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Chapter 12

Framework for Analyzing Environmental
Indicators Measurements Acquired by
Wireless Distributed Sensory Network –
Air Pollution Showcase

Barak Fishbain

Abstract Distributed continuous in situ monitoring of the environment is an
essential component in assessing environmental indicators as their changes take
place on different spatial and temporal scales. Recent sensory and communication
technological developments have led to the emergence of Wireless Distributed
Environmental Sensing Networks (WDESNs) that consist mainly of Micro-
Sensory-Units (MSUs). The set of skills and expertise that are called for developing
these WDESNs are from different fields and research disciplines, where each
discipline has its own jargon. To allow cross-disciplinary discussion, a comprehen-
sive, yet simple framework for discussing data acquired by WDESNs is presented.
The terminology presented here allows for describing complex multi-modal
environmental sensory networks and the integration of the observed environmental
indicators’ into a holistic understanding of the environment. The usage of the
presented framework is demonstrated in describing a recently reported data
acquired by air-pollution WDESN.

Keywords Enviromatics • Environmental informatics • Distributed sensing
• Sensory networks • Environmental sensing • Environmental data analysis
• Environmental data fusion

12.1 Introduction

Continuous in situ monitoring of the environment is an essential component in
assessing environmental indicators. Air, water and land characteristics and quality,
and their change over time is fundamental to most environmental applications.
Quantifying changes in environmental indicators over time is a most challenging
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task as their changes take place on different spatial and temporal scales. Local
system characteristics and behavior affect overall system, while system level
parameters govern the local scale processes.

Recent sensory and communication technological developments have led to the
emergence of Wireless Distributed Environmental Sensing Networks (WDESNs)
that consist of Micro-Sensory-Units (MSUs), mainly in air and atmospheric assess-
ments (Mead et al. 2013; Chen 2008; Dutta et al. 2009; Williams et al. 2013; Etzion
et al. 2013; Broday et al. 2013) and aquatic systems (Kroll and King 2007; Hall
et al. 2007; Pickard et al. 2011; Research and Development, National Homeland
Security Research Center 2005; Kramer 2009; Storey et al. 2011). These have
greatly enhanced monitoring of complex infrastructure and the natural environ-
ment, allowing the study of fundamental processes in the environment, as well as
hazard warnings, such as flood (Hart and Martinez 2006; Martinez and Hart 2004;
Zhou and Roure 2007) and pollution alerts (Hochbaum and Fishbain 2011), in a
new way. In conjunction new hardware designs and algorithmic approaches to
support these networks have emerged (Ramanathan et al. 2006; Budde
et al. 2012; Denzer 2005; Kranz et al. 2010; Bakken et al. 2001). The focus of
most of these studies is an efficient operation of the network and failure tolerance
and therefore they do not provide new insights on the monitored environments.
Further, many problems studied in the field, have their roots in the desire to emulate
cognitive capabilities of a human (e.g., Ramanathan et al. 2006; Chen 2008; Dutta
et al. 2009). With the rapid advances in hardware technology, this anthropocentric
and somewhat limited paradigm may no longer be the only source for inspiration.
The variety and availability of sensors have made the accessible data much greater
in quantity than the data that can be gathered and interpreted by a human being.
However, considering the sheer amount of data and its diversity, building such
multi-sensors systems becomes a great challenge.

Field deployments of low-cost air quality MSU-based WDESN have been
recently reported (Mead et al. 2013; Williams et al. 2013). Williams et al. (2013)
showed the use of metal-oxide micro-sensors for measuring ambient O3 levels and
Mead et al. (2013) used electrochemical probes for measuring CO, NO and NO2.
These studies do not present a network configuration for air pollution measure-
ments. Therefore, their ability to capture the spatial pollutant variability has not
been shown.

