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Abstract—Hyperspectral imaging considers the measurement
of spectral signatures in near and far field settings. In the far
field setting, the interactions of material spectral signatures are
typically modeled using linear mixing. In the near field setting,
material signatures frequently interact in a nonlinear manner
(e.g., intimate mixing). An important task in hyperspectral
imaging is to estimate the distribution and spectral signatures of
materials present in hyperspectral data, i.e., unmixing. Motivated
by forensics, this work considers a specific unmixing task, namely,
the problem of foreground material signature extraction in an
intimate mixing setting where thin layers of foreground material
are deposited on other (background) materials. The unmixing
task presents a fundamental challenge of unique (identifiable)
recovery of material signatures in this and other settings. We
propose a novel model for this intimate mixing setting and explore
a framework for the task of foreground material signature
extraction with identifiability guarantees under this model. We
identify solution criteria and data conditions under which a
foreground material signature can be extracted up to scaling
and elementwise-inverse variations with theoretical guarantees
in a noiseless setting. We present algorithms based on two
solution criteria (volume minimization and endpoint member
identification) to recover foreground material signatures under
these conditions. Numerical experiments on real and synthetic
data illustrate the efficacy of the proposed algorithms.

Index Terms—Endmember extraction, hyperspectral imaging,
identifiability, intimate mixing model, nonlinear unmixing.
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1. INTRODUCTION

HE hyperspectral unmixing problem has applications in
endmember signature extraction [2], [3] and classification
[4], [5] tasks. A pixel from a hyperspectral image may be
viewed as a mixture of the spectral signatures from materials
located within the spatial bounds of the pixel. In remote sensing,
mixtures are commonly described as non-negative linear combi-
nations of spectral signatures weighted by the proportions of the
pixel covered by each corresponding material. This setting gives
rise to the linear mixing model, for which several approaches to
solving the unmixing problem have been proposed [2], [3], [6].
Other works have explored settings in which nonlinear effects,
such as reflection and refraction, have a non-negligible effect
on the spectral mixtures represented by each pixel. There are a
wide range of potential nonlinear unmixing models [7], [8], and
dedicated algorithms for cases where the measured signature is
noisy [9], [10], [11].
Linear mixing model The task of extracting material sig-
natures has been one of the key challenges in the linear mixing
model. The measurement model for this setting is

R
Yp = Zanpmr: (1)
r=1

where measurement y,, € RM of pixel p (taken over M wave-
lengths) is expressed as a non-negative linear combination
of the R distinct material signatures, or endmembers, My,
my,...,mr € RM, weighted by their abundances Q1 p,
Q2 p, ..., R, (see [12], [13], [14]). Proposed unmixing meth-
ods based on a geometric approach are of particular relevance
to our work. Geometric approaches can be categorized into pure
pixel based methods and volume minimization methods. Pure
pixel based methods utilize the pure pixel assumption, where
the data to be unmixed is assumed to contain at least one pixel
for each endmember containing only that endmember. Methods
such as the pixel purity test [15], N-FINDR [2], VCA [13],
and AVMAX [16] reduce to finding such pure pixels. Volume
minimization based methods find a minimum volume simplex
that encloses all pixels in the data; the endmembers are the
vertices of the obtained simplex. Methods such as MVES [17]
and MinVoINMF [18] enforce the enclosure of pixels as a hard
constraint, while other methods such as MVSA [19] and SISAL
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[6] attempt to account for noise by allowing negative abun-
dance estimates with some penalty term. Geometric approaches
based on volume minimization do not require the pure pixel
assumption to be satisfied, but other data conditions may be
necessary. Non-geometric approaches are also developed in the
literature, such as sparsity constrainted approaches or statistical
approaches. Methods such as L;/o-NMF [20] and MLNMF
[21] are variants of NMF algorithms with different choices of
constraints to enforce sparsity in abundance coefficients (and on
endmembers of each layer in the case of MLNMF). SUnSAL
and C-SUnSAL [22] are based on the alternating direction
method of multipliers, and enforce yield sparse abundance co-
efficient estimates. In [23], a distributed approach is suggested
which enforces both sparsity constraints and encourages consis-
tency in endmember abundances in neighborhoods of pixels. In
[24], the distributed approach is extended by forming neighbor-
hoods via fuzzy c-means clustering as a processing step. Tensor
factorization methods have also been suggested for preserving
and/or utilizing spatial information in unmixing [25], [26]. For
additional references on linear unmixing, we refer the reader to
[12] and [27], and the references therein.

Bilinear mixing model Generalizations of the linear mixing
model to address nonlinear mixtures of signatures are also
considered, such as the bilinear mixing model introduced in
[28]. The measurement model is

R R R
yp = Z Qo Ty + Z Z Bi,j,pmi O] my, (2)
r=1

i=1 j=i

where the measurement y,, € RM is expressed as a linear
combination of the material signatures mj,mo,...,mp €
RM weighted by the linear abundances o ,, a2 p, - - -, AR ps
and a linear combination of pairwise products of these
material signatures weighted by the bilinear abundances
61,1,})’ 51,2,}7; s 75R,R,p-

Several methods have been proposed for solving the bilinear
unmixing problem in a supervised setting. In [28], material
signatures are obtained via an oracle (using either label infor-
mation or expert identification). A material signature matrix is
formed with columns containing both the previously identified
endmembers and their bilinear combinations, and abundances
are then estimated by solving a constrained linear least squares
problem as in the linear mixing model (see [14]). In [29], it
is similarly assumed that endmembers are available directly.
Estimates of the abundances for the linear and bilinear combina-
tions are obtained with an alternating minimization of a fitting
error objective, alternating between updates for abundances of
each type of combination. The iterative update with respect
to each parameter has the form of a semi-NMF (non-negative
matrix factorization) problem and is solved using existing al-
gorithms [30]. In [31], material signatures are again assumed
to be given or estimated via existing algorithms for the linear
unmixing problem, such as the pixel purity test or N-FINDR.
The abundance coefficients are then obtained via Bayesian es-
timation, where priors are derived from the constraints on the
abundance coefficients and from assumed additive Gaussian
random noise in the data.
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Fig. 1. Visualizations of the intimate mixing model described in (3).
Indexing by p is omitted. (a) Example of fractional coverage by the foreground
material. (b) Effect of background only vs background and foreground.

