sampling. Loosely speaking, the more frames in the 

given video the more information is given and therefore better results can be obtained. 

However, at some stage more frames will not supply new information and therefore 

the SR results will reach saturation. Several dozens of low-correlated frames are 

required to have significant results. Another limitation over the SR performance is the 

fill factor of the camera. Large fill factor causes to a loss of high frequencies. Those 
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frequencies are lost and cannot be restored. A good interpolation method is also 

important, to remove aliasing of the sampling, and to achieve the best approximation 

to the original high resolution image from the given samples. The interpolation 

methods and the recovery of missing data on a non-uniform sampling is the subject of 

Chapter  6. For evaluating the super-resolved images a quantitative image effective 

bandwidth (IEBW) measure is introduced. This measure corresponds to the human eye 

quality perception and is invariant to the image’s size, hence the quality of images 

with different sizes can be compared.  

 

 

 
(a) (b) 

 
(c) (d) 

Figure  5-26 – SR from Global Motions through MPEG-4 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure  5-27 - SR of turbulent degraded videos MPEG-4. 
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6.  Sparse Data Interpolation 
In many applications it may happen that sampled data are collected 

in irregular fashion and/or it may occur that some samples of a regular 

sampling grid are lost or unavailable. Various sparse data interpolation 

algorithms are known. This chapter unifies known algorithms and 

addresses the problem of signal reconstruction from irregular samples 

and recovery of missing data as equivalent tasks and suggests a new 

unified approach to optimal recovery based on the Discrete Sampling 

Theorem, which is formulated within its scope. This theorem provides a 

tool for optimal, in terms of root mean squared error, approximation of 

arbitrary discrete signals specified by their sparse samples, provided 

appropriate selection of the signal representation transform. 

6.1. Preface 
The discrete sampling theorem states that band-limited discrete signals can be 

precisely recovered from their sparse samples, provided positions of the available 

samples satisfy certain limitations. While each of the previous works in the field (see 

Sect.  1.4), makes a major algorithmic contribution, which contains within it key 

ingredients that could be used to establish the discrete sampling theorem, we believe 

that suggested framework is a coherent and offers the most natural way to define the 

sampling theorem for digital data, and which gives certain algorithmic ideas an 

intellectually clear role in supporting that framework. The applicability of the 

framework is presented for both known sparse data reconstruction methods, based on 

the discrete Fourier and Cosine transforms [151], and for new ones, based on the 

Radon,  Haar, Walsh and Wavelets transforms. 

The rest of the chapter is organized as follows, in Sect.  6.3, the mathematical 

foundations, of this approach, are provided by the discrete sampling theorem. In Sect. 

 6.4 we discuss the validity of the assumptions put in the base of the presented 

approach. In Sect.  6.5, the properties of certain transforms, which are specifically 

relevant for signal recovery from sparse data, are discussed. Finally, in Sect.  6.6 we 

provide an experimental evidence of precise signal reconstruction from sparse data. 

Additionally, possible applications are addressed in Sect.  6.7. 
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6.2. Preliminaries 
For the formulation of the discrete sampling theorem, we assume that: 

• There are K samples of a continuous signal, taken at irregular positions within a 

certain known interval, X , of the signal support.  

• The physical coordinates of the available samples are known with a certain 

accuracy, xΔ . The ratio of the position accuracy and the support interval define 

the signal regular sampling grid with the number of sampling positions, where the 

K available signal samples are sparsely scattered over this sampling grid. 

K
x

XN >
Δ

=  ( 6-1) 

• The N samples constructing the discrete signals, which represent continuous 

ones, are “band-limited” in a domain of a certain discrete orthogonal transform.   

• The goal of the processing is generating out of this incomplete set of K  samples a 

complete set of N  samples specified in each node of the grid.  

6.3. The Discrete Sampling Theorem Formulation 
Let NA  be a vector of N  samples { } 1,...,0 −= Nkka  which completely define a signal. 

Let Q be a K-size proper subset of {0,1,..,N-1}  and assume that only the NK <  

samples { } Qkka ∈  are known. Let NΦ be an NxN orthonormal (unitary for the complex 

case) matrix. The columns of NΦ  ({ } 1,...0 −= Nrrϕ ) define an orthonormal basis of NR .  

It follows that  
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where NΓ  is the signal's transform coefficients ({ } 1,...,0 −= Nrrγ ) vector when 

representing  NA  by the  basis vectors { } 1,...0 −= Nrrϕ .  Consequently, the available K 

signal samples define a system of K  equations: 

( )
Qk

N

m
kmk ma

∈

−

= ⎭⎬
⎫

⎩⎨
⎧ ∑=

1

0
ϕγ . ( 6-3) 

Let R be a P-size proper subset of {0,1,..,N-1}  where P<K. A discrete band-

limited signal approximation to the signal NA  is obtained by  

( )
1,...,0

ˆ
−=∈ ⎭⎬

⎫
⎩⎨
⎧ ∑=

NkRm
kmk ma ϕγ  ( 6-4) 
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The underlying approximation model is the assumption that all transform 

coefficients with indices Rr∉  are equal to zero.  Assuming that NA  is a discrete 

band-limited signal (i.e., 1,...,0,ˆ −== Nkkk aa ), the available signal samples { } Qkka ∈  can 

now be expressed as: 

( )
QkRm

kmk ma
∈∈ ⎭⎬

⎫
⎩⎨
⎧ ∑= ϕγ  ( 6-5) 

Eq. 2.5 is, in fact, a linear system consisting of K equations with 

KP ≤ unknowns. Existence and uniqueness of a solution to this linear system of 

equations is dependent, for any transform, on the subsets Q and R.   

For any signal NA , by virtue of the Parseval’s theorem, the band-limited signal 

NÂ  approximates NA with a mean squared error 

∑ ∑
−

= ∉

=−=−=
1

0

22ˆˆ
N

k Rr
rkkNN aaAAMSE γ  ( 6-6) 

This error can be minimized by an appropriate selection of ortohonormal basis 

defined by the transform NΦ  and the subset R of used vector basis. In order to do so, 

one must know the transform NΦ basis functions energy compaction ordering. If one 

knows, for a class of signals, a transform that features the best energy compaction in 

the smallest number of transform coefficients, one can, by selection of this transform, 

secure the best band-limited approximation of the signal { }ka  from the given subset 

{ }ka~  of its samples. 

 In this way, we arrive at the following Discrete Sampling Theorem, which is 

formulated in the following two statements: 

Statement 1. For any discrete signal of N samples defined by its 

NK ≤  sparse and not necessarily regularly arranged samples, its 

band-limited, in terms of certain transform NΦ , approximation can be 

obtained with mean square error defined by Eq. ( 6-6). The 

approximation error can be minimized by using a transform with the 

best energy compaction property. 

 

Statement 2. Any signal of N samples, that is known to have only 

NK ≤  non-zero transform coefficients for a certain transform 



Tel-Aviv University 
The Iby & Aldar Fleischman - Faculty of Engineering 
Department of Electrical Engineering – Physical Electronics  
 

 - 95 - 

NΦ (discrete band-limited signal), can be fully recovered from its 

subset of K  samples, as long as Eq. 2.5 is solvable.  

6.4. Validity of the assumptions 
The applicability of the above derivation depends on the validity of the 

assumption that band-limited, in certain basis, approximation of signals is an 

acceptable solution in data recovery. To this end, there is a trivial necessary condition, 

that KP ≤ , hence the number of samples should be at least equal to the dimension of 

the sub-space of the band-limited signals non-zero transform coefficients. A 

validation to this assumption has been presented in signal compression algorithms. In 

data compression applications, such transforms as DCT and certain wavelets are 

known for their very good energy compaction properties for wide variety of signals in 

image and audio processing and are successfully used for compression by means of 

replacement of signals by their low pass band-limited approximations [152]. Recent 

advances in compressive sensing [153] also support signal band-limitedness 

assumption. An important application, where this assumption is supported by a 

physical reality is computed tomography where slice projections can very frequently 

be regarded as band-limited, in Radon transform, signals as the outer parts of slices 

are usually known to be empty.  