The ability and potential of WDESN to capture spatial and temporal variation in
field campaigns has been recently demonstrated (Broday et al. 2013; Shashank
et al. 2013). These studies regard only one indicator (pollutant) in their analysis.
The integration of different modalities possesses the ability to exploit the sensors’
cross-selectivity and to compensate each modality’s inherent deficiencies by uti-
lizing the strengths of the other modalities. This is still a relatively new discipline,
and little effort has so far been devoted to the implementation of fully operational
devices for environmental applications as seen in other fields such as computer
vision and robotics. Such spatial and temporal analysis of several indicators
on a well-defined environment, through WDESN, has been recently reported by
Moltchanov et al. (2015).
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This new emerging field, enviromatics (environmental informatics), calls for a
new set of algorithms and methodologies originating from several distinct
disciplines – chemistry, environmental sciences, optimization, multi-dimensional
signal processing, data fusion and data communication. To facilitate any discussion
between scholars from these different research fields, there is a need to build a
comprehensive, yet simple, framework. Here such framework is presented.
Section 12.2 presents the framework, its components and its lexis foundations.
Section 12.3 demonstrates the usage of the presented lexis in the context of
air-pollution distributed sensory network by describing the results reported by
Moltchanov et al. (2015). Section 12.4 concludes this chapter.

12.2 Framework

12.2.1 Lexis

This section introduces the lexis that facilitates the Environmental Multimodal
Distributed Sensory Network framework. An environmental episode is a disruption
in the environmental conditions. To this end, an episode can be a major environ-
mental happening, such as high or irregular gamma radiation levels (Hochbaum and
Fishbain 2011), volcanic eruptions (Werner-Allen et al. 2006) or mass fish death
(CNNWire Staff 2011). It can also be a typical happening such as traffic rush hours.
Such environmental episode consists of recorded events. Events are a set of
incidents, which are recorded by a single or a set of sensors, and are found to be
related to an environmental episode. Events in those cases are, for example, the
deviations from the regular background radiation; the seismic-acoustic recordings
and the oxygen levels in the aquatic system. Each incident represents one or more
measured environmental indicators (Fig. 12.1). In the context of air-pollution, this
can be ozone (O3), nitrogen dioxide (NO2) or particular matter (PM). This formu-
lation ensures, by definition, the following:

Corollary 1

• Each environmental episode has a well-defined spatial and temporal
window.

• An environmental episode manifests itself in the sensors’ acquired data.

Events are extracted from streams of incidents and only then are cross-
referenced. The key justification behind this dichotomy is that different set of
algorithms are called for extracting events from a stream of incidents, and for
relating these events. The separation of these tasks also allows for distributed
processing, as the event extraction can be held on the sensing platform itself. The
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set of extracted events is processed by a set of analytics tools for individual
data streams as well as multiple data streams of various types. Both kinds of
analytics are needed for unveiling the information embedded within each data
stream/source as well as the information that is spread across various data sources.
This formulation facilitates an efficient and reliable processing of exceptionally
large environmental data sets (of size in the tens of thousands or millions entries).

12.2.2 Event Detection in Streams of Incidents

The small size and low power-consumption of MSU allow for mobile measure-
ments. Placing these units on vehicles enables the coverage of a wider area with a
lower number of units, while keeping the spatial and temporal resolution high
enough. Few recent studies showed the possibility and advantages of such use,
and the relatively easy adaptation of such MSU’s to function as mobile sensing
units, with the addition of GPS (Al Ali et al. 2010; Devarakonda et al. 2013; Levy
et al. 2012). Thus, WDESN may consist of stationary and mobile nodes. Therefore
the discussion is a dual-facet one, where incident streams generated from stationary
and mobile WDESN nodes should be addressed differently. The following sections
address event detection in streams received from stationary and mobile nodes.

Fig. 12.1 Multimodal distributed sensory networks dataflow and terminology
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12.2.2.1 Event Detection in Streams of Stationary WDESN Nodes

The common practice for extracting events from a set of incidents is finding a
deviation from a pattern that represents the normal or routine set of incidents.
The patterns may be computed from the indicators’ time series themselves (e.g.,
Hall et al. 2007; Pickard et al. 2011), or from any representation of the data. Typical
data representation techniques are Principal Component Analysis (PCA) (e.g.,
Huang et al. 2010), spectral exploration (e.g., Eder et al. 2012; Koscielny-Bunde
et al. 1998; Whitcher and Jensen 2000) or De-trended Fluctuation Analysis – FDA
(e.g., Koscielny-Bunde et al. 1998; Talkner and Weber 2000). All aforementioned
methods require that the data samples are acquired in a uniform fashion, i.e., with
the same time and spatial intervals between samples. However, this requirement,
typically, does not hold for the dataset in hand. To tackle this hurdle, data interpo-
lation methods that interpolate the data in a regular grid fashion from the
non-uniform samples are sought. These methods include, for example, the Discrete
Sampling Theorem (Yaroslavsky et al. 2009) and, in the context of air pollution,
the Inverse Distance Weighted (IDW) (Moore et al. 2008) and Kriging (Sarigiannis
and Saisana 2008) interpolations.