Some works have explored the bilinear unmixing problem
in an unsupervised setting. In [32], it is proven that spectral
endmembers can be identified up to the typical variations of
scaling and permutation under certain conditions, namely: all
interactions of endmembers are observed in the data, and the
number of pixels in the data is O(R*), where R is the number
of endmembers in the data. In [33], the requirement that all
interactions of endmembers are observed in the data is instead
relaxed to a “near-separable” condition, which is equivalent to
the pure pixel assumption for endmembers.

Other nonlinear mixing models Other nonlinear mixing
models besides the bilinear mixing model have been explored
in the literature. Various forms of intimate mixing models have
been explored, such as the Hapke model [34] or the intimate
mixing model with foreground and background materials in [9]
(see Equation (4)). Some works have explored more general
nonlinear mixing frameworks, such as [35]. For additional ref-
erences on bilinear and other nonlinear unmixing approaches,
we refer the reader to [7] and the references therein.

Proposed intimate mixing model In this paper, we consider
the non-linear intimate mixing scenario of [9] in which a thin
layer of foreground material is deposited on the surface of other
(background) materials. In this setting, the measurement of each
pixel is modeled as a nonnegative linear combination of the
spectral signature from a background material and the product
of the spectral signatures from a foreground material and the
background material (see Fig. 1). The model is expressed as

Y, = (ip ©by) © (apf, + (1 —ap)1), 3)

where f € RM is the foreground material signature (with M
entries corresponding to different frequency bands), b, € RM
is the background material signature, %, € RM is the reference
illumination, and a,, is the foreground material coverage. The
notation u ® v indicates the Hadamard (element-wise) prod-
uct between same-sized vectors u and v. As these quantities
represent physical phenomena, the material and illumination
signatures are strictly positive, and the coverage coefficient
satisfies a,, € [0,1]. In [10], this setting is used to model the
detection of suspicious material in envelopes. Our task of in-
terest is to extract the foreground material signature from a
set of pixels following the intimate mixing model. This is an
unsupervised problem; no a priori information of the material
signatures or the material distributions within the set of pixels
is assumed.
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To facilitate this task, we consider some modeling assump-
tions. We assume only one foreground material is present. Sim-
ilar to [9] and [36], we assume that the background material
is nearly invariant within small neighborhoods of pixels N
(henceforth referred to as patches) for k=1,..., K such that
each patch contains exactly one background material. In [10],
reference illumination is assumed to be spatially-invariant; we
consider per-pixel scaling of illumination to account for attenu-
ation from physical phenomena such as shadowing. Under these
assumptions, the intimate mixing model reduces to our bag-of-
patches model, and can be expressed for the measurement of
pixel p as

yp:KP(ink)®(apf+(1_ap)1)a pENL, @)

where K, is the non-negative scaling factor for illumination. In
practice, patches may be obtained by sampling small regions
of pixels such that the assumption of a nearly invariant back-
ground material signature holds. Even with these assumptions,
multiple solutions may be found when trying to extract the
foreground material signature from data following the bag-
of-patches model due to the redundancy associated with the
model parameterization and the non-linearity of the model. For
example, the illumination and background material signature
parameters cannot be uniquely resolved from their product.
Further, pixels fit by the model are dependent on the product
of foreground and background material signature parameters.
The non-linearity of the model means that existing linear un-
mixing methods cannot be applied directly to this problem, and
that uniqueness conditions for the linear mixing model cannot
be applied.

The intimate mixing model we consider in this paper can be
seen as particular case of the bilinear mixing model, and the
foreground material signature extraction problem is related to
the bilinear unmixing problem in the unsupervised setting. We
note that previously proposed methods for bilinear unmixing
in the unsupervised setting are not suitable for our method.
The BMMEF-LS-NM method proposed in [32] requires that all
interactions of endmembers are observed in data, but in the
intimate mixing model we consider the interactions between
different background signatures are not observed. The SNPALQ
method proposed in [33] requires that each endmember appear
as a pure pixel in the data, but in the intimate mixing model we
consider, foreground materials can never appear as pure pixels
and must always be mixed with background materials. The lack
of applicable existing methods motivates us to identify criteria
and conditions suitable for our model of interest under which
foreground material signatures can be extracted.

Identifiability analysis of the unmixing problem is a funda-
mental challenge. For the linear mixing model, material signa-
tures are said to be identifiable if they can be identified up to
some trivial ambiguities (i.e., scaling and permutation) based
on the data. There are some known sufficient data conditions
that ensure the identifiability of the material signatures. One
such condition is separability [37], [38]: each material signature
must appear in isolation in at least one pixel (referred to as
endmembers). Such pixels are referred to as endpoints. For a
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single patch under our proposed model, this would be equivalent
to the patch containing a pixel with no foreground material and a
pixel entirely covered with foreground material. A more relaxed
condition known as sufficient scattering has also been proposed
[39], [40]." It has been shown that under the aforementioned
data conditions for the linear mixing model, algorithms such as
MinVoINMF [18] can recover the true material signatures. To
our knowledge, no works have developed equivalent identifia-
bility conditions for the bilinear mixing model.

In this paper, we focus on unsupervised extraction of the
foreground signature in the intimate mixing model with iden-
tifiability guarantees. We note that the intimate mixing model
(4) may be viewed as a special case of the linear mixing model
and the bilinear mixing model. However, the existing signature
extraction approaches for the linear and bilinear mixing models
are not readily applicable to our problem. For instance, the
signature extraction methods for the linear mixing model (1)
could be viable approaches if we are given a patch N} that
contains two endpoint pixels, i.e., one pixel data being a scalar
multiple of ¢ © by, and another pixel data being a scalar multiple
of ©® by ® f In such a case, the separability condition for
the linear mixing model is satisfied by this patch, and thus
any signature extraction approach for the linear model can be
applied to this patch to identify the two endmembers, e; =
1 ® by and e =1 ® by @ f, which can be used to obtain f.
However, in practice there is no guarantee that a patch with two
endpoint pixels would exist. Furthermore, even when such a
patch exists, its identity is unknown and difficult to infer due to
the variation of background material signatures across patches.
The intimate mixing model (4) can also be seen as a special
instance of the bilinear mixing model (2) after proper repa-
rameterization. However, it does not lead to a viable solution
approach due to the lack of unsupervised signature extraction
approaches for the bilinear model. We also note that existing
methods for unmixing in the bilinear mixing model do not
have identifiability guarantees. Such guarantees are necessary
for foreground signature extraction, where the true foreground
material signature is potentially unknown and, therefore, not
verifiable with an external oracle. The main contributions of
this paper are:

1) Introduction of a bag-of-patches model for the intimate
mixing problem, and characterization of the solution
space for the problem;

2) Development of identifiability data conditions for so-
Iutions of the foreground material signature under the
bag-of-patches model. We show that, under appropriate
data conditions, solutions satisfying the minimum vol-
ume and/or endpoint fit properties will match the true
foreground material signature up to variations of scal-
ing and element-wise inversion. In contrast to existing
identifiability data conditions requiring two endmembers
in every patch, the proposed condition requires only two
endmembers among all patches;

!In the intimate mixing model, the sufficient scattering condition is equiv-
alent to the separability condition.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on December 23,2024 at 07:57:31 UTC from IEEE Xplore. Restrictions apply.