6.5. Various Transforms Analysis 

6.5.1. Discrete Fourier and Cosine Transforms 

Let  NΦ  be the NxN Discrete Fourier transform matrix and kA~ are DFT band-

limited signals of N samples with only K nonzero low frequency DFT coefficients. 

The discrete signal NA can be precisely recovered from exactly K of its arbitrarily 

taken samples, if R is a contiguous set (modulo N) in the transform domain. 

As it follows from the theorem’s statements and from Eqs. ( 6-4)-( 6-6), the 

theorem is proven if matrix LP
DFTKofN  is invertible. While a succinct proof is 

presented here, the complete proof and discussion, for the DFT case, can be found in 

[151].  

Consider the LP
DFTofNK -trimmed DFTN matrix, given by:  
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Without loss of generality, we can assume that the indices of the given 

contiguous samples are{ }
Pkkk aaa ,,,

21
L  and the signal’s bandwidth is between the 

frequencies ( )MMMM ,1...,1, −+−− . Substituting in equation ( 6-7) gives: 
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Showing that LP
DFTofNK  is a nonsingular matrix, can be found by calculating its 

determinant in the following way: 
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The first matrix in the product of matrices, described in Eq. ( 6-9), is a diagonal, 

which is obviously invertible. The second one is a version of Vandermonde matrices, 

which are also known to have non-zero determinant if, like in our case, its ratios for 

each row are distinct [154], so that 0det ≠KofN and therefore ( ) pKofNrank = for 

every set of K samples. 

The theorem was proven for any arbitrary K sample positions and therefore 

suggests that any band-limited signal, in DFT domain, can be recovered from it sparse 

representation, given that a sufficient contiguous number of samples is given. 

Sufficient, as explained earlier, is the number of coefficients in the DFT domain. 

Now, Let  NΦ  be the NxN Discrete Cosine transform matrix and kA~ are DCT 

band-limited signals, in DCT domain, of N samples with only K nonzero low 

frequency DCT coefficients. The discrete signal NA can be precisely recovered from 

exactly K of its arbitrarily taken samples. 
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N-point Discrete Cosine Transform of a signal is equivalent to 2N-point Shifted 

Discrete Fourier Transform (SDFT) with shift parameters (1/2,0) of 2N- sample signal 

obtained from the initial one by its mirror reflection [155]. The shifted DFT matrix is 

simply a product of a DFT matrix and a nonsingular diagonal matrix. Hence, the proof 

for DCT is essentially the same as in the DFT case.  

These theorems also hold for the two-dimensional (2D) DFT and DCT 

transforms, provided that the band-limitation conditions are separable [156]. The case 

of non-separable band-limitation requires further study. However, in Sect. 6 we 

provide experimental results that show that precise recovery of 2D signals with 

circularly band-limited DCT spectrum is possible for virtually arbitrary positions of 

its sparse samples. Note that working in DFT or DCT domain, in the case of low-pass 

band-limitation, results in signal discrete sinc-interpolation [118]. 

6.5.2. The Discrete Radon Transform 
A straightforward application the discussed sparse data recovery algorithm can 

find in tomographic imaging, where it frequently happens that a substantial part of 

slices, which surrounds the body slice, is known to be an empty field. This means that 

slice projections (sinograms) are Radon transform “band-limited” functions. 

Therefore whatever number of projections is available, a certain number of additional 

projections, commensurable, according to the discrete sampling theorem, with the size 

of the slice empty zone, can be obtained and the corresponding resolution increase in 

the reconstructed images can be achieved within the described framework. Another 

option is recovery of projection data that might be missing due to sensor faults or to 

other reasons. 

In order to describe the sparse data recovery through the Radon transform within 

the suggested discrete sampling theorem, one must have a discrete transform and its 

algebraically exact inverse. While the continuum theory defines the Radon transform 

and its inverse, the discrete equivalent is not a trivial problem.  

Some authors have attempted to exploit the projection-slice theorem [157]. In the 

continuum theory, this says that Radon transform can be obtained by (a) performing a 

2-d Fourier Transform, (b) obtaining a radial slice of the Fourier transform, and (c) 

applying a 1-d inverse Fourier transform to the obtained slice. This suggests an 

algorithm for discrete data, by replacing steps (a) and (c) by discrete fast Fourier 

transforms for data on 2-d and 1-d Cartesian grids, respectively. However, strictly 
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speaking, this continuum approach is problematic since step (b) is not naturally 

defined on digital data: the 2-d FFT outputs data in a Cartesian format, while the 

radial slices of the Fourier domain typically do not intersect the Cartesian grid. 

Therefore, some sort of interpolation is required, and so the transform is not 

algebraically exact. Also, even if the transform should turn out to be invertible (which 

may be very difficult to determine) the transform is typically not invertible by any 

straightforward algorithm. 

Other authors have attempted to exploit two-scale relations, which say that if one 

knows the Radon transform over four dyadic sub-squares of a dyadic square these can 

be combined to obtain the Radon transform over the larger square [158,159,160,161]. 

This suggests a recursive algorithm, in which the problem is broken up to the problem 

of computing Radon transforms over squares of smaller sizes which are then 

recombined. Strictly speaking, however, the driving identity is a fact about the 

continuum and does not directly apply to digital arrays, so that when this principle is 

operationalized, the results involve interpolation and other approximations, and end 

up being quite crude compared to what we have in mind here. Finally, the use of two-

scale relations means that summation along lines is approximated by summation 

along line segments which are not exactly parallel and so the results can lack a certain 

degree of geometric fidelity. 

Recently, a stable forward and inverse Radon transform called Fast Slant-Stack 

[162] was suggested. The suggested transform scheme, which coaligns with the 

continuum theory, presents algebraic exactness, geometric fidelity, fast computation 

and invertibility. Those characteristics make this Slant-Stack discrete Radon 

transform most suitable for sparse data recovery within the suggested framework.  

The Slant-Stack transforms images, with size ( )NN × , to a corresponding Radon 

image with size of ( )NN 22 × . Let I denote the vector space of ( )NN × arrays and D 

denote the vector space of ( )NN 22 ×  arrays. The transform DI →ℜ :  and its inverse 

can be written in the following matrices formulation: 

XY ℜ=  ( 6-10) 

YX #ℜ=  ( 6-11) 

where DY ∈ , IX ∈ and #ℜ is the generalized inverse applied to an array Y. 



Tel-Aviv University 
The Iby & Aldar Fleischman - Faculty of Engineering 
Department of Electrical Engineering – Physical Electronics  
 

 - 99 - 

The transform matrix ℜ size is ( )22 4NN ×  and its rank is 2N [162]. 

Consequentially it can be sown that, provided appropriate subset of samples of D, the 

transformation matrix full rank is preserved and the truncated transformation matrix, 

RadonKofN  has an inverse. With that, this does not mean that there is an algorithm that 

can actually invert it. For that to happen, one need the mapping to have a small 

condition number [163].  

6.5.3. Wavelets and other bases 
The main property of wavelet bases is that their basis functions are most naturally 

ordered in terms of two components: scale and position within the scale. Scale index 

is analogous to the frequency index for DFT. Position index tells only of the shift of 

the same basis function within the signal on each scale. Therefore band-limitation is 

analogous to scale limitation for wavelets. Limitations, in terms of position, are 

trivial: it simply means that some parts of the signal are not relevant. Commonly, 

discrete wavelets are designed for signals whose length is an integer power of 2 

( nN 2= ). For such signals, there are ns ≤  scales and possible band-limitations.  

