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Abstract 21 

Intermittent water supply is a prevalent strategy employed in water distribution systems 22 

(WDS) facing deteriorating conditions. However, this approach can result in several 23 

drawbacks, including insufficient supply, pressure drops, water losses due to leakages, 24 

and unequal service levels. Furthermore, these issues often exacerbate when consumers 25 

establish private storage facilities and increase the peak demand, which leads to a 26 

feedback loop of worsening conditions. Thus, when a budget is available, restoring the 27 

system functionality as fast as possible is crucial. The current study presents a method 28 

to optimize the rehabilitation of intermittent water supply by improving system design 29 

through investments and by operational control settings. The method was developed for 30 

the challenge presented in the Battle of the Intermittent Water Supply (BIWS), where 31 

the network performance is evaluated through nine different objectives over five years 32 

of planning and rehabilitation horizon. The proposed method is based on a greedy 33 

optimization approach that was specifically tailored to the challenge of optimizing 34 

WDS under extreme hydraulic conditions. To overcome the formidable computational 35 

burden in the BIWS challenge, several heuristics are presented for reducing the search 36 

space. The results obtained reflect a dramatic improvement in the network performance, 37 

with 97.8% of the consumers having continuous supply and water loss reduced from 38 

47% to 23.7% of the total inflow. We also present a generic greedy approach that allows 39 

it to be applied to any water network for various decision-making problems. 40 
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1. Introduction 45 

The provision of a safe and reliable water supply is essential for the well-being and 46 

development of communities worldwide. However, in many parts of the world, 47 

especially in developing countries, water distribution systems (WDS) face numerous 48 

challenges, such as depletion of water sources and degeneration of infrastructure assets. 49 

With limited financial resources, water utilities struggle to address these issues directly, 50 

and instead, they adopt an alternative strategy of intermittent supply. Intermittent water 51 

supply refers to the non-constant availability of water service, where water is provided 52 

for limited hours for all or some of the users. Many causes lead WDS to the state of 53 

intermittent supply, ranging from sudden, dramatic events such as earthquakes to a 54 

sequence of inadequate planning and management decisions (Simukonda et al. 2018). 55 

Other factors that impact the ability to maintain continuous supply include rapid 56 

urbanization, which is common in developing countries (Bakker et al. 2008), climate 57 

change that affects water availability (Miyan 2015), and other instabilities that 58 

characterize developing countries. Consumers are the first to suffer from irregular water 59 

supply as it disturbs the daily routine and affects the most basic day-to-day actions that 60 

rely on water usage. Additionally, irregular supply is associated with health issues and 61 

increases the probability of contamination (Ingeduld et al. 2007; Kumpel and Nelson 62 

2016). Other indirect impacts include illegal connections and self-storing, leading to 63 

supply inequality (Gottipati and Nanduri 2014) and water waste (Mokssit et al. 2018). 64 

While managed intermittent supply attempts to address some of these challenges by 65 

maintaining at least partial supply, it cannot serve as a long-term solution. Moreover, 66 

this strategy can worsen the system's state by creating a deteriorating feedback loop 67 

(Galaitsi et al. 2016; Vairavamoorthy et al. 2008). For example, non-continuous supply 68 

prompts consumers to store water independently, which can worsen the pressure drop 69 

during the supply hours (de Marchis et al. 2010). Other examples of deteriorating 70 

feedback loops include water sources at risk of exhaustion due to leaks and extreme 71 

hydraulic states leading to increased energy consumption, which in turn reduces the 72 

budget available for system rehabilitation. Therefore, it is essential to develop strategies 73 
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to optimize planning and rehabilitation of the system toward continuous pressurized 74 

operation as well as optimize the intermittent supply operation of the system during the 75 

transition period. While several studies reviewed the causes and effects of intermittent 76 

supply (Galaitsi et al. 2016; Mokssit et al. 2018; Simukonda et al. 2018), the question 77 

of how to recover systems back to continuous pressurized supply has received less 78 

attention. The actions that utilities can take to improve the functionality of WDS can be 79 

grossly divided into two types: investment actions and operations actions. Investments 80 

usually refer to the installation of new facilities like pumps and valves while operation 81 

actions refer to the control of valves and pumps. Past studies addressed both aspects. 82 

Valves control optimization that maximizes the duration of sufficient pressure and 83 

minimizes pressure variations was suggested by   (Solgi et al. 2020). A similar study 84 

presented by Gullotta et al. (2021), involves both the optimization of valve location and 85 

their control setting. Multi-objective approaches were also considered. Ayyash et al. 86 

(2024) suggested a two-stage approach where first a design stage is taken to sectorize 87 

the network to District Metered Areas (DMAs), and then a control stage for optimizing 88 

the scheduling of valves and pumps. Another combined design-operation approach was 89 

suggested by Nyahora et al. (2020), which considers a more comprehensive design 90 

perspective. The design decisions include pipe replacements and installing new pumps 91 

and tanks. All the above studies have developed simulation-optimization based 92 

methodologies that greatly depend on hydraulic modeling. Nevertheless, the modeling 93 

of intermittent water supply is not trivial and substantially different from pressurized 94 

systems.  95 

 96 

Intermittent Hydraulic Modeling 97 

A most noticeable aspect of intermittent hydraulic modeling is low pressure, which 98 

restricts water consumption and, in some cases, causes pipes to drain and refill 99 

according to the intermittent operation cycle (Ingeduld et al. 2007). As a result of the 100 

low pressure, the demand-driven analysis assumption that consumers' demands are 101 

continuously satisfied is no longer valid. The most common approach to cope with this 102 

situation is a pressure-dependent analysis (PDA) (Siew and Tanyimboh 2012). While 103 