Regardless of the representation method, an incident can be regarded as an event
if the deviation from the pattern is above a certain threshold. The threshold can be
set manually (e.g., Pickard, et al. 2011) or inferred in an automatic fashion based on
the acquired data and trends observed (Arad et al. 2013). This approach, however, is
vulnerable to faulty measurements that present a large deviation from the pattern.

Classification approaches such as Support Vector Machine (SVM) (e.g., Oliker
and Ostfeld 2012), Minimum Volume Ellipsoid (MVE) (Becker and Gather 1999)
or the Supervised Normalized Cut (SNC) (Yang et al. 2013) present a more robust
event detection schemes as they allow for the integration of several environmental
indicators into one recorded incident. SVM aims at separating events from the
background stream of incidents. The SVM method consists of two stages – At the
first stage, incidents that are known to be an event and incident that are known to be
non-event (i.e., routine) are applied on an environmental indicators space. Then,
based on the pre-classified data, a classifier is constructed on this space. At the
second stage each new incident is compared against the classifier and tagged
accordingly. SVM requires that normal and abnormal incident patterns are known
before-hand. While routine patterns can be extracted from continuous streams of
incidents (e.g., Kroll and King 2007; Hall et al. 2007; Pickard et al. 2011), consid-
ering all possible abnormal indicators’ conditions and values is not a tractable task.

MVE solves this problem by using only the non-event incidents in the training
phase (Becker and Gather 1999). The MVE, in its training phase, constructs a
minimum volume ellipsoid on the indicators space, which includes all non-event
incidents. Then any measurement that falls outside this ellipsoid is considered to be
an event.

The SNC method forms the event detection task as graph-cuts optimization
problem. In this formulation an undirected graph, G(V,E), is constructed, where
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V is the set of incidents and E is the set of edges connecting adjacent incidents. The
set of incidents contains both tagged (either as event or as non-event) and untagged
incidents. A node that corresponds to an event-incident, is referred to as an event-
node. Each edge i; j! " 2 E carries a similarity weight, wij, that represents the
similarity between incidents i and j. The method is more generalized than SVM
and MVE as adjacency (i.e., what characteristic qualifies two incident to be
considered adjacent) and the similarity measures are not dictated by the SNC
formulation and can be set by the characteristics of the specific problem in hand.
Once the graph is constructed two additional nodes, s and t, are added to the graph.
An arc with infinite weight is drawn from s to all event-nodes and from all
non-event nodes to t. The construction of the graph is illustrated in Fig. 12.2a,
where event-nodes are marked with an “E”, non-event nodes are presented with
diagonal markings and untagged nodes are solid.

The classification is then held by solving the s-t minimum-cut problem (Ford and
Fulkerson 1956) on the graph. The minimum s-t cut problem partitions the nodes in
the graph into two partitions, S and T, such that s 2 S and t 2 T and the sum of
similarity weights on edges going between S and T (i.e., the cut) is minimized. After
the partition, all incidents that correspond to nodes in S, are considered as an event
and all incidents that are associated with nodes in T are tagged as non-event. The
classification process is illustrated in Fig. 12.2b. All untagged nodes are now tagged
based on the cut.

12.2.2.2 Event Detection in Streams of Mobile WDESN Nodes

Streams received from portable sensors are obtained from the same sensor in
different locations at different times. Thus, mobile sensors’ measurement are
time-space variant. While networks that consist of mobile sensory platforms
(Al Ali et al. 2010; Devarakonda et al. 2013; Levy et al. 2012) have been suggested,
little effort has been invested in fusing the readings (i.e., incidents) into one holistic
spatio-temporal patterns. Pattern recognition in mobile sensory networks has been
suggested through the concentrated alert (CA) problem. The CA problem aim at
optimizing two goals: One goal is to identify a small region; another goal is to have
a large number of sensors indicating high pollution levels. These two goals are
potentially conflicting – focusing on a large number of sensors reporting high levels

Fig. 12.2 SNC procedure
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of pollution within an area is likely to result in the entire region; on the other hand
focusing on concentration alone would result in a single block of the area
containing the highest number of sensors reporting high concentrations, thus
disregarding information provided by other detectors in neighboring areas. The
goal then is to identify, at every period of time, a region that relatively to its size has
high concentration of sensors reporting high pollution levels. One way to achieve
this is by minimizing a ratio function of the size divided by the number of detected
events in the region. Another, is to optimize a weighted combination of the goals.
As was shown in (Hochbaum and Fishbain 2011) the latter problem is efficiently
solvable in polynomial time.