The simplest form of wavelet bases is the Haar basis functions.  The one 

dimensional Haar wavelet’s mother function, ( )τψ , can be described as: 

( )
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and its scaling function φ(t) can be described as: 
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⎧ <≤

=
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t
t

,0
10,1

φ  ( 6-13) 

A signal with nN 2= samples and band-limitation of P , on the Haar domain (the 

transform coefficients { }NP ,...,1+  are zero) is composed of, at most, P piecewise 

constant intervals. For any two samples that are located on the same interval, the 

representation in the Haar domain is the same. Therefore, having more than one 

sample per constant interval will not change the rank of the matrix KofN . The 

condition for perfect reconstruction is to have at least one sample on each of those 

intervals (all in all at least P samples for the KofN matrix).  
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For the Walsh basis functions, the index corresponds to the “sequency”, or to the 

number of zero crossings of the basis function. The sequency carries a certain analogy 

to the signal frequency. Basis functions ordering according to their sequency, which is 

characteristic for Walsh transform, preserves, for many real signals, the property of 

decaying transform coefficients’ energy with their index. Therefore, for Walsh 

transform the notion of low-pass band-limited signal approximation, similar to the one 

described in Sect.  6.5.1, for DFT, can be used. On the other hand, Walsh basis 

functions can be characterized by the scale index similarly to that of Haar basis 

functions. A signal with nN 2= samples and band-limitation of P has ⎡ ⎤P2log2 equal 

length intervals, in which each basis function has a constant value. For example, if 

1024N = and 5=P , then there are 8 intervals, each of length of 128 samples. In order 

to have perfect reconstruction, it is needed to have P samples taken from different 

intervals. Unlike the Haar case, not all the intervals are needed to be sampled, but 

only P  intervals out off the total number of intervals.  

For the special case in which P is a power of 2, then there are P intervals in 

which each one of them needs to be sampled, which means that in this special case, 

the reconstruction condition of Walsh is identical to Haar. However, while have 

similar condition for reconstruction, the reconstruction process itself is different in 

those two cases. 

6.6. Experimental Verification and Possible 
Applications 

6.6.1. Introductory 
Signal recovery, from sampled data, through direct matrix inversion, is, 

generally, a very demanding computational procedure. In applications, where one can 

be satisfied with signal reconstruction with limited accuracy, simple iterative 

reconstruction methods can be applied [151]. In the following examples, where 

iterative algorithm is used, the Gerchberg-Papoulis’s procedure [135,136] was 

utilized. 

For the experimental verification of the validity of the discrete sampling theorem 

we used real-life test images and pseudo-random band-limited 1D and 2D test signals 

with uniform spectrum and a selected bandwidth. For the generation of those signals, 

the scheme, which was described in Sect.  3.4 for DCT band-limited signals, is 
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extended to any arbitrary transform. Hence Eq. ( 3-10) can be written in the following 

form: 

( ) { } ( ){ }αα MaskLPFITTI seedtest ⋅= −1  ( 6-14) 

6.6.2. Exact signal recovery from sparse samples  
In addition to the experimental evidences that can be found in the literature for 

DFT, DCT and Wavelets [55,60,151] cases, in this section, we provide evidence of 

the possibility of exact recovery of band-limited signals from sparse data.  Figure  6-1 

-  illustrates exact reconstruction, by the direct matrix inversion and by the iterative 

algorithm, of a band-limited signal of 64 samples from its 13 samples taken at random 

positions or concentrated within of a certain interval of signal support. From the graph 

of signal approximation error versus the number of iterations of the iterative 

algorithm, one can see that the speed of convergence of the iterative algorithm might 

be quite low. Experiments show that the convergence speed of the algorithm depends 

on the spread of the available samples: the more uniformly they are spread over the 

signal support interval the higher the convergence speed.   

Figure  6-1 - Restoration of a DFT low pass band-limited signal by matrix inversion for the cases 

of random (upper left) and compactly placed signal samples (bottom left) and by the iterative algorithm 

(upper right). Bottom right plot shows standard deviation of the signal restoration error as a function of 

the number of iterations. The experiment was conducted for test signal of 64 samples; with bandwidth 

of 13 frequency samples (~1/5 of the signal base band). 

The image presented in Figure  6-2, is a 256x256 pixel test image low-pass band-

limited in DCT domain by a 90o circle sector to have only 3217 non-zero spectral 
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coefficients out of 256x256.  The image was sampled in 3217 positions shown in 

Figure  6-2, a) with white dots and then reconstructed from these sparse samples using 

the iterative reconstruction algorithm with the reconstruction error 81086.3 −⋅ achieved 

after 500 iterations. The result of the reconstruction is shown in Figure  6-2, b). Note 

that in this case the iterative algorithm converges reasonably fast as it can be 

concluded from the graph of standard deviation of the reconstruction error as a 

function of the number of iterations shown in Figure  6-2, c). 

While the iterative algorithm is capable of precise reconstruction of band-limited 

signals, Spline interpolation, for this set of signals, can only produce an approximated 

output. Standard deviation of the reconstruction error achieved using the Wolberg at 

el. Spline interpolation algorithm [57] for this test image is shown for comparison in 

the graph of Figure  6-2, c) by a dotted line. The reconstruction error by itself is shown 

in Figure  6-2, d). For the implementation of the multilevel B-Splines algorithm a code 

kindly provided by Wolberg was used. 

Figure  6-3 -  illustrates a 2D signals band-limited in the Haar transform domain. 

Two examples are illustrated: arrangement of sparse samples for which signal 

recovery is possible and that for which signal is not recoverable. Following the 

theory, outlined in Sect.  6.5.2, when the Haar reconstruction is possible, it is trivial, 

hence the nearest neighbor interpolation method is used.  

A perfect reconstruction of Walsh band-limited signal is depicted in Figure  6-4, 

where the N=512 and P=5. In this example, the resulted WalshKofN  obtained matrix is: 
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and its rank equals to 5. One should note, in this specific example, perfect 

reconstruction is not possible in the Haar transform domain since one of the intervals 

contains no samples. 

6.7. Applications 
There might be numerous applications of above described algorithms for 

recovery band-limited signals and generating band-limited approximations of signals 
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from sparse data. In this section we briefly review few of them. For the latter, the 

above theory and algorithms can be applied as following:  

1. Given a certain number of available signal samples, specify, according to the 

accuracy with which physical coordinates are known, the signal dense sampling 

grid and the required number of samples to be recovered.  

2. Select a transform with presumably better energy compaction capability for the 

signal at hand and specify the signal band limitation in the domain of this 

transform. 

3. Place available signal samples on the signal dense sampling grid and run the direct 

matrix inversion or iterative reconstruction algorithm. 

  

  

Figure  6-2 - Iterative reconstruction of a band-limited profile versus spline-reconstruction: Figure 

a) is the initial profile with samples positions shown in white points; b) presents the reconstruction 

result of the iterative algorithm after 500 iterations; c) depicts the graph of the reconstruction error 

standard deviation versus the number of iterations (solid line) and the spline reconstruction error (dash 

line);   
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Sampling grid

Not recoverable 

Sampling grid

 
Recoverable 

Figure  6-3 - Two cases of sparse sampling of an image band-limited in Haar Transform: a) not 

recoverable case; b) recoverable case (sample points are marked with dots). Image size was 64x64, and 

band-limitation was 8x8 (scale 3) 
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Figure  6-4 - Example for perfect reconstruction on Walsh domain 

We illustrate possible applications on several examples. The first application 

example is recovery of an image corrupted by “salt & pepper” noise.  In case of the 

“salt & papper” noise, image pixels are replaced, with a certain probability of error, 

with their extreme values that correspond to signal minimum or maximum. With 

certain probability of false alarms, erroneous pixels can be quite easily detected, and 

the distorted image can be subjected to the above described iterative reconstruction 
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procedure that will generate a band-limited approximation of the image that preserves 

available not distorted pixels, the band limitation being determined by the rate of non-

distorted pixels. Figure  6-5 illustrates an example of such restoration for the case 

when the probability of a missing pixel is 0.5. The original image is presented in 

Figure  6-5, a). The restoration results using modified median filter over 3x3 window 

is presented in Figure  6-5, b). The median filter is modified so it incorporates into the 

restoration only samples with valid data, as those are the only samples incorporated 

into the interpolation process. The resulting image is depicted in Figure  6-5,c). The 

image is the interpolation approximation of the original image that is low pass band-

limited in DCT domain by a 90o circle sector of radius 0.7 (in the units of the base 

band).  