PDA can simulate the effect of low pressure on demand, it still assumes full pipe flow 104 

conditions. Hence, other extreme hydraulic conditions could be developed in the 105 

system, causing the hydraulic simulations to be unstable. When hydraulic simulations 106 
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are needed to evaluate the rehabilitation strategies, these numerical instabilities add 107 

more complexity to the already challenging problem of optimizing the WDS 108 

performance. For instance, in the popular hydraulic simulator EPANET (Rossman 109 

2000), under insufficient water availability conditions, tanks might be drained beyond 110 

their minimum level , leading to simulation errors. Another example is pressure drops 111 

to negative values, which EPANET is not designed to handle, thus, the result might not 112 

reflect real hydraulic behavior. For example, when leaks in the system are modeled with 113 

EPANET emitter coefficients, negative pressure conditions will (artificially) cause the 114 

leak to function as a source, delivering water into the system. 115 

Several studies addressed these challenges of intermittent supply hydraulic modeling.  116 

Mohan and Abhijith (2020) developed a pressure-driven partial flow model for the 117 

hydraulic simulation of full and partial flows. Gullotta and Campisano (2024) presented 118 

an approach based on the open-source storm water management model (SWMM) 119 

software (Rossman 2009) to model the partial flows in intermittent systems. A review 120 

and comparison of more intermittent modeling techniques can be found in Abdelazeem 121 

and Meyer (2024). The described hydraulic complexity poses a significant challenge to 122 

optimize WDS under intermittent conditions. The implementation of classic 123 

mathematic programming optimization methods such as linear and nonlinear 124 

programming becomes infeasible. Moreover, due to the extreme states that the system 125 

is subjected to, the simulation runtime tends to be relatively long. Thus, utilizing hybrid 126 

optimization methods (e.g., evolutionary algorithms) becomes more challenging.  127 

 128 

Objectives 129 

Like any other optimization problem, optimal planning and management of intermittent 130 

systems have unique objectives (Ilaya-Ayza et al. 2017a; Solgi et al. 2020). On the 131 

investment side, a primary objective is to restore the system functionality as quickly as 132 

possible, which often involves actions such as leak repairing and the replacement of 133 

pipes and pumps. Typically, these objectives may be conflicting. For example, 134 

replacing pumps to increase the supply capacity will also increase the system pressure, 135 

which in turn will increase the leakage water loss. On the operation side, various 136 

objectives must be considered, including supply continuity, supply pressure, and supply 137 

equity. Supply equity is particularly important in intermittent systems since significant 138 

pressure drops prevent the supply to the high points and locations furthest away from 139 
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the sources, which leads to inequality in service levels between consumers. 140 

Additionally, standard operational objectives such as energy cost and leakage volume 141 

reduction need to be considered. 142 

The main conclusion from the above is that optimizing the performance of WDS under 143 

intermittent conditions is a highly complex task, requiring coping with nonstandard 144 

hydraulic conditions while optimizing multiple conflicting objectives in a high-145 

dimension decision space. Some past studies suggested customized objectives for the 146 

case of intermittent supply, mainly supply equity  (Gullotta et al. 2021; Hendrickson 147 

and Sela 2024), supply pressure and supply hours (Ilaya-Ayza et al. 2017b). 148 

To address these challenges, the current paper presents an optimization methodology 149 

developed as part of the Battle of Intermittent Water Supply (BIWS). The BIWS was 150 

held as an optimization competition aiming to find the best strategy to improve 151 

intermittent WDS performance. In the following sections, a detailed description of the 152 

BIWS challenge is provided, followed by a presentation of the developed optimization 153 

methodology. Later, the results obtained from the proposed method are presented and 154 

discussed, and finally, conclusions and insights are provided.  155 

  156 

2. The BIWS Case Study 157 

The BIWS network, depicted in Figure 1, is mainly a gravity-fed system, sourcing water 158 

from a natural spring in the south-west edge of the system (R1) with a 200 L/s flow 159 

capacity. In addition to the main gravity source, the network incorporates five pumping 160 

wells (W1_RI, W2_SA, W3_AB, W4_SM, and W5_PL) with a total flow capacity of 161 

100 L/s. The network consists of 2,859 nodes and 3,231 pipes with 3,591 leaks 162 

distributed along them. Other facilities in the network are four storage tanks (T1_CO, 163 

T2_PL, T3_MO, and T4_CU) with different volumes located in different parts of the 164 

network; a pumping station with two parallel pumps (B_PT1, B_PT2); and control 165 

valves that allow the isolation of specific sections of the network. One of these valves 166 

is a flow control valve (FCV) that regulates the flow from the south to the north part of 167 

the network. Another valve is a pressure sustaining valve (PSV) responsible for 168 

maintaining the pressure at the main tank (T1_CO). The third valve is an FCV that 169 

restricts the flow from the natural spring to 200 L/s, and the fourth valve is a pressure 170 

reducing valve (PRV) that can regulate pressures in the south-west zone of the network 171 

(the detailed files that describe the WDS, in inp format, are provided in the 172 
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supplementary materials S.1). According to the BIWS rules, leakages can be modeled 173 

in various ways. In this study, leakages were modeled by splitting pipes (i.e., adding a 174 

node) in the location specified in the data files. Another node with an emitter coefficient 175 

was added near the location of the pipe split to represent the leak. This leak node is then 176 

connected to the node that splits the pipe by adding a check valve. The check valve 177 

prevents water flow into the network during negative pressure conditions.  178 

 179 

Figure 1 - BIWS network layout with water sources and tanks 180 

 181 

The network is encumbered by multiple constraining factors. These include many 182 

leakages causing significant water loss and pressure drop. Additionally, the depletion 183 

of the underground water level prevents existing pumps from supplying water from 184 

wells. This is because the head required to pump from depleted underground water level 185 

to the ground elevation exceeds the pump’s shut-off head. Furthermore, some pipes 186 

have insufficient diameters, exacerbating pressure loss. The consequences of these 187 

conditions include the development of negative pressures, the inability to fill the storage 188 

tanks, and inequity in water supply between different zones. As a result, the water 189 

supply falls far short of satisfying the common-level service standards. The challenge 190 

presented in the BIWS asks to improve the network performance according to nine 191 
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different indicators (Table 1) during a representative operational period of one week 192 