4084

3) Proposal of algorithms based on the proposed identifia-
bility criteria to find solutions under this model with iden-
tifiability guarantees. One algorithm considers a volume
minimization criterion, and the other algorithm is based
on an endpoint identification approach.

This paper extends our previous work, “Foreground signa-
ture extraction for an intimate mixing model in hyperspectral
image classification”, originally presented in ICASSP 2020 [1]
The previous work introduced the bag-of-patches model, pro-
posed a volume minimization-based algorithm for foreground
signature extraction, and suggested (without proof) a strong
data-based condition (strict-tightness) under which the volume-
minimization algorithm would be successful. In contrast, this
paper introduces a relaxed data condition which generalizes the
strict-tightness condition, provides formal identifiability analy-
sis with proofs for this data condition, introduces an additional
algorithm based on endpoint identification, and includes ad-
ditional experiments on synthetic data as well as evaluations
against several benchmark algorithms.

The remainder of this paper is organized as follows. The
observation model and the associated foreground material sig-
nature extraction problem are described in Section II. Con-
ditions under which an identifiable solution for a foreground
material signature can be obtained are developed in Section III.
Section IV presents our proposed algorithms based on the pre-
viously identified conditions. The performance of our proposed
methods is evaluated with numerical experiments on synthetic
data. The process and results are given in Section V, and con-
clusions and future works are stated in Section VI. Proofs of the
various theoretical results in the paper are given in the appendix
and supplementary material.

II. PROBLEM SETUP AND CHALLENGES

We introduce a summary of notations used in the paper. We
then proceed with a formal description of our problem, includ-
ing the intimate mixing model, our proposed bag-of-patches
model, and the ambiguity of representation in this model.

A. Notations

In this paper, small letters (both roman and greek) are used
to denote scalars (e.g., a, o), boldface small letters (both roman
and greek) are used to denote column vectors (e.g., v, 8), and
boldface capital letters are used to denote matrices (e.g., M).
The Hadamard product and division between two vectors is
denoted © ® v and u © v, respectively, for same sized vectors
u and v. The element-wise matrix inequality is denoted A > ¢
for arbitrarily sized matrix A and scalar c.

B. Bag-of-Patches Model

Recall the intimate mixing bag-of-patches model introduced
in (4). This model has many sources of ambiguity: the scaling
factors and coverage coefficients are not separable, as well
as the reference illumination and each background material
signature. The unique identification of these parameters is not
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relevant to the task of foreground material signature extraction,
so we consider the following reparameterization: let ¢y, 1=
Kpap, let ¢ = K,(1 — a,), and let vy, := % © by. Note that
the restrictions of K, and a,, (i.e., K, > 0 and a,, € [0, 1]) re-
quire that each ¢, ;, and c¢; ;, also be non-negative. Similarly, the
strict positivity of ¢ and by, require that vy, be strictly positive.
The reformulated bag-of-patches model can be expressed as

Y ®) = diag(v®) [f 1] c®,
oM v >0, ™ >0, 5)

where Ny, is the number of pixels in each patch, each patch
Y is an M x N;, matrix with Y*) .= [yl yNk], f
and each v*) are M x 1 vectors, and each C™ is a2 x Ny,

matrix with [C®)]; ji= CZ(Z). We further require that each patch

Y *) is rank 2.2

C. Problem Formulation

Given a collection of hyperspectral data Y(l), ey Y %) fol-

lowing the bag-of-patches model in (5) with unknown param-
eters f, v, and Cc® for k = 1,..., K, our goal is to obtain
the foreground material signature f. To this end, we regard
this problem as an estimation problem wherein f is the desired
parameter and v®)_ and C™ for k = 1,..., K are the nuisance
parameters.
A Key Challenge — Ambiguity in the Bag-of-Patches
Model: As previously identified, the factorization in the bag-
of-patches model (5) is not unique. Consider the application of
a transformation matrix T' = [ 7| to each patch ¥*) in the
model:

Y = diag(v™®) [f 1] TT'C™
= diag(e™) [f 1] &™),
") = (vf +61) © v,
¢V =1, f=(af + 8D (vf +51). (©

The alternative factorization must still respect the properties
of the model: the alternative signatures f and 5™ must be

strictly positive, and the coefficient matrices C " must be non-
negative. These constraints are dependent on the data in the set
of patches, and the intersection of these constraints defines the
space of admissible transformations in the model. It is clear
that the bag-of-patches model may have multiple representa-
tions for a given set of hyperspectral data. This is typical of
unmixing problems; as previously noted, in the linear mixing
model estimates of the endmember and abundance matrices
may be obtained up to variations of scaling and permutation
[40], [41]. Similarly, we will focus on determining identifiabil-
ity conditions for the intimate mixing model, and defining the

2We note that with a rank 1 patch Y (%), for any estimate of foreground
material signature f there exists a pair of vector ™) and matrix C~’(k
such that Y®) = diag(#®) [f 1] ", where 5 > 0 and ¢ > 0.
Thus, rank 1 patches do not add any additional constraints not introduced
by rank 2 patches, and we may ignore the contribution of such patches to
the solution.
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characteristic variations of the set of identifiable solutions under
such conditions.

III. THEORY

In this section, we prove exact recovery of the original fore-
ground material signature (up to variations of scaling and el-
ementwise inversion) under appropriate identifiability criteria
and data conditions in a noiseless setting. The section proceeds
as follows. First, we characterize the space of feasible solutions
to the bag-of-patches model in terms of feasible foreground
material signatures. Next, we propose two identifiability criteria
(minimum volume and endpoint fit). We show that solutions sat-
isfying either criterion will be restricted to specific variations.
Then, we propose a data condition and show that the combina-
tion of an identifiability criterion and the data condition ensures
solutions will match the true foreground material signature (up
to variations of scaling and elementwise inversion).