 
(a) (b) (c) 

Figure  6-5 - Recovery of images corrupted by “salt & pepper” noise with probability of pixel 

missing equal to 0.5. 

Certain recovery of missing image data is possible in even more complicated 

situations when random missing data happens in groups of pixels as it is illustrated in 

Figure  6-6, a) and b) for the case of 1x3 pixel stripes and in Figure  6-6, c) and d) for 

the case of 3x3 squares. In both cases the rate of missing pixels was 0.5 and the 

reconstruction algorithm generated a low-pass DCT domain band-limited 

approximation to the original image similar to that of Figure  6-5, b).  

The main problem in such applications is reliable detection of missing pixels. 

“Salt & pepper” noise, a general impulse noise and group data losses may occur in 

digital communication systems used for image transmission. In these cases, error-

detecting encoding may be used for detecting missing pixels, which will provide 

information on coordinates of distorted pixels. There are also applications where 

positions of missing samples are known from the data acquisition procedure. A 

typical example is profile function restoration from its level lines. This application is 
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illustrated in Figure  6-7 that shows that perfect reconstruction of a band-limited 2D 

profile function is possible from quite sparse level lines that contain only 5% of 

profile samples. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure  6-6 - Recovery of images corrupted by chaotic signal omissions in groups of 1x3 pixels (a 

and b)  and groups of 3x3 pixels (c and d). Left column: corrupted images; right column: images 

restored by the iterative algorithm working in DCT domain. 

Yet another potential application of the above signal recovery technique is image 

super-resolution from multiple video frames with chaotic pixel displacements due to 

atmospheric turbulence, camera instability or similar random factors [134].  By means 

of elastic registration of sequence of frames of the same scene, one can determine, for 

each image frame and with sub-pixel accuracy, pixel displacements caused by random 

acquisition factors. Using these data, a synthetic fused image can be generated by 

placing pixels from all available video frames in their proper positions on the 
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correspondingly denser sampling grid according to their found displacements. In this 

process, some pixel positions on the denser sampling grid will remain unoccupied, 

especially, when limited number of image frames is fused. These missing pixels can 

then be restored using the above described iterative band-limited interpolation 

algorithm. Computer simulation reported in [93] showed that application of the 

iterative interpolation may substantially improve results of image resolution 

enhancement by fusing multiple frames with different local displacements. This is 

illustrated in Figure  6-8, which shows one low resolution frame (a), image fused from 

30 frames (b) and a result of iterative interpolation (c) achieved after 50 iterations. 

Image band limitation was set in this experiment twice of the base band of raw low 

resolution images. 

 

 

 

Figure  6-7 - 2D band-limited profile function perfect reconstruction from level lines 
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(a) 

 
(b) 

 
(c) 

Figure  6-8 - Iterative image interpolation in the super-resolution process: a) – a low resolution 

frame; b) image fused by elastic image registration from 50 frames; c) – a result of iterative 

interpolation of image b) after 50 iterations. 

 

As described in Sect.  6.5.2 the exact forward and inverse Radon transform allow 

the utilization of the discrete Radon transform within the suggested framework. This 

is illustrated in Figure  6-9 and Figure  6-10, which show that virtually perfect recovery 

of missing 55% samples of sinograms is possible. Figure  6-9 illustrates recovery of 

missing projections. In this case the standard deviation of the reconstruction error is 

not as low as in the previous case, which, perhaps, can be attributed to not full 

reversibility of the truncated Radon Transforms. Note that fully invertible direct and 

inverse discrete Radon Transforms used in this experiment were implemented using 

the code found in [164].  

6.8. Summary 
This chapter has addressed the problem of signal reconstruction from irregular 

samples and recovery of missing data. Considering that positions of available signal 

samples are always specified with a certain accuracy that defines maximal number of 

signal samples sufficient for signal representation, we treat this problems as 

equivalent tasks and suggest  a new approach to optimal recovery of signals from 

irregularly sampled or sparse data based on the Discrete Sampling Theorem 

introduced in Sect. 2. The discrete sampling theorem refers to discrete signals band-

limited in a domain of a certain transform and states that  “KofN band-limited” 

discrete signals of N samples can be precisely recovered from their K sparse samples 

provided positions of the available samples satisfy certain limitations, which depend 

on the transform. This theorem provides also a tool for optimal, in terms of root mean 
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squared error, approximation of arbitrary discrete signals specified by their sparse 

samples, with “KofN- band-limited” signals, provided appropriate selection of the 

signal representation transform.  Properties of different transforms, such as Discrete 

Fourier, Discrete Cosine, Radon, Haar, Walsh and wavelet transforms, relevant to 

application of the Discrete Sampling Theorem are discussed. Finally, different 

applications are presented of the algorithms for recovery images corrupted by impulse 

noise, or specified by level lines, for image super-resolution from multiple frames and 

for tomographic image reconstruction from sparse or sparsely sampled projections.   



Tel-Aviv University 
The Iby & Aldar Fleischman - Faculty of Engineering 
Department of Electrical Engineering – Physical Electronics  
 

 - 110 - 

 

(a)  (b)  

(c)  (d)  

(e)  (f)
0 500 1000 1500 2000

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Number of iterations

R
M

S
 E

rr
or

RMS Error vs Iteration number

 

Figure  6-9 - Recovery of missing samples of a sinogram: (a), (b) original image and its Radon 

transform (sinogram), (c) image reconstructed from the sinogram (d) corrupted by the loss of 55% of 

its randomly selected samples; e) a sinogram recovered from (d) using the iterative band-limited 

interpolation algorithm  and (f ) a plot of standard deviation of slice reconstruction error as a function 

of the iteration number.  
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Figure  6-10 - Recovery of missing projections: (a), (b) original image and its Radon transform 

(sinogram), (c) image reconstructed from the sinogram (d) corrupted by the loss of 55% (of its 

randomly selected rows (projections); e) a sinogram recovered from (d) using the iterative band-limited 

interpolation algorithm  and (f ) a plot of standard deviation of slice reconstruction error as a function 

of the iteration number. 
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7.  Applications in Traffic Scenarios 
Based on the motion estimation and video enhancement technological 

achievements, presented in the previous chapters, this chapter describes 

the utilization of those methods for traffic applications. Related works, till 

now, have analyzed traffic video streams by independently tracking the 

different trajectories in the scene. This task is computationally intense, 

which, in complex scenarios, might not be feasible under real time 

constrains. The method, unfolded in this chapter, suggests analyzing the 

entire motion field by means of classical traffic flow parameters extracted 

by digital image processing means. Those traffic flow parameters are than 

analyzed for automatic incident detection and quality of service 

applications. A validation for the image processing method is also 

provided when the parameters acquired by image processing methods are 

compared with real-life data. 

7.1. System Description and Processing Principles 
Figure  7-1 illustrates the processing flow diagram of the traffic video feed. First 

the video feed is stabilized and its resolution is enhanced as described in Ch.  4. and 

Ch.  5. respectively. The enhanced output is presented to the operator.  Both 

stabilization and SR processing algorithms extract the real-motion parameters from 

the processed stream. Those parameters are than translated into traffic stream 

variables: speed, flow, and concentration. Traffic flow models draw the relationships 

among the traffic stream variables, and characterize the road and its condition. The 

road conditions, as they are manifested in the model’s parameters, are used for 

detection of incidents and abnormal behavior. Sect.  7.2 introduces traffic theory and 

Sect.  7.3 describes how traffic parameters are revealed in data acquired by video-

based transportation systems, based on the image processing methods that were 

presented in the previous chapters. Sect.  7.4 provides a validation of the method, 

while Sect.  7.5 presents a 3D traffic model which is utilized for estimation of road 

conditions and for automatic incident detection (AID) applications.  
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7.2. Characterization of Traffic Streams in Video 
Traffic models describe the relationship among traffic stream characteristics. The 

items of interest in traffic theory have been the following: 

• rates of flow (vehicles per unit time); 

• speeds (distance per unit time); 

• travel time over a known length of road (or something the inverse of 

speed, “tardity” is used); 

• occupancy (percent of time a point on the road is occupied by vehicles); 

• density (vehicles per unit distance); 

• time headway between vehicles (time per vehicle); 

• spacing, or space headway between vehicles (distance per vehicle); and 

• concentration (measured by density or occupancy).  