One iteration of the CA problem finds one region with the highest concentration
of sensors reporting highest levels of pollution, hence a binary decision, which is
based on solving a minimum-cut problem on an associated graph (Hochbaum and
Fishbain 2011). After each iteration the region that was tagged as risky with its
corresponding sensors are removed and the process is repeated so equi-pollution
contour lines are produced. The final output is the patterns and deviations from
these patterns are events.

Another graph-theory based method, firstly presented here, for generating
patterns from distributed sensory network is based on Markov Random Fields
(MRF) (Hochbaum 2001). The MRF optimization problem aims at finding a
value such that two functions are minimized: a deviation cost function that depends
on the distance between an observed value and a modified one; and a penalty
function that grows with the distance between values of related (adjacent) pairs,
i.e., a separation function. Specifically, within the suggested framework, the goal is
to modify the indicators’ values so that an objective function, consisting of one term
due to the deviation of the events’ values from the measurements, and a second term
that penalizes differences in assigned values to adjacent spatial sensors, is mini-
mized. This is illustrated in Fig. 12.3.

Adjacency is not mandated by the method and can be derived from the charac-
teristics of the problem in hand. For example incidents can be considered to be
adjacent if they are less than a predefined distance from each other. Once adjacency
is determined, one has to assign the deviation and separation weights. This implies
that for computing the separation cost function one should extract the affinity
function for all adjacent incidents pairs.

Fig. 12.3 Markov Random
Field
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For G() and F() the deviation and separation cost functions respectively,
gj – events value in node j, the problem is to find a pattern X that consists of a set
of xi 2 X that minimizes the following objective function:

minX
X

i2V
Gj gi; xi# $ þ

X

i;j# $2A
Fij xi & xj

! "
8
<

:

9
=

;

When the separation function is linear and the deviation function is linear, quadratic
or piecewise linear convex, the MRF problem can be solved efficiently (in strongly
polynomial time) through network flow algorithm (Hochbaum 2001).

12.2.3 Cross Referencing Events

In order to understand the nature of the entire environmental episode based on all
extracted events, one has to find a set of events that co-align with each other and
best explain the observed environmental episode. To this end, the common methods
are the Maximum Likelihood Estimation (MLE) (e.g., Álvarez, et al. 2005),
Artificial Neural Networks (ANN) (Reich, et al. 1999; Gardner and Dorling
1998) and the Dempster-Shafer Theory (D-S) (e.g., Wang, et al. 2006; Yadav,
et al. 2013).

The MLE approach assumes an underlying model and aims at finding the
model’s parameters that are most probable, given the observations. For example,
Álvarez et al. present a Markov chain model to study air pollution, where daily
maximum ozone measurements in Mexico City are assumed to follow a Markov
chain of order K> 0. The parameter K is then inferred using MLE (Álvarez
et al. 2005). The necessity of a model is a drawback of these types of methods as
describing environmental and atmospheric phenomena by an accurate model is an
extremely difficult task.

In its most general formulation ANN consists of a system of simple
interconnected neurons, or nodes (as illustrated in Fig. 12.4), which represent a
nonlinear mapping between an input vector (events in this case) and an output
vector (episodes). The nodes are connected by weights and output signals which are
a function of the inputs to the node modified by a simple nonlinear transfer, or
activation, function. It is the superposition of many simple nonlinear transfer
functions that enables the multilayer perceptron to approximate extremely
non-linear functions. The output of a node is scaled by the connecting weight and
fed forward to be an input to the nodes in the next layer of the network. This implies
a feed-forward neural network, where each input, Ii, goes through several such

functions. Each ith transfer function in layer L,f i
L, can be of a different form. Due to

its easily computed derivative a commonly used transfer function is the logistic

function, y ¼ 1& e&x# $&1, but any other function would work. As both the input
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events I1; I2; I3; I4; ( ( (; Inf g and observed episodes O1;O2;O3; ( ( (;Oq

# $
are known,

the goal is to find the various functions’ parameters that explain best the linkage
between the events of episodes. The resulted network and its parameters explain the
role of various events in the observed episodes. Thus the goal is not to detect the
happening of an episode, but to infer the events that contribute to its happening.