A. Solution to the Bag-of-Patches Model

Our goal is to obtain a foreground material signature that
satisfies the bag-of-patches model (5) for a given set of patches.
We refer to an obtained foreground material signature as a
solution to the bag-of-patches model. For any solution to the
foreground material there must exist a background-illumination
signature and a coefficient matrix for each patch satisfying the
bag-of-patches model and its constraints.

Definition 1 (Solution to Bag-of-Patches Model): Let
Y(l), cee Y ) be a set of patches that satisfies the bag-of-
patches model (5). We say that a vector f € R%., is a solution
to the bag-of-patches model if there exists &¥) € R, and

(k ]RQXN’” for k=1,..., K that satisfy
(D1:1) Y““):dlag( (k)) Fue”
(D1:2) f>0;

D1:3) 5% >0, Vk;

o1:4) ¢ >0,k

B. Solution Ambiguity

The true foreground material signature f is a solution to the
bag-of-patches model (5) under Definition 1, but other solutions
may exist. Section II-C suggests that some alternative solutions
may have the form f = (of + 1) @ (vf + 61). In fact, if 1,
f,and f © f are linearly independent then the entire space of
alternative solutions can be characterized by this form. This can
be shown by considering an alternative parameterization of two
columns from a single patch, and considering the elementwise
ratio of these columns to remove the background-illumination
vector parameter. Note that the requirement that 1, f,and f © f
are linearly independent is nearly always satisfied in practice,
as this condition is equivalent to f having at least three distinct
entries. This result is stated in Property 1.

Property 1: Let f € lRf  be the true foreground mate-
rial signature for a set of patches Y(l), cee y () satisfying
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the bag-of-patches model (5). Any solution fe lR , to the
bag-of-patches model satisfies
f=(af+81) @ (vf +6),

W =ee(vf+ 01D oo™, fork=1,2,... K,

| -1

Mo oW fork—=1,2,.. K,

ex B0

for some «,(,7,0 € R such that «d — Sv#0, some

e >0, some 7 e R, and some c® e RiXN’“ for
k=1,2,... K.

Note that for every choice of all strictly positive ¢ for
k=1,2,..., K,thereis a corresponding parameterization with
reversed sign for the parameters «, 3, v, and 6, and all strictly
negative €, for k=1,2,..., K that yields identical material
signatures and coefficient matrices. Thus, we can safely re-
strict the parameterization of the solution to the case of all
positive eg.

Property 1 shows that any solution to the bag-of-patches
model may be parameterized by coefficients «, 3,7,d € R,
€, >0 for k=1,2,...,K, and the true model parame-
ters f and v(k),C(k) for k=1,2,..., K. The illumination-
background vectors #® and coefficient matrices C'( ) are
nuisance parameters. We seek to express the space of solutions
for the foreground signature independent of the background-
illumination vectors and coefficient matrices. Dependence on
the true illumination-background vectors can be removed by
substituting the definitions of these parameters from Property
1 in the conditions for a solution given in Definition 1. The
resulting characterization of a solution is given in the following
proposition:

Proposition 1: Let Y(l), .. ,Y(K) be a set of patches that
satisfies the bag-of-patches model (5) with a true foreground
material signature f € IRJ‘ and true coefficient matrices C' €
RiXNk for k=1,.. K A vector f € IRLr is a solution to
the bag-of-patches model according to Definition 1 if and only
if there exist v, 3,7, 6 € R such that

(P1:1) f = (af +p1) 0 (vf +91);

P1:2) af+51>0;

P1:3) ~vf +91>0;

®L:4) [57]'Cc® >0, fork=1,2,...

P1:5) ad — By #0.

It is further possible to replace the multiple per-patch con-
straints in P1:4 with a single constraint; consider the following
lemma:

Lemma 1: Let C®) e RiXNk for k=1,...,K be non-
negative matrices where no column is equal to the zero vector
and at least one matrix is full row-rank. Define r, and r; as

K

T —rmnc c(k? and 7y —Inlnc )c(k) @)
2 ,J gk 1,5

For coefficients «, 3,7,d € R such that ad — S # 0, it holds
that

—1 —1
a ) a 1 r
{ﬂ 5} c™ >0, vk < L} 5} [ b} > 0.
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The proof of Lemma 1 is given in Appendix C. This lemma
naturally leads to the following corollary:

Corollary 1: Let Y(l), ey Y %) be a set of patches that sat-
isfies the bag-of-patches model (5) with a true foreground ma-
terial signature f € IRﬂ‘r/I . and true coefficient matrices c® e
RiXN‘"' fork=1,2,..., K.Define r, and r}, as in (7). A vector
f S IR% . is a solution to the bag-of-patches model if and only
if there exist a, 3,7, 0 € R such that

(CL:1) f=(af +B1) 0 (vf +01);

(C1:2) af +/51>0;

(C1:3) ~f + 1> 0; and

-1
a4 e Lo .

(C1:4) [B 5] La 1] > 0;

(C1:5) ad — By #0.

We have formally defined the set of feasible solutions under
the bag-of-patches model in Definition 1, and derived a simpli-
fied representation of this set in terms of only the foreground
material signature in Corollary 1. The set of feasible solutions
includes many nonlinear variations of the true foreground ma-
terial signature, which is difficult to consider for tasks such
as foreground material identification or characterization. To
address this challenge, we seek conditions and solution criteria
under which a set of solutions with a simpler variations may
be obtained.

C. Restricting the Solution Space via Identifiability Criteria

Corollary 1 suggests a space of feasible solutions to the bag-

of-patches model (5) with many nonlinear variations. We seek
a smaller set of feasible solutions with simpler variations, as in
identifiable solutions under the linear mixing model. To achieve
this, we first explore restricting the solution space by requir-
ing solutions to satisfy additional criteria. We will introduce
two potential criteria: the minimum volume criterion, and the
endpoint fit criterion. We will show that solutions satisfying
either of these criteria are restricted in a manner that will lead
to the desired set of solutions if the appropriate identifiability
condition is also satisfied.
Minimum-volume solution: The first identifiability criterion
we introduce is the minimum volume solution. An estimated
foreground material signature f satisfies this criterion if it is a
local minimum of some volume measure Vol(f) and satisfies
the standard solution constraints. We consider the normalized
determinant as our volume measure:

- det([F 1] [F 1) F1) \°
Vol = - =1 — | . 8
U=\ (|1||2||f||2> ®

Using this volume measure, a minimum-volume solution is
described in Definition 2.