 

Video Stabilization and 
Super‐Resolution

Traffic Flow Model

Real Motion Parameters

Model Parameters AID

Normal Behavior

Better Visual Output
For the observer

 

Figure  7-1 – Traffic Video Processing flow diagram 

In discussing the models, the link between theory and measurement capability is 

important since often theory depends on measurement capability. A general notion of 

these variables, based on the intuitive idea self-evident from their names, will suffice 

for the purpose of discussing their measurement. Precise definitions of the variables 

of interest, which are used within the scope of the research, are given in Sect.  7.3. 

Five measurement procedures are discussed in this section: 

• measurement at a point; 



Tel-Aviv University 
The Iby & Aldar Fleischman - Faculty of Engineering 
Department of Electrical Engineering – Physical Electronics  
 

 - 114 - 

• measurement over a short section (less than 10 meters); 

• measurement over a length of road (more than 0.5 kilometer (km)); 

• the use of an observer moving in the traffic stream; and 

• wide-area samples obtained simultaneously from a number of vehicles. 

The types of measurement are illustrated with respect to a space-time diagram in 

Figure  7-2. The vertical axis of this diagram represents distance from some arbitrary 

starting point along the road, in the direction of travel. The horizontal axis represents 

elapsed time from some arbitrary starting time. Each line within the graph represents 

the trajectory of an individual vehicle, as it moves down the road over time. The slope 

of the line is that vehicle’s velocity. Where lines cross, a faster vehicle has overtaken 

and passed a slower one. (The two vehicles do not in fact occupy the same point at the 

same time.)  

Measurement at a point is represented by a horizontal line across the vehicular 

trajectories: the location is constant, but time varies. In its earliest applications, video 

cameras were used to acquire the data in the field, which was then subsequently 

played back in a lab for analysis. In these early implementations, as illustrated in 

Figure  7-3, lines were drawn on the video monitor screen (literally, when manual data 

reduction was used). More recently this has been automated, which nowadays allows 

the data reduction to be conducted simultaneously with the data acquisition [66]. 

Measurement over a short section is represented by two parallel horizontal lines a 

very short distance apart. With video camera technology, two detector ‘lines’ placed 

close together provide the same capability for measuring speeds.  

A vertical line represents measurement along a length of road, at one instant of 

time, such as a single snapshot taken from above the road. Measurements along a 

length of road come either from aerial photography, or from cameras mounted on tall 

buildings or poles. On the basis of a single frame from such sources, only density can 

be measured. Once several frames are available, speeds can also be measured 

The moving observer technique is represented by one of the vehicle trajectories, 

the heavy line in Figure  7-2. The wide-area samples are similar to having a number of 

moving observers at various points and times within the system.  
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Figure  7-2 – Methods for obtaining traffic data 

 

 

Figure  7-3 – Traffic measurement at a point in video sequences. 

7.3. Variables of Interests 
In general, traffic streams are not uniform, but vary over both space and time. 

Because of that, measurement of the variables of interest for traffic flow theory is in 

fact the sampling of a random variable. In reality, the traffic characteristics that are 

labeled as flow, speed, and concentration are parameters of statistical distributions, 

not absolute numbers. 
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7.3.1. Flow Rates 
Flow rates are collected directly through point measurements, and by definition 

require measurement over time. They cannot be estimated from a single snapshot of a 

length of road. Flow rate, q, is the number of vehicles counted, divided by the elapsed 

time, T: 

T
Nq =  ( 7-1) 

Flow rates are usually expressed in terms of vehicles per hour, although the 

actual measurement interval can be much less. Figure  7-4 illustrates a time-space 

diagram, where the vertical and horizontal axes are the temporal and spatial axes 

respectively. The diagram depicts, for each time value (frame), the gray-level values 

of the pixels along the virtual line, Ω, which is presented in Figure  7-3. The number of 

the cars which passed, through the line throughout the measuring period, T, can be 

measured by evaluating the temporal cross sections of the diagram. Such a cross-

section is presented in Figure  7-5. When evaluating the gray-levels crossings, one can 

conclude that it might be difficult to extract the number of passing cars from the time-

space diagram of the original sequence.  

In Sect.  4.3 the formulation of Real-Motion-Separation-Mask (RMSM) was 

detailed. This tool robustly extracts real-moving objects in real-time. The RMSM of 

Figure  7-4 is depicted in Figure  7-6, where the line, Ω, is drawn in black and real 

moving objects are represented in darker pixels. The corresponding RMSM’s time-

space diagram and its cross-section are presented in Figure  7-7 and Figure  7-8, 

respectively. While the car counting task is difficult when considering the gray-level 

values’ time-space diagram, (illustrated in Figure  7-5), when considering the 

RMSM’s diagram (Figure  7-8), this task becomes significantly easier. Therefore, it is 

evident that the RMSM, developed in Sect.   4.3 for stabilization and SR purposes, is a 

strong tool for flow measurement.  

In order to proceed further and simplify the flow computation even more, Athol’s 

assumption [165] of uniform vehicle length is relaxed to a uniform width. Under this 

assumption, the flow is given by: 

( ) ( )( )[ ]

T

ThrtyxRMSMtyxRMSM
q Ttyx

α

∑
∈Ω∈

>−−
= ,,

1,,,,
 ( 7-2) 
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where ( ) ( )( )[ ]ThrtyxRMSMtyxRMSM >−− 1,,,, is the number of pixels, with change 

in motion larger than a predefined threshold, along the virtual line, Ω, in time period T 

and α is the average car’s width. Without loss of generality α is set to be 1. 

Additionally, since frames are acquired in fixed time periods, the elapsed time, T, is 

measured by the number of frames. By virtue of these assumptions, the flow can be 

computed from a video sequence by: 

( ) ( )( )[ ]

frames

Ttyx

N

ThrtyxRMSMtyxRMSM
q

∑
∈Ω∈

>−−
= ,,

1,,,,
 ( 7-3) 

Figure  7-9 illustrates the computation of the flow-rate in two real-life traffic 

scenarios. Figure  7-9(a) and (b) are frames extracted from real-life video feed of 

Ayalon highway in free-flow and congestion conditions ([166]). Figures (c) and (d) 

are the corresponding RMSM frames, where real motion corresponds to brighter 

pixels. The video frame rate is 5 Hz, hence 300 frames per minute. The flow-rates 

computed over 300 frames, which figures (a) and (b) where taken from, are shown in 

figures (e) and (f). The average flow rates for each set are presented in Table  7-1. It is 

quite evident that the flow-rates for the situation described in figure (b) are higher.  

7.3.2. Speeds 
Measurement of the speed of an individual vehicle requires observation over both 

time and space. The instantaneous speed of an individual vehicle is defined as: 

( )

( ) ( )
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==
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12
012

lim
tt

txtx
dt
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tti  ( 7-4) 

In the literature, the distinction has frequently been made between different ways 

of calculating the average speed of a set of vehicles. The kind of difference that can 

arise from different methods can be illustrated by the following example. If a traveler 

goes from A to B, a distance of 20 km, at an average speed of 80 kilometers per hour 

(km/h), and returns at an average speed of 40 km/h, what is the average speed for the 

round trip? The answer is of course not 60 km/h; that is the speed that would be found 

by someone standing at the roadside with a radar gun, catching this car on both 

directions of the journey, and averaging the two observations. The trip, however, took  
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Figure  7-4 – Time – Flow measurement through space-time diagram. The diagram represents the 

gray-level values of the virtual line presented in Figure  7-3.  
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Figure  7-5 – Temporal cross section of the time-space diagram 

 

 

 

 

 

 

Figure  7-6 – Real Motion Separation Mask (RMSM) of the frame presented in Figure  7-3. Darker 

pixels represents pixels where motion was detected.  
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Figure  7-7 - Flow measurement through space-time diagram of the RMSM, presented in Figure 

 7-6. 
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Figure  7-8 - Temporal cross section of the RMSM time-space diagram. 