(168 hours).    193 

Table 1 – Optimization objectives 194 

# Description Type Formula 

1 
Proportion of the number of effective 

hours a subscriber is served  
Max 𝐼1 =

∑ ∑ 𝑛𝑖,𝑗
𝑁
𝑖=1

6
𝑗=1

𝑁 ∙ 24 ∙ 364 ∙ 6
 

2 
Proportion of subscribers with continuous 

service  
Max 𝐼2 =

∑ ∑ 𝑤𝑖,𝑗
𝑁
𝑖=1

6
𝑗=1

𝑁 ∙ 6
 

3 Volume of water leakage Min 𝐼3 =
∑ ∑ 𝑉𝑙,𝑗

𝐿𝑗
𝑙=1

6
𝑗=1

∑ ∑ 𝑉𝑠,𝑗
𝑆𝑗
𝑠=1

6
𝑗=1

 

4 
Proportion of volume of water supplied to 

users 
Max 𝐼4 =

∑ ∑ 𝑉𝑖,𝑗
𝑠𝑁

𝑝=1
6
𝑗=1

∑ ∑ 𝑉𝑖,𝑗
𝑑𝑁

𝑑=1
6
𝑗=1

 

5 Level of pressures at consumption nodes Max 𝐼5 =
∑ ∑ ∑ max⁡(0, min⁡(𝑝𝑖,ℎ,𝑗 , 𝑝𝑟𝑒𝑓)

𝑁
𝑖=1

168
ℎ=1

6
𝑗=1

168 ∙ 𝑁 ∙ 6 ∙ 𝑝𝑟𝑒𝑓
 

6 Percentage of users supplied continuously Max 𝐼6 =
∑ ∑ 𝛿𝑖,𝑗

𝑁
𝑖=1

6
𝑗=1

𝑁 ∙ 6
 

7 Pipe length with negative pressures Min 𝐼7 =
∑ ∑ 𝐿𝑚,𝑗

𝑀
𝑚=1

6
𝑗=1

6
 

8 
Energy consumption of pumps in 

operation over the whole period 
Min 𝐼8 =∑∑𝐸𝑝,𝑗

𝑃

𝑝=1

6

𝑗=1

 

9 Level of equity in supply Max 

𝑆𝑅𝑖,𝑗 =
𝑉𝑖,𝑗
𝑠

𝑉𝑖,𝑗
𝑑

 

𝐴𝑆𝑅 =
∑ ∑ 𝑆𝑅𝑖,𝑗

𝑁
𝑖=1

6
𝑗=1

𝑁 ∙ 6
 

𝐴𝐷𝐸𝑉 =
∑ ∑ |𝑆𝑅𝑖,𝑗 − 𝐴𝑆𝑅|𝑁

𝑖=1
6
𝑗=1

𝑁 ∙ 6
 

𝐼9 = 1 −
𝐴𝐷𝐸𝑉

𝐴𝑆𝑅
 

j – Years index 

i – Nodes index 

N – Total number of demand nodes 

wi,j – 1 if consumer i as continuous service 

pressure in year j 

Vl,j – Volume lost by leakage l in year j  

Vs,j – Volume supplied by source s in year j 

Vi,j
s – Volume supplied to consumer i in year j  

Vi,j
d – Volume demanded by user i in year j 

Pi,h,j – Pressure at node i and hour h of year j 

Pref – Min acceptable pressure for quality supply 

(Pref=20m) 

δi,j – 1 if the pressure at node i is larger than Pf for 

all hours of year j 

Pf – min pressure for supplying all demands (10 m) 

Lm,j – Longest negative pressure length of pipe m in 

year j (max between time steps) 

Ep,j – Energy consumption of pump p over year j 



8 

 

 195 

3. Methodology     196 

The methodology used to optimize the BIWS case study includes several stages. First, 197 

a preprocessing analysis was conducted to gain a comprehensive understanding of the 198 

network behavior. Next, a greedy algorithm was developed to find the optimal 199 

investment strategy. Last, the system’s controls were optimized by using a brute force 200 

search. 201 

 202 

Preprocess Analysis 203 

This stage included explorative hydraulic simulations to develop a systemized 204 

understanding on the impact of different interventions on the objectives. The purpose 205 

of this process is to reduce the space of candidates used in the next stage of the Greedy 206 

algorithm. One prominent insight is that the existing pumps' configurations tightly 207 

constrained the use of groundwater. The difference between groundwater level and 208 

ground elevation is larger than the pump's maximum head. As such, physically, pumps 209 

cannot pump water into the system. However, since the EPANET mathematical model 210 

allows for negative pressure in the system, the pump head in the simulation can appear 211 

below the pump's maximum head, due to an unrealistic suction effect that helps lift 212 

water from the underground. Activating the pumps in these conditions results in flow 213 

rates that exceed the Maximum allowed Flow Rate (MFR) given in the BIWS 214 

instructions. The conclusion is that for year 0 (before any investments were made), the 215 

use of underground water is strictly limited, except for well B_AB and B_SA that, by 216 

setting valve controls, can pump water without exceeding the MFR. Accordingly, 217 

pumps were replaced in the first year and were not part of the Greedy algorithm 218 

candidates. Another critical insight gained from the hydraulic analysis is that the 219 

network's tanks were not functional in their ability to fill and store water effectively. 220 

To investigate whether increased storage volume might improve the system 221 

performance, several investment scenarios were tested to explore the network 222 

hydraulics with larger tanks. This analysis considered future states when underground 223 

water is available and leakages water loss is decreased to test if the increased volume 224 

will contribute after some of the investments are made. It was observed that even after 225 

investing the entire five-year budget, the tanks' volume would not limit the system 226 
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performance, thus, increasing the tanks' volume was not considered in the investment 227 

optimization. 228 

 229 

Greedy Algorithm 230 

Given the complexity of the challenge described above, an optimization strategy is 231 

essential to address the non-trivial hydraulics conditions and objective functions. 232 