Definition 2 (Minimum-Volume Solution): Let Y(l),...,
Y ) be a set of patches that satisfies the bag-of-patches model
(5). A vector f* € R}, is a minimum-volume solution to
the bag-of-patches model if f* is a local minimizer of (8)
subject to the constraints in Definition 1 (or equivalently in
Corollary 1).

A simple characterization of minimum-volume solutions to
the bag-of-patches model (5) can be obtained in terms of a
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unique element of the feasible space described in Property 1,
denoted by fy and defined as

fo=(f+rad) @ (rpf +1), )

where r, and 7}, are defined as in Lemma 1.

Theorem 1: Let Y(l), ey Y %) be a set of patches that sat-
isfies the bag-of-patches model (5) with a true foreground ma-
terial signature f € R}/, and true coefficient matrices C k) ¢
RiXN’“ for k=1,2,..., K. Define Vol(f) as in (8). Let f be
defined as in (9). A solution f* € IR_A([ . to the bag-of-patches
model is a minimum-volume solution if and only if

fr=cfy or f*=clo fo, (10)

The proof of Theorem 1 is given in Appendix A. Note that

the variations present in minimum-volume solutions are scaling
and element-wise inversion; this is similar to the variations
for identifiable solutions to the NMF problem. In particular,
element-wise inversion may be viewed as the result of permut-
ing the position of endmember estimates v ® f and ¥ when
computing the ratio to obtain f .
End-point solution: The second identifiability criterion we
introduce is the endpoint fit solution. For a given factorization
under the bag-of-patches model, we observe that the columns
of a coefficient matrix C*) suggest a notion of coordinates for
a given pixel in terms of v*) ® f and v*). The space of valid
coordinates is constrained by the non-negativity requirement
for coefficients. Consider a coefficient column with one of the
following forms: [z, 0], or [0, y]”, where = and y are positive
constants. Any pixel with such a form of coordinates lies at
the edge of the coordinate space. We refer to such a pixel as
an endpoint. A solution f satisfies the endpoint fit criterion
if, for the corresponding factorization under the bag-of-patches
model, there exists at least one of each form of endpoint. The
definition follows:

Definition 3 (Endpoint Fit Solution): Let Y(l), ey y (9)
be a set of patches that satisfies the bag-of-patches model
(5) with a true foreground material signature f € ]Rf . and
true coefficient matrices C*) € RiXNk for k=1,2,..., K.
A solution f* to the bag-of-patches model is an endpoint fit

c>0.

solution if there exist estirqa(t}gd coefficient matrices C " for
k=1,2,...,K such that C" " contains a column [z,0]” for
some k = ki, and contains a column [0, y]T for some k = ks,
where x,y > 0.2

Similar to minimum-volume solutions, endpoint fit solutions
to the bag-of-patches model (5) may be stated in terms of
fo. The nature of endpoint fit solutions is characterized in the
following theorem.

Theorem 2: Let Y(l), .. .7Y(K) be a set of patches that
satisfies the bag-of-patches model (5) with a true foreground
material signature f € ]Rf  and true coefficient matrices C' €
]RiX Nifork=1,...,K.Let fo be defined as in (9). A solution
f* to the bag-of-patches model is an endpoint fit solution if and
only if

f*=cfo or f*=clofy, c>0. (11

3The indices k1 and ko need not be distinct. In such a case, both kinds of
endpoint occur in the same estimated coefficient matrix.
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The proof of Theorem 2 is given in Appendix B.

A corollary of Theorem 1 and Theorem 2 is that minimum-
volume solutions and endpoint fit solutions are equivalent:

Corollary 2: Let Y(l), .. .,Y(K) be a set of patches that
satisfies the bag-of-patches model (5). A solution f* € R}/,
to the bag-of-patches model is a minimum-volume solution if
and only if it is an endpoint fit solution.

According to Corollary 2, every minimum-volume solution
is an endpoint fit solution, and vice versa. We will use this
result later in developing an algorithm to identify an endpoint
fit solution.

D. Complete Solutions With Identifiability Conditions

Although minimum volume and endpoint fit criteria offer a
unique solution up to the variations of scaling and element-
wise inversion of fy, they are not guaranteed to recover the
true foreground material signature f. If and only if r, =7, =0
then fy = f. From the definition of r, and 7, in (7), this implies
that there must exist columns among all the coefficient matrices
C™ for k=1,...,K of the form [, 0] and [0, 3]7, where
a, > 0. This data condition is stated formally in the following
definition:

Definition 4 (Full-tightness): Let Y(l)7 e Y %) be a set of
patches that satisfies the bag-of-patches model (5) with a true
foreground material signature f € R}/, and true coefficient
matrices C € IRiXN * for k=1,..., K. Suppose there exists
a patch y (k) containing a scaled version of v(*1) © f and a
patch y (h2) containing a scaled version of v(*2). Note that we
do not require k1 and ks to be distinct. Equivalently, there exists
a column [, 0]” in C*V) and a column [0, 5]7 in C'*2) with
a, > 0 (this implies r, = r, = 0). We say that such a set of
patches is fully tight with respect to f.

The full-tightness condition in Definition 4, coupled with
the minimum volume solution criterion in Definition 2 and/or
the endpoint fit solution criterion in Definition 3, ensure that
solutions match the true foreground material signature up to
variations of scaling and element-wise inversion. We state this
result in Theorem 3.

Theorem 3: Let Y(l), .. .,Y(K) be a set of patches that
satisfies the bag-of-patches model (5) with a true foreground
material signature f € R{‘f . and true coefficient matrices C €
Rix Ne for k= 1,..., K. If f* is either a minimum-volume
solution or an endpoint fit solution to the bag-of-patches model,
and the set of patches is fully tight with respect to f, then

ff=cfor ff=clof,

In conclusion, any minimum-volume solution or endpoint fit
solution will belong to the identifiable set of solutions if the set
of patches satisfies the full-tightness condition.

c>0.