 

1/4 of an hour one way, and 1/2 an hour for the return, for a total of 3/4 of an 

hour to go 40 km, resulting in an average speed of 53.3 km/h. 

The first way of calculating speeds, namely taking the arithmetic mean of the 

observation, 

∑
=

=
N

i
it u

N
u

1

1  ( 7-5) 

is termed the time mean speed, because it is an average observations taken over time. 

 The second term that is used in the literature is space mean speed, but 

unfortunately there are a variety of definitions for it, not all of which are equivalent. 

There appear to be two main types of definition. One definition is based on the 

average time taken to cross a given distance, or space, D [167]: 

∑
=

i
i

s

t
N

Du 1  
( 7-6) 

 
where it is the time for vehicle I to cross distance D: 

i
i u

Dt =  ( 7-7) 

Equation ( 7-6) is equivalent to using the harmonic mean of the individual vehicle 

speeds, as follows:  
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The second principal type of definition of space mean speed involves taking the 

average of the speeds of all of the vehicles on a section of road at one instant of time 

[168]. In Figure  7-2, this method is represented by the vertical line labeled "along a 

length". In deriving this however, an "isoveloxic" model is assumed, one in which 

each car follows a linear trajectory in the space time diagram, and is not forced to 

change speed when overtaking another vehicle. This is equivalent to assuming that the 

speed distribution does not change with location. A similar definition of space mean 

speed, without the isoveloxic, is the arithmetic mean of the speeds of vehicles 

occupying a given length of lane at a given instant [169]. 

Regardless of the particular definition put forward for mean speed, the individual 

speeds are computed by the optical flow methods (See Sect.  3.3). The computation of 

dense optical flow is intensive and might not comply with real-time constrains. To 

this end, following the discussion above, two methods for extracting the average 

speed can be utilized. The first method exploits the harmonic mean of speeds 

measured at a point over time and computes the optical flow only in the vicinity of the 

virtual line. The second method averages the speeds of all of the vehicles on a section 

of road at one instant of time, hence one frame. To avoid the situation, where the 

computation of the optical flow of the entire frame exceeds the system’s capability, 

the two-stage real-motion extraction mechanism, described in  4.3, is utilized and the 

optical flow is computed only for pixels which are suspected to contain real motion.  

Figure  7-10 illustrates the speed rates for 300 frames over two different minutes 

in which Figure  7-9(a) and (b) were taken in. Evaluating Figure  7-10(a), one can 

conclude that the traffic conditions described in Figure  7-9(a) allow specific drivers to 

exceed their speed, while the fluctuations in the graph presented in Figure  7-10(b) 

suggest that the situation described in Figure  7-9(b) corresponds to “stop and start” 

[170] conditions, which means that traffic is stopped and released in a periodic 

manner with varying periods and duty cycles.  
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(a) (b) 

(c) (d) 

 (e)  (f) 

Figure  7-9 – Ayalon highway vision-based flow-rate computation. Figures (a) and (b) are two 

frames extracted from real-life video feed of Ayalon highway in free-flow and congestion conditions. 

Figures (c) and (d) are the corresponding RMSM frames. The flow-rates computed over 300 frames of 

the two different minutes, in which figures (a) and (b) where taken, are shown in figure (e) and (f) 

respectively. 

Table  7-1 – Flow rate computed using a video stream for the two traffic scenarios described in 

Figure  7-9(a) and (b). 

Traffic Condition Average Flow-rate 

Figure  7-9 (a) 2.2458 

Figure  7-9 (b) 4.3355 
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 (a)   (b)

Figure  7-10 – Vision-based Speed rates computed over two different minutes, in which Figure 

 7-9(a) and (b) were taken in.  

7.3.3. Concentration 
Concentration has in the past been used as a synonym for density [171]. In this 

chapter, it seems more useful to use 'concentration' as a broader term encompassing 

both density and occupancy. The first is a measure of concentration over space; the 

second measures concentration over time of the same vehicle stream. Density can be 

measured only along a length. If only point measurements are available, density needs 

to be calculated from speed and flow [171]:  

su
qk =  ( 7-9) 

The difficulty with using this equation for density estimation is that the equation 

is exactly correct only under some very restricted conditions, or in the limit as both 

the space and time measurement intervals approach zero. If neither of those situations 

holds, then the use of the equation to calculate density can give misleading results, 

which would not agree with empirical measurements. It follows that q equals ku ⋅  for 

the continuous surface, at a point. Real traffic flows, however, are not only made up 

of finite number of vehicles surrounded by real spaces, but are inherently stochastic 

[172]. Measured values are averages taken from samples, and are therefore 

themselves random variables. Measured flows are taken over an interval of time, at a 

particular place. Measured densities are taken over space at a particular time. Only for 

stationary processes (in the statistical sense) will the time and space intervals be able 

to represent conditions at the same point in the time-space plane. Hence it is likely 

that any measurements that are taken of flow and density (and space mean speed) will 

not be very good estimates of the expected values that would be defined at the point 
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of interest in the time space plane – and therefore that Eq. ( 7-9) will not be consistent 

with the measured data. 

The use of video camera technology allows measuring the actual concentration 

over a road length in a given time. This is achieved by dividing the number of pixels 

containing real motion in a given frame by the total number of pixels of the road. 

Without loss of generality, it is assumed that the road occupies the entire frame.  This 

simplifies the image processing task and eliminates the need to segment the road in 

the video images, hence concentration is measured by dividing the number of pixels 

in the real motion separation mask (RMSM), which are equal to 1 by the image size. 

Figure  7-11 illustrates the vision-based concentration computation over the 300 

frames taken over two different minutes, in which Figure  7-9(a) (blue) and Figure 

 7-9(b) (red) were taken. The minute average rates are presented in Table  7-2. 

Evidently the concentration rates in Figure  7-9(b) are higher. Similarly to the notion 

derived from the speed graphs, the concentration graph also implies that the situation 

described in Figure  7-9(b) can classified as “stop and start” [170], hence traffic is held 

and released in a periodic manner with random duty cycles. 

 

Figure  7-11 – Vision-based Concentration computed over 300 frames taken in the two different 

minutes in which figures Figure  7-9(a) (blue) and (b) (red) were taken in.  
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Table  7-2 - Concentration rates computed using a video stream for the two traffic scenarios 

described in Figure  7-9(a) and (b) 

Traffic Condition Concentration 

Figure  7-9(a) 0.0702 

Figure  7-9(b) 0.3521 

7.4. Demonstration of the Method  
In this section the usage of the method, described above, as a tool for traffic 

parameters estimation, is presented. To this end measurements which were taken in 

two setups that their parameters are known were used. The first setup is presented in 

Figure  7-12, while the second is exhibited in Figure  7-13. The setups are located of 

the highway, so physical measurements can be taken by simple means. In both setup 

environments the distance between two physical landmarks was physically measured. 

Vehicles’ speeds is calculated by the time it takes each automobile to travel this 

distance. The camera’s frame-rate, in this setup, is 25[Hz], which implies that the 

vehicles’ absolute speeds are given by: 

( ) [ ]Second
m

TT
Du

enterleave 25/−
=  ( 7-10) 

or 

( ) [ ]Hour
Km

TT
Du

enterleave 25/
6.3
−

⋅
=  ( 7-11) 

where D is the measured distance between the two landmarks in each of the setups 

(5.62[m] and 5.6[m] in the first and second setup scenarios respectively) and enterT is 

the frame number in which the vehicle passes the first landmark and leaveT  is the frame 

number in which it passes the second landmark.  