Additionally, the optimization approach should take into consideration the 233 

computational burden that prevents the use of classical simulation-optimization 234 

methods. For the BIWS challenge, we propose a greedy optimization algorithm. This 235 

algorithm takes inspiration from Dantzig's greedy approximation algorithm (Dantzig 236 

1957) for the discrete knapsack problems. In the context of the BIWS, the knapsack 237 

problem can be defined as follows: Given a set of rehabilitation actions, each with a 238 

cost and a benefit, one needs to select a subset of rehabilitation actions so that the total 239 

cost does not exceed a given budget while the total benefit is maximized. Dantzig 240 

proposed sorting actions in decreasing order of benefit per cost (e.g., marginal benefit) 241 

values. This sorting enables the algorithm to prioritize actions that offer the most benefit 242 

relative to their cost. By iteratively selecting actions in this manner until the budget 243 

constraint is met, the greedy algorithm constructs a solution that is expected to be 244 

relatively close to the optimal solution. While this algorithm is straightforward for the 245 

original knapsack problem, in which the benefit and the cost of each action are known 246 

constants, its implementation for the nonlinear case is challenging (Salhi et al. 1989). 247 

In the nonlinear case, such as the one considered herein, the benefit from each action is 248 

not constant. Moreover, the cumulative benefit of combinations of rehabilitation actions 249 

can have a greater effect than the sum of the individual actions. Therefore, new 250 

evaluations of the actions' benefits need to be made after implementing each action. 251 

The nonlinearity of the problem raises a major computational challenge, unlike the 252 

classic knapsack problem, the determination of actions' benefit requires solving a 253 

hydraulic simulation. Since such simulations are computationally expansive, the 254 

number of benefit evaluations is limited. The following describes the mechanism of the 255 

proposed greedy algorithm and the techniques that have been used to cope with this 256 

computational burden. 257 

 258 

Initial Candidates Selection 259 



10 

 

The purpose of this stage is to reduce the search space by eliminating some of the 260 

optional investment candidates, to include only investments that have the potential for 261 

significant network performance improvement. To accomplish this, a preliminary 262 

candidate selection stage was implemented. As stated above, tanks and pumps were not 263 

part of the greedy algorithm that focused only on pipe replacement and leak repairs. 264 

Each pipe and leak were evaluated based on hydraulic parameters to estimate their 265 

potential contribution to the overall network performance. Pipes were evaluated 266 

according to their per unit head loss, and leaks were evaluated according to the 267 

proportion between their water loss volume and repair cost. 268 

Greedy Budget Allocation  269 

The Greedy algorithm is illustrated in Figure 2 (which also details the greedy 270 

improvements described below). The algorithm is initiated with the candidate selection 271 

process and setting the budget, which in the case of the BIWS is 650,000 per year. The 272 

algorithm iterates through the following steps while the remaining budget is larger than 273 

zero: (1) Evaluate: each candidate investment is individually implemented in the 274 

network, then a hydraulic simulation is executed, and the nine performance indicators 275 

are evaluated. The nine indicators are then normalized and converted into a single 276 

indicator to calculate the benefit of the investment. The normalization is done based on 277 

the prior iteration (current best state) of the network, where the single objective is the 278 

sum of all normalized indicators, see Equation (1) 279 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑖 = ⁡∑
𝐼𝑖,𝑗

𝐼𝑗
𝑖−1

9

𝑗=𝑖

 (1) 

𝑀𝐵𝑖 = ⁡
𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑖 − 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑖−1

𝐶𝑜𝑠𝑡𝑖 − 𝐶𝑜𝑠𝑡𝑖−1
 (2) 

where 𝐼𝑖,𝑗 is the value of the indicator 𝑗 as a result of implementing investment 𝑖. 𝐼𝑗
𝑖−1 280 

is the value of the same indicator in the previous iteration. The change in benefit is the 281 

difference between the single normalized objective of the previous iteration and the 282 

current iteration of investment 𝑖. The change in cost is the additional cost required for 283 

the examined investment. Each candidate is scored according to its Marginal Benefit 284 

(MB); (2) Sort: all examined investments are sorted according to their MB; (3) 285 

Implement: the investment with the maximum MB is implemented in the network. and 286 

the benefit i-1 and cost i-1 are updated; (4) Update Re-evaluation List: the list of 287 

candidates that will be re-evaluated in the next iteration is updated. That is, not all 288 
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candidate investments will be re-evaluated to obtain their MB, some candidates will 289 

continue to the next iteration with the same MB as evaluated in the current iteration 290 

(see next section and Figure 2); (5) Update Budget: The last step in every iteration is 291 

to update the remaining budget to be the budget from the previous iteration minus the 292 

cost of the investments selected in step 3. 293 

 294 

Improved Greedy - Evaluations Reduction 295 

While the greedy algorithm described above suggests a systematic method to move 296 

toward an improved solution, it is still subject to computational burden. Even after 297 

reducing the candidates list, the requirement to evaluate each of the candidates while 298 

improving the network with a single investment in every iteration is not tractable with 299 

conventional computing resources. Several features were incorporated within the 300 

algorithm, aimed at increasing the level of greediness, and therefore at shortening the 301 

runtime. Certain investments present multiple options, for example, pipe replacement 302 

can be done with various diameters. In theory, each potential diameter could be 303 

considered as an individual investment candidate. To reduce the number of evaluated 304 

candidates and adhere to the greedy guidelines, pipes are gradually increased. In each 305 

iteration, the examined candidate's diameter is increased by one size. Subsequent 306 

iterations consider further diameter increases to the next available size, with the 307 

additional cost calculated as the difference between the current and the new diameter 308 

costs. Another feature is in Step 3, where instead of selecting only the best investment 309 

to implement, the algorithm selects a set of best investments. The size of the set is 310 

determined dynamically in every iteration, and it depends on the distribution of the MB 311 

score. First, the best MB is calculated, and then every investment that has a score above 312 