IV. ALGORITHMS

In the previous section, we proposed two criteria under which
identifiable solutions to the foreground material signature ex-
traction problem may be found: a minimum volume solution
and an endpoint fit solution. In this section, we propose two
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algorithms to solve the foreground material signature extraction
problem based on these criteria. First, we consider a projected
block coordinate descent algorithm with volume regulariza-
tion to find solutions satisfying the minimum volume criterion.
Then, we adapt the projected block coordinate descent algo-
rithm without regularization to instead find solutions satisfying
the endpoint fit criterion.

A. Finding Minimum Volume Solutions

The first approach we consider is to find an estimated fore-
ground material signature that satisfies the minimum volume
criterion. According to Definition 2, such a sglution must be
a local minimum of the volume measure vol(f) f) in (8) sub-
ject to the constraints D1:1-D1:4. The constraints in D1:2 and
D1:3 are strict inequalities, which are difficult to consider for
optimization. We consider a relaxation of these constraints to
be non-strict. It can be shown that any parameters f and %)
for k=1,2,..., K satisfying the minimum volume criterion
under non-strict inequality constraints must be strictly positive.
Thus, minimum volume solutions under relaxed constraints are
also minimum volume solutions under strict constraints.

The exact fitting constraint in D1:1 is also challenging from
an optimization perspective. Instead, we take the approach of
previous works [42], [43], [44] and reformulate the objective as

K
=3IV ® — diag(®®) [F 1] €™ |J% + AVol(F),
= (12)

where A is a positive regularization weight that determines the
significance of the volume measure in the optimization prob-
lem. To obtain a unique solution, we consider an equality con-
straint for the norms of f and 5 for k = 1,2,..., K. Using
regularization and the considered constraints, an optimization
problem corresponding to a minimum-volume solution is

=(1) = (K)

min g(fvﬁ(1)7aﬁ(K)7C ’ ’C )
S.t. fZO, f :]—7
50 >0, ,,~,<k>‘ =1, fork=1,2,... K,

~(k

" >0, fork=1,2,.. .. K. (13)
The minimization problem is separable with respect to each es-
timated background-illumination signature %) and estimated

coefficient matrix C " for k=1,2,..., K. Additionally, the
minimization problem for each of these terms depends only
on the fitting error of the corresponding patch ~Y(k ). Note that
the problem is not separable with respect to f. This suggests
an approach based on projected block coordinate descent. We
refer to our algorithm based on this approach as MinVolFit.
The algorithm is listed in Algorithm 1. Let /N be the number
of pixels distributed among all patches; the per-iteration com-
plexity of this algorithm is O(M N'). For details on computation
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Algorithm 1 MinVolFit: find a solution to (13).
Input: Y ={Y ... YO} X Niers
fork=1,2, ..., Kdo
Randomly initialize v{*) € R}, and C{* € R} M
end for
Randomly initialize f, € R},
2
Define fi(-) = ¥ ® — diag(v®)[ se1]C||
F
Define g(-) =31 fu(-) +Af)
for j=1,..., Niers do
In each step, select 1 appropriately via backtracking
fork=1,2,...,Kdo

C Py <C§@1 - <Vc(k> AQINTS C(ml))
Jj—=1"5—

% Py is the projection onto the non-negative orthant

(k) (k)
v, < Puy (Uj—l -n (Vv("”f’“(')‘v;’i)l,cy"))
% Py+ is the projection onto the intersection of the non-
negative orthant and the surface of the unit sphere

end for

fj< Puy (.fjfl -1 (vfg(')|fj,1,v§.’“>,c§.’“),vzc))
end for (1) (K) (1) (K)
return ‘fNilers’ Ni!ers’ e 7/U]Vite:rs’ CNilers’ o Nilers

complexity and the projection onto the intersection of the non-
negative orthant and the surface of the unit sphere, we refer the
reader to the supplementary material.

B. Finding Endpoint Fit Solutions

Selecting an optimal regularization weight A is not trivial, and
experimental results show that the accuracy of the estimated
foreground material signature is very sensitive to the choice
of hyperparameter. We seek an alternative method that is less
sensitive to the choice of hyperparameter. The next algorithmic
approach we consider is to find a foreground material signa-
ture that satisfies the endpoint fit criterion (see Definition 3).
Consider the following lemma:

Lemma 2: Let YV ... Y5 pe a set of patches generated
according to the bag-of-patches model (5). Suppose there exist
element-wise positive vectors dy, . . ., dx such that the rank of
the concatenated matrix [diag(d,)Y (Y, .- diag(dg)Y %]
is exactly 2:

rank{[diag(d, )Y diag(dx )Y ]} =2.
If y; and gy; are distinct columns from the matrix
[diag(d)) Y .. diag(dx)Y®)] that maximize
i" 95/ (1912 19511, (14)
then f* =1; © y; is an endpoint fit solution for the set of
patches Y(l)7 cee y (5,

The proof is given in the supplementary material. In
the noiseless case, MinVolFit with A\ =0 produces a fac-
torization of a set of patches such that the kth patch lies
in the non-negative span of TANe f and o™ for k=
1,2,..., K. Noting that each o®) will be strictly positive, we

Algorithm 2 EPFit: find a solution to the bag-of-patches model
(5) satisfying the endpoint fit criterion.

Input: Y = {Y(1>7 RN Y(K>}
W ..., 5% « MinVolFit(Y, A = 0)
Y « [diag(f;“))_lY(l)&m&diag(ﬁ<K>)_1Y<K)]
UL, w2 <_g17g2
forn=3,4,...,N do
W — Yn,
if w1l w/(||lurlly lwlly) > wiTuz/(|udl, ||uzll,) then
U2 < W
else if w us/(||wl|, luzlly) > wiTuz/(||uill, [[uz2],) then
u; < w
end if
end for
[ u 0us
return f*

have diag(®®™)—1y ®) = [f 1] e Concatenating across
all patches for k =1,2,..., K yields

[diag(@) YD - diag(3®) Y ]
= [F1] {é(l) ~(K)ﬂ .

.. C

This follows the form of Lemma 2, so an endpoint fit solution
is given by the columns of the left matrix that maximize the
normalized inner product in (14). If patches contain random
noise, then each matrix diag(f)(k))_lY(k) lies approximately
in the non-negative span of f and 1, and the endpoint fit solution
suggested by Lemma 2 is an approximate solution. The algo-
rithm is listed in Algorithm 2. Let N be the number of pixels
distributed among all patches. Similar to MinVolFit, the per-
iteration complexity of EPFit is O(M N). For details on com-
putation complexity, we refer the reader to the supplementary
material.