Table  7-3 and Table  7-4 present the flow, speed and concentration values 

computed by digital image processing means, as was described in Sect.  7.3. Those 

were obtained by processing six different segments, one minute long each, extracted 

from two video sequences which were acquired on the setup locations described in 

Figure  7-12 and Figure  7-13 (three segments for each location). Flow, in the tables, is 

given in terms of the total number of pixels that fulfill Eq. ( 7-3), divided by the total 

number of frames. The flow, which is ‘at the point’ measurement, was computed at 

the line indicates the right landmarks in Figure  7-12 and Figure  7-13. Speed is 

measured in terms of pixels per frame. The speed, as derived in Sect.  7.3.2, is 
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computed over the entire time period in terms of the average translation of pixels 

containing real motion, divided by the number of frames.  Finally, concentration, as 

was described in Sect.  7.3.3, is the average ratio of pixels containing real motion and 

the entire frame size in pixels. Additionally, the tables contain data acquired by 

physical measurements (gray cells). The number of cars was physically counted by a 

human observer and the speed was computed as was described by Eq. ( 7-11). The 

speed computed by the image processing methods is presented in terms of the average 

speed over the entire examined sequence, which in this case, is over 1 minute of the 

sequence. Therefore the physically measured speed is given both in terms of average 

speed per frame: 

[ ]Hour
Km

FramesTotal
motioncontainingFramesuu

#
#~ =  ( 7-12) 

where u is the speed computed in Eq. ( 7-11) and in terms of Km/Hour (in brackets). 

The time column indicates the minute, of the sequence in which the measurements 

were taken in. As can be seen, the flow, speed and concentration parameters 

computed by digital image processing means are highly correlated to the physical 

measurements. In order to better understand the nature of this correlation a future 

study of larger scale traffic volumes over a longer period of time has to be carried out. 

Those future research possibilities are addressed in the discussion. 

 

Figure  7-12 – Setup environment 1. The vehicles’ speed will be computed by the time it takes a 

vehicle to pass the marked distance, which was physically measured on site. 
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7.5. Speed – Flow – Concentration Traffic Model 
Since the seminal work of Greenshields [173] a significant amount of work has 

been invested in effort to establish the relationship between the variables described in 

the previous section. Some of these efforts begin with mathematical models; others 

are primarily empirical, with little or no attempt to generalizing. 

 

 

Figure  7-13 - Setup environment 2. 

Table  7-3 – Scenario 1 – Vision based (in white) vs. physical measurements (in gray) computed 

over 3 different minutes along the video sequence. 

Time Flow2 Cars3 Speed4 Physical Speed5  Concentration6 

2 0.54 9 1.89·10-4 3.024 (56) 0.0160 

4 0.482 8 1.33·10-4 2.69 (41.56) 0.0162 

6 0.458 7 1.31·10-4 2.35 (45.23) 0.015 

Table  7-4 – Scenario 2 – Vision based (in white) vs. physical measurements (in gray) computed 

over 3 different minutes along the video sequence. 

Time Flow2 Cars3 Speed4 Physical Speed5 Concentration6 

2 0.696 11 1.49·10-4 3.7 (44) 0.0238 

4 1.502 17 2.6·10-4 5.711 (37.25) 0.0559 

6 0.592 10 1.62·10-4 3.36 (36.8) 0.023 

                                                 
2 The total number of pixels that fulfill Eq. ( 7-3), divided by the total number of frames 
3 The total number of counted units. 
4 Frame average translation in pixels. 
5 Km/Hour multiplied by the number of frames with real motion, divided by the number of frames (Km/Hour). 
6 The total number of pixels containing real motion throughout the sequence divided by (Frame size x total number 
of frames)  
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The speed-flow relationship is the bivariate relationship on which there has been 

the greatest amount of work within the past years. The bulk of the recent empirical 

work on the relationship between speed and flow (as well as the other relationships) 

was summarized by Hall, Hurdle, and Banks [174]. The authors proposed a model for 

traffic flow shown in Figure  7-14. The problem for traffic flow theory, in this respect, 

is that these curves are empirically derived. There is no theory that would explain 

these particular shapes. 

The Speed-concentration model is a linear model, as was stated in the previous 

section. While there have been studies that claimed to have confirmed this model 

[175], they tended to have similar sparse portions of the full range of data, usually 

omitting both the lowest flows and flow in the range near capacity. Additionally, there 

have also been a number of studies that found contradictory evidence [176]. 

 

 

Figure  7-14 – Generalized shape of Speed-flow curve proposed by Hall, Hurdle and Banks ([174]) 

There are several works that address flow-concentration models [177], all 

suggesting an empirical inverted V-shape model. The inverted-V model implies that 

drivers maintain a roughly constant average time gap between their front bumper and 

the back bumper of the vehicle in front of them provided their speed is less than some 

critical value. Once their speed reaches this critical value (which is as fast as they 

want to go), they cease to be sensitive to vehicle spacing. 

To conclude, the current status of mathematical models for speed-flow-

concentration relationships is in a state of flux. The models that dominated the 

discourse for nearly 30 years are incompatible with the data currently being obtained, 

and with currently accepted depictions of speed-flow curves, but no replacement 

models have yet been developed. Measuring the three parameters, flow, speed and 

concentration simultaneously, allows indicating the road current conditions over a 3D, 
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flow-speed-concentration (FSC), space. Recognition of three-dimensional 

relationships is important for improved understanding. Consequently, it is important 

to make more use of those sets of freeway data in which all three variables have been 

measured and no estimation is needed. The simple image processing methods, 

suggested above, for traffic video analysis offer the ability to do that.  

The graph depicted in Figure  7-15 presents 12 points which correspond to the 

average flow, speed and concentration (FSC) rates computed over a video feed of 12 

minutes, where both free-flow and “stop and start” traffic are present. The 

applicability of the method is illustrated in Figure  7-16 where 3 frames extracted from 

the video sequence are presented. Figure (a), (b) and (c) are of the frames taken in the 

corresponding minute, where the FSC parameters for points (A), (B) and (C), shown 

in Figure  7-15, were computed over. As one can see Figure  7-16(a) presents free-flow 

road conditions, where vehicles are unimpeded in their ability to maneuver within the 

traffic stream. Figure  7-16(b), on the other hand, presents road conditions where 

reasonably free flow and free-flow speeds are maintained, while the concentration rate 

is relatively higher than the one characterized figure (a). Finally, Figure  7-16(c) 

presents the road where the concentration rate is relatively high, speeds begin to 

decline slightly with increasing flows and density begins to increase somewhat more 

quickly. 

 

Figure  7-15 - Flow-Speed-Concentration (FSC) 3D model. Each point of the points on the graph 

represents the floe, speed and concentration average values, computed over a minute is a 12 minutes 

real-life video feed of Ayalon highway, which contains free-flow as well as “stop and start” traffic. 

Speed in given in [Distance in Pixels/Frame], Flow in [Total number of Pixels in the RMSM edge 

/Frame] and concentration is the average of the ratio (number of Real-moving pixels)/(Frame Size in 

Pixels). 
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(a) (b) (c) 

Figure  7-16 – The road conditions for the points (A), (B) and (C) in Figure  7-15. 

7.6. Traffic Applications  

7.6.1. Automatic Incident Detection 
Figure  7-17 is a frame extracted from the sequence, one of which earlier frames is 

given in Figure  7-3. As one can see, an accident is taking place on the right hand side 

of the image. The effect of the accident on traffic is obvious. For each frame of the 

sequence the flow, speed and concentration are measured digital image processing 

means, as described in Sect.  7.2, where flow is computed at the line marked on Figure 

 7-17. Then, each frame is placed on the FSC-space according to its measured traffic 

parameters. This is depicted in Figure  7-18. The red markings represent frames taken 

before the accident took place, while the black ones are of frames taken after the 

accident occurred. Evaluating Figure  7-18, one can segment the frames projections on 

the FSC-space. As traffic incidents impact tends to persist for several minutes, 

automatic incident detection (AID) alarm can be triggered after a certain readings of 

the parameters are far from the normal, free-flow average, marked with blue circle on 

the figure. 