𝑀𝐴𝑋(𝑀𝐵) ∙ (1 − 𝜏) is added to the set of investments, where 𝜏 is one of the algorithm 313 

parameters that control the level of greediness. The last feature is Step 4 so that instead 314 

of re-evaluating the MB of all the investment candidates in every iteration, only a subset 315 

is selected to be re-evaluated. The selection of candidates to be re-evaluated is done by 316 

detecting the elements in the system that were affected the most by the last changes 317 

(previous iteration). That is, it is expected that there is negligible change in MB score 318 

for elements that were not hydraulicly affected (i.e., did not experience a change in flow 319 

or pressure because of the last investment). The logic behind this approach is that in a 320 

large network, the hydraulic impact of actions like repairing a leakage or increasing 321 
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pipe diameter is localized and limited to the region around the action. The hydraulic 322 

impacts in other parts of the system will be limited. To implement this logic in the 323 

greedy algorithm, Step 4 is added. Based on assessing the change in the pipes flow 324 

before and after the current investments, the 𝑛 pipes with the largest change are flagged 325 

for MB re-evaluation in the next iteration. The parameter 𝑛 is selected as a percentage 326 

of the total number of candidates when the algorithm starts. Additionally, all the leaks 327 

in these pipes are also flagged for MB re-evaluation. The number of selected elements 328 

to be MB re-evaluated is a second parameter of the algorithm the controls the level of 329 

greediness. Obviously, due to problem nonlinearity, MB re-evaluation of all investment 330 

candidates is more accurate, but this will come with the price of longer runtime due to 331 

more hydraulic simulations in each iteration. To conclude, the two parameters 𝑛, 𝜏 can 332 

be tuned to set the level of greediness to match a desired runtime. 333 
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334 
Figure 2 – Optimization strategy flowchart 335 

 336 

Postprocess 337 

A drawback of the proposed method is the evaluation of individual investments in a 338 

way that does not account for the implementation of other investments. This could 339 

result in incompatible investments in the final solution. For example, the greedy 340 

algorithm evaluates MB after repairing a leakage and finds that it is best to fix it in the 341 

current iteration. In a later iteration (but in the same investment year), the replacement 342 

of the pipe of the same leakage is selected. Obviously, since pipe replacement solves 343 

all the leakages in the same pipe, it will be a budget waste to repair the leakage. The 344 

postprocessing stage finds such duplicates and excludes them from the final solution. 345 

The spared budget is used to implement more investments from the last greedy iteration.  346 
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 347 

Clustered Brute Force Search 348 

The final stage of the optimization process is to set the control policy for pumps and 349 

valves. The system consists of 7 pumps, 11 throttle control valves (TCV), 2 FCVs, one 350 

PRV and one PSV. Also, the system has 12 isolation valves that can be opened or closed 351 

with no partial opening. All valves can be controlled on an hourly basis during the 168-352 

hour optimization which leads to a very high dimensional discrete decision space. For 353 

the operation of the pump, it was assumed that pumps should be operated as much as 354 

possible since they increase the inflow rate and the system pressures, which improves 355 

7 out of the 9 indicators (exceptions are leakage volume and energy usage). 356 

Accordingly, pumps are operated constantly. For valves, the strategy taken is to reduce 357 

the decision space based on similar principles as in the second greedy improvement. 358 

Observing that the influence of a control change is limited to its local physical vicinity, 359 

the control elements were clustered into seven groups (clusters), where each cluster is 360 

optimized individually. The optimization strategy used here is an exhaustive brute-361 

force search where an element can be either closed or open. In theory, each hour of the 362 

total 168 hours can get a different value, however, to achieve tractability, each element 363 

got only two values, one for daytime and one for nighttime. Based on the demand 364 

pattern of the system, daytime is defined from 07:00 until 00:00 and nighttime is from 365 

00:00 to 07:00. The clustering of the elements was done based on their topological 366 

location  and based on hydraulic impact. For instance, valves V_G1, V_G2, and V_G3 367 

regulate the South-East part of the network as an individual DMA. Therefore, these 368 

valves affect mainly on this DMA and minimal impact is assumed regarding further 369 

parts of the network. Clusters were defined using engineering judgment to divide the 370 

network into DMAs, each regulated by specific valves. Each cluster contains up to 5 371 

valves. For a cluster with 5 elements, we get a search space size of 22∙5 = 1024, thus 372 

it can be easily enumerated. Figure 3 shows the clusters that were used for the brute 373 

force search. 374 
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 375 

Figure 3 – Valves clusters for brute force exhaustive search. Note: a valve can be a member of 376 
multiple clusters as indicated by the multi-coloured circles 377 

 378 

4. Results 379 

First, insights from the preprocess analysis were implemented. All pumps installed in 380 

water-wells were replaced, and FCVs were installed in the discharge of the pump to 381 

avoid MFR deviations. The selection of pumps to be installed was done based on 382 

engineering judgment. The guiding principle was to select pumps with flow rates that 383 

are slightly smaller than the MFR so they can be continuously operated without 384 

exceeding the MFR. Since FCVs are installed in the discharge of pumps, it is 385 

guaranteed that flows will not exceed MFR anyway. However, by selecting the pump 386 

flow rate to the MFR values, the pressure dissipated in the FCV is smaller, and pumps 387 

are more efficient. To select the pump head, the discharge pressure ranges were 388 

analyzed assuming that toward the end of the planning horizon pressures in the network 389 

would be between 𝑃𝑓 (min pressure to satisfy all the supply) and 𝑃𝑟𝑒𝑓 (pressure for 390 

quality supply). Accordingly, the pumps were selected by the higher values of the 391 

pressures analyzed and with the assumption that negative pressures will be rare. 392 