In its core the D-S methodology is a generalization of the Bayesian theory of
subjective probability. For illustration of the problem, let us consider an episode,O,
and a set of related events, Ω. All subsets of events, ωf g ) Ω, are assigned with a
probability [0,1] that represents their post-priori probability to actually happen
given observation O, such that

P
ω)Ω P ω# $ ¼ 1. Two values are then calculated

for each subset, ωi:

• Belief Value – the sum of probabilities of all subsets that include ωi, i.e.,

Bel ωi# $ ¼
P

ωj*ωi
P ωj

! "
.

• Plausibility value – the sum of probabilities of all subsets that intersect with,ωi,

thus Pl ωi# $ ¼
P

ωj\ωi 6¼ϕ P ωj

! "
.

Bel ωi# $ represents the evidence we have for ωi directly. So P ωi# $ cannot be less
than this value. Pl ωi# $ represents the maximum share of the evidence, if, for all sets
that intersect with ωi, the part that intersects is actually valid. Thus, Pl ωi# $ is the
maximum possible value of P ωi# $. The difference, Pl ωj

! "
& Bel ωj

! "
+ 0

! "
, called

the belief interval, represents how certain a belief, ωi is. Thus, how accurate is the
initial assumption about its post-prior conditional probability given O.

Fig. 12.4 Artificial neural
network for associating
events with episodes

12 Framework for Analyzing Environmental Indicators Measurements Acquired. . . 215



12.3 Neighborhood Scale Air-Quality Environmental
Indicators

Next we illustrate the use of the suggested framework within the context of
air-quality monitoring by describing the results of (Moltchanov et al. 2015) in
the above terminology. In their study Moltchanov et al. (2015) report ambient
measurements of gaseous air pollutants by a WDESN of MSUs that have been
deployed in three urban sites, about 150 m apart. This study of Moltchaqnov et al. is
the first time a network’s capability to capture spatiotemporal variations is demon-
strated at a sub-neighborhood spatial resolution, which suits the requirement for
highly spatiotemporal resolved measurements at the breathing-height when
assessing exposure to urban air pollution.

12.3.1 Study Design

The study region is the city of Haifa, located in the north of Israel with a population
of ~265,000. The city is located at the northern part of the Israeli Mediterranean Sea
shore, ranging from sea level to the Carmel mountain ridge at ~500 m above sea
level (ASL). The Haifa bay area is a busy metropolitan, combining both densely
populated residential areas and a large industrial complex which includes a primary
sea-port, petrochemical industries and oil refineries. The entire region is burdened
with traffic, including heavy vehicles, cargo trains and a large number of diesel
buses, as Haifa functions as a transportation center for the entire northern region of
Israel.

Specifically, the study was performed at the Neve Sha’anan neighborhood – a
residential neighborhood located on a relatively leveled region of the Carmel
Ridge, about 200 m ASL. The neighborhood is roughly divided by a major road
(Trumpeldor Ave.), which also serves as the main commercial center for the
residents of this area (Fig. 12.5).

In the study described in (Moltchanov et al. 2015), six units were deployed at
three different locations some 100–150 m apart – sites A, B and C in Fig. 12.5. The
campaign took place for 71 days in the summer of 2013 (between 16/06/2013 and
26/08/2013), a season that is characterized by meteorological stability and persis-
tence. Site A is a balcony on small residential street. The units were placed 3 m high
above ground level (AGL) and 5 m off the centerline of the road, which experience
sparse traffic density. Site B is a second story balcony. The first story of the building
houses a pizzeria with an exhaust at the rear side of the building. The units were
placed 4 m AGL and 7 m off an adjacent busy street. The building is a corner
building of the Ziv junction, which is a busy local (neighborhood-scale) commer-
cial zone (see Fig. 12.5b and c). Site C is located on the Trumpeldor Blvd., the main
street of the neighborhood, ~80 m NE from a busy bus stop. The units were placed
on a roof of a kindergarten courtyard, 3 m AGL and 4 m off road.
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Wind data were obtained from the Nave Shaanan AQM station (marked AQM in
Fig. 12.5b), located 750 m down the road from site C.