7.6.2. Quality and Levels of Service 
Quality of service requires quantitative measures to characterize operational 

conditions within a traffic stream. Level of service (LOS) is a quality measure 

describing operational conditions within a traffic stream, generally in terms of such 

service measures as speed and travel time, freedom to maneuver, traffic interruptions, 

and comfort and convenience. 
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Figure  7-17 – Traffic incident scenario. The accident of the right hand side of the road creates a 

change in traffic parameter: flow, speed and concentration. 

Six LOS are defined for each type of facility that has analysis procedures 

available [170]. Letters designate each level, from A to F, with LOS A representing 

the best operating conditions and LOS F the worst. Each level of service represents a 

range of operating conditions and the driver's perception of those conditions. Figure 

 7-19, which is taken from [170], visually illustrates the different LOS’s. 

Each facility type that has a defined method for assessing capacity and level of 

service also has performance measures that can be calculated. These measures reflect 

the operating conditions of a facility, given a set of roadway, traffic, and control 

conditions. Travel speed and density on freeways, delay at signalized intersections, 

and walking speed for pedestrians are examples of performance measures that 

characterize flow conditions on a facility. This strongly implies that the levels of 

service correspond to the facility, or the facility type, examined, and it may vary from 

one facility to the other. In most cases The LOS are defined to represent reasonable 

ranges in the three critical flow variables: speed, density, and flow rate. This makes 

the described image processing methods a great tool for this purpose. The feasibility 

for that has been demonstrated in Figure  7-15 and Figure  7-16, where the different 

road conditions, hence class of service, which are depicted in Figure  7-16 are 

represented in different locations on the 3D model in Figure  7-15. 



Tel-Aviv University 
The Iby & Aldar Fleischman - Faculty of Engineering 
Department of Electrical Engineering – Physical Electronics  
 

 - 133 - 

 

Figure  7-18 – Flow-Speed-Concentration 3D space of a video sequence capturing an accident. 

The traffic parameters are measured for every frame in the sequence. The red markings are of frames 

taken before the accident took place, while the black ones are of frames taken after the accident 

occurred. The blue circle represents the normal situation, free-flow, average of the three traffic 

parameters. Speed in given in [Distance in Pixels/Frame], Flow in [Total number of Pixels in the 

RMSM edge /Frame] and concentration is the average of the ratio (number of Real-moving 

pixels)/(Frame Size in Pixels). 

7.7. Summary 
In this chapter, the basic concepts of traffic theory and their utilization in video 

based systems are outlined.  First, the variables are introduced by which traffic flow is 

described. Sequentially, the chapter describes how those variables can be measured 

from traffic video streams. Having the traffic variables measured based on the flow-

speed-concentration 3D model, a robust AID scheme is suggested as well as 

measuring the traffic class of service. The conclusion from the discussion in this 

chapter is that integration of classical traffic flow models into the decision mechanism 

of video based intelligent transportation systems shows a great potential for both 

infrastructure traffic systems, which are sited along the road, and on-platform 

systems, which are mounted on the car.  
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(a) – LOS A (b) – LOS B (c) – LOS C 

 
(d) – LOS D (e) – LOS E (f) – LOS F 

Figure  7-19 – Level of service illustrations, taken from [170]. 
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8.  Discussion 
This thesis explored the issue of multiframe restoration, enhancement and 

analysis of videos, acquired in unknown, time-varying system and environmental 

conditions. Specifically, the presented research addresses the following challenges: (i) 

efficient and robust motion estimation techniques; (ii) Real time methods for video 

stabilization and super-resolution (SR) in instable, due to camera and environmental 

noise, videos; and (iii) Motion-based scene analysis and reasoning for traffic control. 

Efficient real motion extraction is a mandatory preliminary requirement in order 

to secure successful videos restoration, resolution enhancement and scene reasoning. 

The two classes of motion estimation techniques, block matching and optical flow 

methods, are evaluated in this respect. To this end, a novel general comparison 

framework is suggested. Additionally, an improvement, through numerical exact 

derivation, was suggested for optical flow methods.  

Having the motion field in hand, the first objective of this research was a real-

time video stabilization scheme which preserves real motion in the scene. For 

preserving real motion in the scene, moving objects are detected and the 

compensation for the distortion of the turbulence is applied only to the static areas of 

images. The suggested scheme was evaluated by computer turbulence simulation 

software that was written for this intent.  

Evaluation of a turbulent sequence motion field, allows not only to stabilize it, 

but to enhance its resolution, which exhibit the second goal of this work. The thesis 

has shown theoretically and practically that distortion caused by turbulence or camera 

motions can be used to increase image resolution beyond camera’s limitation. Along 

with the development of real-time methods for image SR, the potential and limitations 

of utilizing the motion field of instable sequences for SR are sought.  

An important part of the SR process is the interpolation method which is used. 

The interpolation method is important for filling in gaps in given samples. This led to 

the formulation of the discrete sampling theorem, which is a powerful instrument for 

signal analysis and reconstruction. It supplies tools for measuring the effective 

number of samples and iterative, as well as analytical, methods for finding the best 

interpolation in the RMS sense for any given set of samples and transform domain. 

Finally, the technology developed in this research is utilized for traffic video 

systems. First, simple methods for measuring traffic variables in videos are 
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introduced. Then, by virtue of basic traffic model, a robust AID and quality of service 

measurements scheme are presented. The integration of classical traffic flow models 

into the decision mechanism of video based intelligent transportation systems show a 

great potential both for infrastructure traffic systems, which are sited on the road, and 

for on-platform systems, which are mounted on the moving car. For validating the 

image processing methods as tools for traffic flow parameters estimation a further 

study should be carried out. In this study the image processing methods should be 

implemented in a run-time environment and large traffic volumes has to measure both 

by image processing techniques and other types of sensors, such as loop detectors. 

The data acquired in the described experiment, both by video and other sensors will 

then be analyzed to determine the required sampling rate, hence the needed frames-

rate for accurate determination of the traffic flow parameters.   

In general, the thesis presented novel approaches for multiframe image 

restoration and enhancement and its utilization for real-time applications. The results 

presented are of both theoretical and practical interest and offer new efficient tools for 

substantial improvement of infrastructure of vision-based systems in general and of 

intelligent transportation systems in particular. 
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9.  Conclusions 
Image and video enhancement is a core enabling technology in many fields. This 

thesis has addressed the fundamental question of multiframe restoration, enhancement 

and analysis of video streams, acquired in time-varying and unknown system and 

environmental conditions. The presented research addresses the following challenges: 

(i) efficient and robust motion estimation techniques; (ii) Real time methods for video 

stabilization and SR in instable, due to camera and environmental noise, videos; and 

(iii) Motion-based scene analysis and reasoning.  

The thesis presents a novel motion estimation techniques comparison framework 

and an improvement, through numerical exact derivation, for the optical-flow class of 

motion estimation techniques. Additionally, by evaluation of the motion field and its 

statistical analysis, the thesis presents a reliable segmentation of video frames into 

stable and moving components and subsequently stabilizing images, without harming 

real moving objects, and improving frames resolution. The potential and limitations of 

utilizing the motion field of instable sequences for SR are sought as well. An 

important part in the process of resolution enhancement is signal reconstruction from 

sparse data accumulated from the set of randomly displaced image frames. The 

method used is improved by the theory of discrete signal reconstruction from sparse 

data. 

Finally, based on the earlier stages of the research, means for reasoning of the 

scene observed are developed. This allows detection of irregularity of the motion in 

the scene. In traffic application, this corresponds to congestion or accidents. 

The results present novel approaches and offer new efficient tools for substantial 

improvement of infrastructure of vision-based systems in general and of intelligent 

transportation systems in particular. 
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