Leakages analysis found that a small number of large leakages is responsible for most 393 

of the water loss. Figure 4 shows that while the network contains almost 3600 leakages, 394 
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180 of them (5% of all leakages) cause 59.6% of the total leak volume. The worst 20% 395 

leakages cause 81.5% of the loss. This nicely adheres to the well-known Pareto 396 

principle which states that 80% of outcomes result from 20% of causes (the "vital few").  397 

In terms of repair cost, the worst 600 leakages (16.6% of all leakages) cost more than 398 

the total budget for the five years. As such, not all the leakages can be repaired, and the 399 

greedy candidates were narrowed to the worst 1000 in terms of water loss per repair 400 

cost. 401 

 402 

403 
Figure 4 – Leakages water loss volume 404 

 405 

Next, a greedy algorithm was run separately for each of the five years. The budget for 406 

the first year was reduced due to the investment in pumps and valves. The initial 407 

candidate's selection took into consideration: (a) all pipes with an average per unit head 408 

loss larger than 3 m/km and (b) the highest 1,000 leakages according to water loss 409 

volume per repair cost. The parameter 𝜏 that governs the number of investments  410 

selected in each iteration was set to 3%, meaning all investments that were ranked with 411 

MB larger than 97% of the best investment will be implemented. The number of MB 412 

re-evaluations in each iteration (𝑛) was set to be 3% of the total number of candidates. 413 

The obtained results  are presented in Table 2 and Figure 5. The results show that for 414 

all indicators, the most significant improvement is after the first year. The first year 415 

includes the pump replacements, which allow the use of other water sources, increasing 416 

the inflow rate from 150 L/s to 255 L/s. The increase in the supplied water, as well as 417 

the increase in the system’s pressure, contribute to indicators such as Effective hours 418 

proportion (I1), Continuous service and supply pressure (I2, I6), Supply-demand 419 
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proportion (I4), and others. Despite the pressure rise, the volume of water loss due to 420 

leakages is dramatically decreased due to the repairing of leakages. 421 

Table 2 – Solution Indicators 422 

 I1 I2 I3 I4 I5 I6 I7 I8 I9 

Year Max Max Min Max Max Max Min Min Max 

0 0.649 0.298 0.474 0.412 0.354 0.08 248,594  392  0.355 

1 0.926 0.772 0.368 0.739 0.782 0.534  97,588  14,941 0.763 

2 0.937 0.767 0.346 0.768 0.799 0.518 103,920  15,175 0.787 

3 0.965 0.804 0.283 0.834 0.856 0.539  89,602  15,695 0.869 

4 0.971 0.855 0.278 0.856 0.87 0.629  65,960  15,208 0.888 

5 0.978 0.871 0.237 0.869 0.882 0.658  60,327  16,371 0.903 

Total 0.904 0.728 0.323 0.746 0.757 0.493 110,998  77,784 0.722 

 423 

 424 

Figure 5 - Indicators values over the 6-year horizon 425 

 426 

The best-known results of the BIWS challenge were presented by Marsili et al. (2023), 427 

another study by Mottahedin et al. (2023) ranked 3rd while the greedy approach ranked 428 

4th. Figure 6 shows a comparison of the two studies with Marsili et al. (2023) the 429 

presented study. Each team is represented by bars of different colors, rows represent 430 

the yearly results and columns the performance of the nine indicators. The greedy 431 
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approach and Mottahedin et al. (2023) present a slight advantage in year 0  due to a 432 

control strategy that allowed the operation of well B_AB and B_SA without exceeding 433 

the MFR. Marsili et al. (2023) used most of the budget for repairing leakages and 434 

replaced only a single pump. This approach results in a dramatically larger number of 435 

repaired leakages compared to the two other approaches. A dramatic advantage of both 436 

Marsili et al. (2023) and Mottahedin et al. (2023) over the current study is in their 437 

control strategy. While the current study considered only day \ night control changes to 438 

reduce the search space, the two other teams presented more dynamic strategies that 439 

improved dramatically pump energy consumption. Furthermore, the two teams used 440 

valve controls to isolate parts of the networks which significantly improved the 441 

Negative pressure pipe length (I7). This indicator is calculated as the sum of pipe length 442 

that is subjected to negative pressure, where length is calculated at the worst time step 443 

(e.g., longest segment with negative during the simulation). However, isolated areas are 444 

considered as non-active and excluded from the calculation. Although such isolations 445 

show superior performance in the BIWS score it is in doubt how much this indicator 446 

really indicates a benefit to the users. For example, in the case of a long pipe, with only 447 

one consumer in its edge, and such that in only one-time step, the pressure of the pipe 448 

is negative, the indicator will get a poor score, although its functionality is not 449 

necessarily poor. Indicator I8 presents a substantial difference between the three 450 

approaches. In the current study, all pumps are replaced with better efficiency pumps, 451 

which results in lower energy consumption compared to Marsili et al. (2023) for the 452 

first three years. In the later years, the control strategy by Marsili et al. (2023) was 453 

managed to better even the new pumps suggested in this study.  Mottahedin et al. (2023) 454 

approach is superior to these two by combining new pumps, and frequent inverters 455 

allowing for more dynamic control by adjusting pump speed control.  456 

Overall Mottahedin et al. (2023) presented a similar solution to the current study where 457 

in the first year a large portion of the budget is invested in new devices (pumps and 458 

valves) and the rest of the budget is spent on prioritized pipe replacements and leak 459 

repairs where control is optimized separately from the investment decisions. The 460 

winning approach by Marsili et al. (2023) differs in the sense that only a minimal budget 461 

is invested in new devices with only one pump replaced and valves installed only at 462 

pump discharges to maintain MFR. Despite the advantages of new device installations, 463 
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the results show that prioritizing pipe replacement and leak repairs is the most dominant 464 

strategy leading to the best performance.  465 

It is noted that Marsili et al. (2023) did not detail the I9 score in their paper and stated 466 

that it could not be evaluated for individual years. Also, it is noted that Marsili et al. 467 