15)

V. EXPERIMENTS

Our experiments are intended to provide empirical verifica-
tion of our algorithms in comparison to benchmark approaches
in a variety of settings. We consider synthetic data experiments
to demonstrate the effectiveness of our algorithms in response
to particular choices of SNR and data distribution.

A. Synthetic Data Experiments

We present synthetic data experiments to verify that our pro-
posed algorithms can identify foreground material signatures
with lower error than benchmark approaches; to demonstrate
the effectiveness of each proposed algorithm as a function of
signal-to-noise ratio (SNR); and to show the effect of different
data modeling assumptions on the accuracy of all methods. We
will show that our algorithms, which can adapt to varying back-
grounds per patch, will obtain more accurate foreground mate-
rial signature estimates than a benchmark algorithm which does
not account for varying backgrounds. We will show that the EP-
Fit algorithm (implemented based on Section IV-B) will show
an inverse relationship between SNR and the spectral angular
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Algorithm 3 Generate data for synthetic experiments.

Input: K, M,N,r, p,o?, is_strict
Sample f ~ U{[0.5,1.5]}™ and vsharea ~ U{[0.5,1.5]}
for k =1, K do

Sample vlnl:hwdual U{[ 057 05]}]M
k)

(k> $— Ushared T 7 - U
Sample ¢, s ~ U{[0,1
if g>pand is_strict then
% strictly tight patch
Sample 0 ~ U{[0,7/2]}" and set 6; < 0 and 02 + /2
else if ¢ > p and not is_strict and s > 0.5 then
% partially tight patch (includes b vector)
Sample @ ~ U{[r/8,7/2]}" and set 0 + 7/2
else if ¢ > p and not is_strict and s < 0.5 then
% partially tight patch (includes b ® f vector)
Sample 8 ~ U{[0,37/8]}" and set 61 < 0
else
% non-tight patch
Sample 8 ~ U{[x/8, 37 /8]}
end if
Sample rmin ~ U{[0.5,1]} and rmax ~ U{[1,1.5]}
Sample » ~ U {[rmm,rmax}
C(k |: rT Ocos(67)
rT(Dsin(qu:r)
Sample V € RM*¥ with Vi; ~ N(0,0%), Vi, j
Y® (diag(v<k>)[f&1]c<k> +V)
end for -
return Y %),

mdmdual

v® . C® for k=1,...,K, and f

difference (SAD) between the estimated and true foreground
material signatures. For the MinVolFit algorithm (implemented
based on Section IV-A), we will show that for each value of
SNR there exists an appropriate choice of regularization weight
that will minimize the SAD. Finally, we will show that the
MinVolFit algorithm will show a higher resilience to noise than
the EPFit algorithm.

Data generation: To facilitate synthetic data experiments,
we generate sets of patches with a single foreground mate-
rial signature f and several background-illumination vectors
v, .. o) The exact process of generating data is de-
scribed in Algorithm 3. The parameters of this algorithm are:
(K) number of patches to generate, (IN) number of pixels per
patch, (M) number of entries per pixel, (r) weight coefficient
for similarity of background-illumination vectors, (p) proba-
bility of tight patch, (o) variance of random Gaussian noise,
(is_strict) use strictly tight or partially tight patch setting.
In the strictly tight patch setting, tight patches contain one pixel
proportional to v(*) and another pixel proportional to v*) ® f.
In the partially tight patch setting, tight patches contain one
pixel proportional to either v*) or v*) ® f and not both.
The outputs of the data generation procedure are the patches
Y(k), ground truth background-illumination vectors v and
ground truth coefficient matrices C ) for k = 1,..., K, and
the ground truth foreground material signature f.
Algorithms: For our experiments, we consider our two pro-
posed methods and three benchmark algorithms: an adapted
version of MinVoINMF [18], [45], BMMF-LS-NM [32], and
SNPALQ [33]. Given a non-negative input matrix Y € R} >,
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MinVoINMF solves the following problem:
min  ||Y — WH]| + ptlogdet (WTW + 51)
st. WeRY*? HeRV, (16)

where the d1 term for small but sufficiently large 6 > 0 en-
sures that the determinant is positive. Given a patch following
the bag-of-patches model, the NMF problem is equivalent to
finding matrices W = [v ® f,v] and H = C. The foreground
material signature for the patch can be extracted by taking
the element-wise ratio of columns of W. Note that volume-
minimizing NMF methods allow for permutation and scaling
of the recovered columns of W. If the correct columns of
W are identified, then the extracted foreground material sig-
nature f for the patch may be of the form f o f or f
1© f. We adapt MinVoINMF to the multiple patch setting
by concatenating each patch Y®) for k= 1,..., K such that
Yau=[YY ... Y] Then, we apply MinVoINMF to the
concatenated matrix. The remaining two benchmark algorithms
are adapted to the multiple patch setting similarly, and the fore-
ground signature estimate is chosen post-hoc as the estimated
material signature with the smallest SAR measure with respect
to the true foreground material signature.

We consider tuning several hyperparameters among the algo-

rithms considered. For the proposed MinVolFit algorithm, we
must select a regularization weight and an iteration limit. After
initial testing, we selected Njers = 1 X 10%4. We also explore
the impact of various choices of regularization weight. For the
proposed EPFit algorithm, we must select an iteration limit. We
selected Niers = 5 x 10%. For the MinVoINMF benchmark, we
explore several choices of regularization weight. For SNPALQ,
we select the number of spectral signatures to estimate as the
sum of the number of generated background signatures and the
foreground signature.
Evaluation metric: As in [44] for endmembers, we evaluate
the accuracy of an extracted foreground material signature by
measuring the spectral angular difference (SAD) between the
estimated and true foreground material signatures. The SAD
between two vectors w and v in degrees is

0 1 ( ulv )
— cos | ——— | .
[l ]l

The squared error (SE) measure is also considered in the liter-
ature [3], [14]. A typical assumption for the SE measure is that
spectral signature estimates are normalized (to accommodate
ambiguity of scaling). The SE with normalization measure is
defined as SE(u, v) := ||u/||ul|2 — v/||v|2||3. We note that the
SAD and SE with normalization measure have a one-to-one
monotonic relation:

80
SAD(u,v) = 2sin~!(/SE(u, v)/2) x . (18)

Due to the strong similarity of results computed under either
the SAD or SE measure, we present results only using the SAD
measure for brevity.