12.3.2 Incident Streams

The incident streams are produced by CanarITTM air quality MSUs (Airbase
Systems LTD). Each unit generates streams of ambient levels of the following
indicators – O3, NO2, total VOC (tVOC), Total Suspended Particles (TSP), noise,
temperature (Temp) and relative humidity (RH). In this analysis we focus on NO2

and O3 measurements only. Each apparatus gauges the indicators’ level over a short
time period (Meas.T) and reports the average level, computed over Meas.T, at a
given Frequency (Freq). Thus, Meas.T is shorter than the time between reports
(1/Freq). The technical specifications of the various sensors are detailed in
Table 12.1. Measurements are transmitted to a cloud-based storage, by an
on-board GSM embedded chip.

Throughout the campaign, one unit was fixed at each site. The three remaining
units were rotated twice between the sites, on days 28 and 51 from the beginning of
the campaign, so that each of these three units operated at each of the three sites.
The rotation allowed for comparison within and between the sites, thus enabling to

Fig. 12.5 Map of the study region showing the Haifa bay area and the Carmel Ridge (a), Nave
Shaanan neighborhood (b) and the Ziv Junction area in greater detail (c)
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compare the obtained streams across the different locations and the sensor nodes.
Table 12.2 details the sensors’ location throughout the field campaign. Because of
the persistent meteorological conditions over the region in the summer, 21–28 days’
time periods are assumed sufficient to characterize the pollution levels at each of the
microenvironments.

As detailed in (Moltchanov et al. 2015), in general, high correlations were found
among incidents of collocated WDESN nodes, suggesting consistency across
different MSUs’ measurements. In contrast, low correlations are depicted between
concentrations of both NO2 and O3 measured by MSUs at different locations,
indicating that the measured concentrations echoed some local conditions and
responded to the specific microenvironment where the nodes were placed.

12.3.3 Events Detection in Streams of Incidents

Diurnal patterns of NO2 and O3 concentrations among collocated MSUs were highly
correlated. NO2 and O3 daily patterns are presented in Fig. 12.6. Figures (a) and
(c) depict weekday’s pattern of NO2 and O3 respectively. Figures (b) and (d) present
the corresponding weekend’s patterns. Both NO2 and O3 reveal distinct patterns in
each site. The reason for this is twofold – first each microenvironment is governed
by different conditions. Second, the sensors themselves present inherent biases.

Table 12.1 Sensors technical specifications

Stream Man. Model Meas.T [s] Freq. [Hz] Dyn.R [ppb] Res. [ppb]

O3 Aeroqual SM50 1 60 0–150 1

NO2 AppliedSensors iAQ-100 2 20 0–2,000 ppb 5

tVOC1 AppliedSensors iAQ-100 2 20 0–2,000 ppm2

TSP 0.5 20

Noise 0.25 20

Temp. 0.5 20

RH 0.5 20

Man. manufacturer, Meas.T acquisition time, Freq. reports frequency, Dyn.R sensors’ dynamic
range, Res. the sensors’ resolution

Table 12.2 Location of units during each of the study periods

Site Fixed units

Period I – days 1–28 Period II – days 28–50 Period III – days 50–71

Jun. 16 – Jul. 14 Jul. 14 – Aug. 5 Aug. 5 – Aug. 26

A 418 422 413 424

B 420 424 422 413

C 414 413 424 422
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This is especially true for O3 sensors (see Fig. 12.6c and d). Regardless of the reason
for these differences, the phenomenon itself emphasizes the advantage of extracting
events from each stream of incidents separately.