(2023) calculated the energy consumption for the total number of hours in each year 468 

and not just for the one-week simulation. The values in Figure 6 were calculated by the 469 

authors using the final networks provided by Marsili et al. (2023).  470 

 471 

 472 

Figure 6 - Indicators values over the 6-year horizon 473 

 474 

The greedy algorithm effectively produced a rehabilitation strategy that is reasonable 475 

from an engineering perspective. The algorithm prioritized the most critical leakages to 476 

be repaired in the early years and identified bottlenecks in pipe diameters. In this 477 

context, a 'bottleneck' refers to a segment connecting two pipes with a diameter 478 

significantly smaller than that of the connected pipes. Figure 7 presents the leakages in 479 

the system by their total water loss volume before any investment was made and by 480 

their repair cost. The colors in Figure 7 represent the year in which a leak is repaired 481 

where the lightest blue is for repairs in year 1, and the darkest blue is for repairs in year 482 

5. Leaks that were not repaired are marked as red circles. As much as a leak is larger 483 

and loses more water, it is easier to locate, and thus, its repair cost is smaller (the 484 

functions provided in BIWS instructions, 2022). This relationship between the water 485 

loss and cost is very convenient for the greedy algorithm because the two factors are 486 
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negatively correlated. While, usually, a large benefit requires a large investment, here 487 

it is the opposite case. As such, the most urgent leaks have the smallest repair cost, and 488 

they are prioritized to be repaired in the first year. Since a small leak loses less water 489 

and costs more to repair, it is delayed to later years or not repaired at all. Some 490 

exceptions are observed due to strategic locations of leaks on main pipes and due to the 491 

suboptimality of the greedy algorithm. 492 

 493 

 494 

Figure 7 - Network leakages by their water loss, repair cost and year repaired  495 

 496 

Among the pipes that were replaced, the greedy algorithm identified those that 497 

constituted bottlenecks and prioritized them. Such pipes are mainly pipes with short 498 

lengths with small diameters (relative to the downstream demand and neighbor pipes) 499 

and pipes that connect separated sections. Figure 8 presents the pipes that were replaced 500 

(to a larger diameter) with the same color code as in Figure 7 so that light colors 501 

represent earlier replacement. The pipes that were replaced across all years are mostly 502 

short pipes that improve the network connectivity. One drawback of the greedy 503 

algorithm is its inability to evaluate the contribution of the combination of investments, 504 

but only each investment on its own. This leads to suboptimality since it is possible that 505 

two individual investments will be ranked with low MB but to fulfill the potential 506 

benefit of these investments, two (or more) small investments must be taken. For 507 

example, a bottleneck is constructed as a series of two short pipes. Each pipe is 508 

evaluated individually, and while the cost is low since these are short pipes, the benefit 509 

of each of the investments is also low because the obstacle was not removed. If sets of 510 
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investments could be evaluated, then the solution would be much closer to the global 511 

optimum. As stated above, even the evaluation of single investments was subject to a 512 

strict computational burden thus, evaluating sets of investments is intractable with 513 

standard computational resources. 514 

 515 

Figure 8 - Year when pipes were replaced  516 

 517 

The valves opening policy resulted from the exhaustive brute force search is presented 518 

in the Supplementary Material as Figures S.2 -S.7. The network two main valves are 519 

V_CO that regulates the flows into the central tank (T1_CO) and V_TR that regulates 520 

the flow between the main network and the northern part. While V_CO is configured 521 

to be continuously opened throughout all examined years, V_TR is opened in years 0 522 

and 1, closed during night-time at year 2, and continuously closed at years 3-5, 523 

generating segregation between the two parts of the network. It is noted that V_TR also 524 

includes a check valve that limits the flow direction from the main to the north part 525 

only. The conclusion is that the northern part can be satisfied by its own sources, and it 526 

is better to address water from the main source to other parts of the network.  527 

 528 

Greedy performance  529 
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As explained above the greedy algorithm can be tuned using two parameters to trade 530 

off greediness and runtime. The parameters that control this tradeoff are the threshold 531 

(𝜏 = 3%) that defines the distance from the best MB for an investment to be 532 

implemented and the number of MB re-evaluations per iteration (n=3% of the same 533 

year candidates). As explained above, the investments that will be re-evaluated for their 534 

MB in the next iteration are those that were affected the most by the latest investments. 535 

As such, the greedy algorithm continuously monitors the changes in pipes' flows and 536 

flags the most n affected pipes. Figure 9 presents this analysis for the most MB re-537 

evaluated pipes, Figure S.8 in the supplementary materials presents the same pipes on 538 

the network layout. One can observe that pipes around the tank in the center of the 539 

network (T1_CO) were evaluated the most (L1771, L1773, L3247, L1838). This makes 540 

sense because this tank is in the “heart” of the system, as it regulates the main gravity 541 

source, two wells and most of the consumption in the network. Therefore, the 542 

hydraulics around this tank are expected to change dramatically with a significant 543 

improvement in the network. Other areas that are intensively re-evaluated are the outlet 544 

from the main source (L2452, L2453), the area that connects the north part to the main 545 

network (L3171, L1068, L1061, L1063), and other segments along the main 546 

transmission line and links between different consumption zones. From a practical 547 

perspective, although not all these pipes (and leakages of these pipes) were selected 548 

within the greedy algorithm, they are identified as critical elements in the system that 549 

can be explored for further improvements. 550 

 551 

Figure 9 - Most MB re-evaluated pipes in the greedy algorithm by year 552 

 553 
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Figure 10 presents the number of investments made and cost per iteration of the greedy 554 

algorithm. The optional investments were pipe replacements (to a larger diameter) and 555 

leak repairs. The best result could be achieved if the greedy algorithm would implement 556 

only a single investment in each iteration and then evaluate again all other optional 557 

investments to decide the next implementation. Due to the computational burden, this 558 

process is accelerated by allowing the algorithm to implement more investments in case 559 

their MB is close to the MB of the best investment. While most iterations included less 560 

than 15 investments, there were few iterations where many investments were 561 

implemented. This testifies to a group of actions with a similar MB rank. The most 562 

prominent example is the last iteration of the third year where 198 investments were 563 

made. Most of those are repairing leaks with the same repair cost. This illustrates how 564 

the acceleration features in the greedy algorithm can improve its performance by 565 

reducing the number of iterations. In case no significant priority (in terms of MB) is 566 

observed, the algorithm will choose to implement all the top-ranked actions within the 567 

remaining budget and terminate the iteration process. However, while this procedure 568 

reduces the number of iterations, it can cause a suboptimal decision since it is possible 569 

that a new re-evaluation (for example, after implementing the best investment) could 570 

change the MB ranking and prioritize the investments differently.  571 

 572 

Figure 10 – Investments number and cost per iteration 573 

 574 

5. Conclusions 575 

The Battle of the Intermittent Water Supply presented a challenge to optimize the 576 

performance of a network under poor conditions through nine objectives. The problem's 577 

structure limits the use of standard optimization techniques due to unconventional 578 

hydraulic conditions and the inseparability of the problem in time and space. Another 579 
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challenge is the huge dimension of the search space even when compared to other WDS 580 

optimization problems. These properties of the problem make the formulation of 581 

mathematical optimization model  a very complex task, while the use of classical 582 

simulation-optimization methods is limited due to long simulations times. Hence, a 583 

robust systematic method is required to cope with the challenge of optimizing the 584 

system's rehabilitation. The method presented in this study was devised to efficiently 585 

navigate through the problem's complexities. The method starts with a preprocess stage 586 

including both hydraulic analysis and engineering judgment to identify highly 587 

beneficial early investments and reduce the search space. Next, a greedy algorithm is 588 

developed to optimize the rehabilitation budget allocation. Lastly, the operational 589 

controls policy is determined by using a clustered brute force search. The method 590 

overcomes the computational burden of the problem by reducing the search space in all 591 

stages. The preprocessing stage eliminates some optional investments and selects the 592 

highest potential candidates for the next stage of the greedy algorithm. Within the 593 

greedy algorithm, two mechanisms were implemented to increase the greediness level 594 

and accelerate the process. The operational control search is reduced to several clusters 595 

that are assumed to be independent. The obtained results are consistent with engineering 596 

logic as repairing the largest leaks first, increasing diameter at bottleneck points, and 597 

improving the connectivity of different sections in the network. All the indicators were 598 

improved dramatically because of the selected strategy. The proportion of continuously 599 

served consumers is increasing from 66% to 95% at the end of the planning horizon, 600 

the portion of water loss due to leaks decreases from 55% to 32%. Furthermore, 80% 601 

of the demand is supplied and the level of supply equity increased to 83% compared to 602 

39% and 44% respectively before the rehabilitation of the system. The proposed greedy 603 

optimization approach can be applied to other networks and to any problem of budget 604 

allocation under constraints. It suggests robust systematic decision making regardless 605 

of the complexity level required to model the problem. As such, the method guarantees 606 

continuous improvement toward better solutions, avoiding non-convergence issues. 607 

 608 

6. Data Availability 609 

The code and results presented in this study are available on: 610 

https://github.com/GalPerelman/BIWS-Paper 611 

 612 

https://github.com/GalPerelman/BIWS-Paper
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7. References 613 

 614 

8. Appendixes 615 

Figures S.2-S.7 depict the solution of valve control. In each figure, the upper subplots 616 

show the demand pattern and seven subplots show the status of the valves along the 617 

168 hours of optimization. Each subplot presents a temporal visualization of valve 618 

operations, structured similarly to a Gantt chart. Each horizontal bar represents an 619 

individual valve as identified by their respective labels. The timeline, divided into 620 

discrete intervals along the horizontal axis, delineates the operational status of each 621 

valve: black sections indicate periods when the valves are open, and white sections 622 

represent closures. For example, it can be seen in year 0, valve V_TR is constantly open 623 

while valve CV8 is open only during the night time (00:00-07:00). 624 

 625 

Figure S.2 – Exhaustive search results for valves status at year 0 626 
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 628 

 629 

 630 

 631 

 632 

Figure S.3 – Exhaustive search results for valves status at year 1 633 

 634 
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 635 

Figure S.4 – Exhaustive search results for valves status at year 2 636 

 637 

 638 
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 639 

Figure S.5 – Exhaustive search results for valves status at year 3 640 

 641 

 642 
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 643 

Figure S.6 – Exhaustive search results for valves status at year 4 644 

 645 
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 646 

Figure S.7 – Exhaustive search results for valves status at year 5 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 
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 658 
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Figure S.8 visualizes the elements that were most evaluated during the Greedy 660 

algorithm. As explained in the methodology section, evaluating each investment action 661 

in each iteration is infeasible. The algorithm reevaluate only the elements that were 662 

most likely to be affected from the previous iteration investments. Figure S.8 presents 663 

all the elements that were evaluated more than 20 times which indicates where most 664 

investments were made.    665 

 666 

 667 

Figure S.8 - Pipes with over 20 evaluations 668 

 669 

 670 

Figure S.9 shows the level of the main tank (T1_CO) along the 168 hours of 671 

optimization for each optimized year. This figure is another metric of the 672 

improvement in network performance, where it can be seen that before investments 673 

the tank is constantly empty and does not function as it should be. With the progress 674 

of rehabilitation investments, the tank behaves more similar to a typical tank in a 675 

pressurized system, such that filled during off-peak periods and drained in the peak 676 

demand period.   677 
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 678 

Figure S.9 – Tank T1_CO level over the planning horizon 679 

 680 
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