In the study of Moltchanov et al. (2015), the goal was to assess the MSUs’
capability to capture real-life phenomena. Therefore, let us consider incidents
acquired from a specific stream as events if they present values that are higher or
lower (by a standard deviation) than the specific stream’s average. This should
correspond to higher and lower values of NO2 and O3 respectively during morning
and evening traffic peaks (Levy et al. 2012; Nazaroff and Alvarez-Cohen 2001; Zalel
et al. 2008). On weekday, events were recorded, for example, between 7 and 8 am.
On weekends, on the other hand, the daily peaks diminish (Fig. 12.6b, d) and
therefore no events are recorded.
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Fig. 12.6 Daily patterns of NO2, (a) and (b), and O3, (c) and (d), concentrations (30 min.
averages) measured by collocated nodes in locations A (black lines), B (blue lines) and C (red
lines) during Period II. Plates (a) and (c) are weekdays (Sunday–Thursday) patterns, plates (b) and
(d) weekends (Saturdays) patterns. Dashed grey lines – simultaneous AQM monitoring data
(Source Moltchanov et al. 2015)
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Site A is located in a small residential street with little traffic and is characterized
by lower NO2 concentrations than the two other sites (See sensor # 413 and
418 in Fig. 12.6a and b). Nevertheless, events are recorded at site A at morning
(7:00–7:30) and at evening (~19:30) rush hour peaks. Site B is located at a busy
junction in a commercial area. Indeed, the diurnal NO2 patterns on weekdays reveal
a dual-peak daily pattern (Fig. 12.6a), where events are indeed recorded around
these peaks. On Saturdays the concentrations remain low and constant until ~19:00,
when traffic resumes (Fig. 12.6b). However no events are recorded on weekends.
The signature of traffic is revealed also in the weekday ozone concentration patterns
that show a dramatic decrease from 05:30 am and reach a minimum at about 07:00–
07:30, in parallel to a peak in NO2 concentrations. Typically, O3 concentrations
increase afterwards and reach peak values at around noon (Fig. 12.6c). Likewise,
events extracted from NO2 and O3 streams at site C indicate traffic related origin.
Peak NO2 concentrations and minimum O3 concentrations occurred between 08:00
and 09:00 am.

12.3.4 Cross Correlating Events

Once the set of events are extracted one can cross-correlate them and infer the
observed episode. Based on the recorded events, the morning episode at sites A and
B starts on average at 7:00 am. Thus, the morning episode’s spatial boundaries
contain both sites. The episode at site C starts somewhat later than that, forming a
different episode. It is worthwhile noting that the suggested reasoning, given in
(Moltchanov et al. 2015), is that while the episodes in A and B are due to traffic
behavior, the episode at site C is due to children drop off at the kindergarten, located
at C. The association of events recorded in sites B and C with the same morning
episode is supported by the low mean wind speed (Fig. 12.7a) and the high traffic
volume at the Ziv junction, which result in high concentrations at both B and C.

Fig. 12.7 Wind rose plots based on data measured at the AQM station on period I. (a) Morning,
(b) noon and afternoon, and (c) evening (Source Moltchanov et al. 2015)
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In the afternoon, however, reduced traffic volume and higher wind speeds
(Fig. 12.7b) result in significantly lower concentrations at site B whereas site C
maintains its relatively higher concentrations. Thus, the evening episode is bounded
to site C only.

This detailed discussion demonstrates the capability of the suggested framework
to capture both spatial and temporal boundaries of an environmental episode –
traffic pollution in this case. The episodes correspond to intra-urban pollutant “hot-
spots”, which in return can be treated. The aggregation of the events into set of
episodes allows for investigating the episode separately, while incorporating all
supporting relevant data in the process and eliminating all non-relevant data.
Hence, the use of the suggested framework has a huge potential for providing a
comprehensive, yet simple framework for capturing environmental indicators’
impact and their dynamic spatial and temporal variability. As such it presents a
great potential to become a common tool in examining environmental indicators
acquired through WDESN.

Conclusion
In this chapter a framework and its lexis foundations for analyzing measure-
ments acquired by Wireless Environmental Distributed Sensory Network
(WDESN) is presented. A set of sensors acquire observations of environmen-
tal indicators. These are formed by the sensing platform as streams of
incidents. Incidents that deviate from the normal pattern are regarded as
events. The event extraction can be held on the sensing platform itself,
which facilitates distributed analysis of the acquired data. Then the events
are cross-referenced for inferring environmental episodes. This formulation
ensures, by definition, that an environmental episode is well defined in time
and space and manifests itself in the recorded incidents by the sensors.
Algorithms and methods that constitute the framework are also described.

A practical example of using this framework for describing the results of
(Moltchanov et al. 2015) is given. In this example, it is shown how the
framework set the spatial and temporal boundaries of an environmental
episode and how it captures its dynamic behavior. This shows the great
potential of such framework for any future environmental research that is
based on WDESN.
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