SAD(u, v) = (17)

4This value was selected based on observed convergence of the objective
value. In practice, a stopping criterion such as thresholding the minimum
change in objective value may be used.
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Fig. 2.

0]

Plot of mean SAD (measured in degrees) between the estimated and true foreground signatures as a function of SNR for our proposed algorithms

and three benchmark algorithms on data generated using (a) strictly-tight patches with low background variation (r = 0.1); (b) strictly-tight patches with
medium background variation (r = 0.2); (c) strictly-tight patches with high background variation (r = 1); (d) partially-tight patches with low background
variation (r = 0.1); (e) partially-tight patches with medium background variation (r = 0.2); partially-tight patches with high background variation (r = 1).
See Section V: data generation for further details. A lower envelope of MinVolFit is shown (black dashed line). Plots for MinVolFit whose curves do not

intersect the lower envelope line within the selected range of SNR are omitted.

Our proposed methods and the three benchmark methods
can only provide an estimate f of the true foreground material
signature f up to the variations of scaling and elementwise
inverse. To accommodate these variations, we consider both the
normal and elementwise inverse forms of the identified solu-
tion as candidates for comparison. The SAD for the standard
and inverse forms are given by AO(f, f) and AG(f, 1@ f),
respectively. We take the minimum of the two measures.
Results and analysis: For our experiments, we explore the
relation between SNR and the SAD between estimated fore-
ground material signatures and true signatures for all consid-
ered algorithms over a range of data generation schemes. We
conduct three experiments in a strictly tight patch setting, and
three experiments in a partially tight patch setting. For each
patch setting, we conduct one experiment each with the fol-
lowing ratios of expected magnitudes for the base and varying
background-illumination signature components: low ratio (r =
0.1), medium variation (r = 0.2), and high ratio (r = 1). For
each experiment, we consider 10 SNR values logarithmically
spaced over the range of 10! to 10°. Each value of SNR has
a corresponding value of noise variance in the data generation
procedure described previously; this value is computed as the
ratio of the average squared magnitude of all pixel entries in
the data and SNR. For each noise level, we generate a set
of 20 bags consisting of 10 patches each as detailed in the
data generation section above, with each patch containing 25
pixels of dimension 30. In all cases we use p = 0.5. To each
bag of patches, we apply: MinVolFit with seven values of A

logarithmically spaced between 1 x 10~° and 1 x 10~3, EPFit,
the adapted MinVoINMF with three values of p logarithmically
spaced between 1 x 1072 and 1 x 10" and with the default
0 = 0.1, BMMF-LS-NM, and SNPALQ. We then compute the
SAD between the obtained estimates of the foreground ma-
terial signature and the true foreground material signature as
described in the evaluation metric section above. We report the
mean SAD as a function of SNR for each algorithm.

Fig. 2 illustrates the performance of the considered algo-
rithms for both the strictly tight (top row) and partially tight
(bottom row) patch settings. For the MinVolFit algorithm, each
choice of regularization weight yields a performance curve with
decreasing SAD as SNR increases up to some limit in SNR,
after which the SAD no longer decreases. As the regularization
weight decreases, the SNR value at which the minimum SAD is
achieved increases. The lower envelope of performance curves
among all choices of regularization weight (depicted by the
black line) shows a consistent inverse relationship between SNR
and SAD. This may be explained by considering the effect
of different choices of regularization weight. In a noisy set-
ting, the noise on endpoints may cause the optimal fit of the
foreground material signature with respect to fitting error to
have a larger volume relative to the true foreground material
signature. Volume regularization allows for an increase in fitting
error by rewarding a decrease in volume, so for a given value
of SNR there should exist an optimal choice of regularization
weight that sufficiently reduces the volume of the estimated
foreground material signature. As SNR increases, the effect of
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noisy endpoints is reduced and a smaller regularization weight
will be optimal. For the EPFit algorithm, in all plots we observe
the SAD decreasing as SNR increases.

In contrast to both proposed methods, all three benchmark
algorithms demonstrate minimal decrease in SAD as SNR in-
creases. For MinVoINME, this performance may be explained
by considering the effect of a per-patch varying background
material signature. Min VoINMF attempts to find a rank-2 NMF
representation of the concatenated set of patches, but the vary-
ing background material signatures act as a secondary source of
noise when considering the concatenated set of patches. Thus,
for sufficiently high SNR the effect of the varying background
on performance is more significant than the effect of additive
noise, leading to a lower bound for SAD. Our proposed al-
gorithms account for varying background material signatures
among patches, so we do not observe the same issue in these
methods. This explanation is further supported by the effect of
changing the ratio of expected magnitudes of background mate-
rial signature components. As we increase the ratio (from sub-
figures (a) to (c) and from subfigures (d) to (f)), the background
material signatures become more varied between patches. Sub-
sequently, the minimum SAD observed for the benchmark
algorithm increases. Again, our proposed algorithms are de-
signed to allow for varying background material signatures,
so we do not see a notable impact on the performance of
these methods

The poor performance of BMMF-LS-NM is expected in this
setting, as the data does not satisfy the necessary conditions
of the algorithm. First, given r spectral signatures in the data,
the number of spectral bands required in each signature is of
order O(r*). In this setting, there are 11 spectral signatures
corresponding to 10 distinct background materials and one fore-
ground material, while there are only 30 spectral bands for each
signature. Additionally, the (noiseless) set of pixels needs to
have rank equal to the number of spectral signatures and bi-
linear combinations. With 11 spectral signatures, the necessary
rank is 55. However, each patch is a rank 2 span between the
background-illumination signature for the patch and its product
with the foreground material signature. With 10 patches, the
rank of the noiseless data is at most 20. Thus, the theoretical
guarantees for performance of BMMF-LS-NM are not met. The
poor performance of SNPALQ is also expected in this setting,
as the algorithm extracts spectral signatures by identifying pure
pixels in the data. As the foreground material never appears
in isolation from background materials, there is no pure pixel
corresponding to the foreground material signature, and all the
estimated material signatures will be distinct from the true
foreground material signature.

In comparing the performance of our proposed methods, we
observe that for a given value of SNR, the MinVolFit algorithm
achieves a smaller mean SAD than the EPFit algorithm for
at least one choice of hyperparameter. This is reasonable: the
EPFit algorithm produces an estimate of the foreground mate-
rial signature by identifying two endpoints in a set of patches
and computing their elementwise ratio. Any noise affecting
these endpoints will directly affect this ratio, and therefore the
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estimate of the foreground material signature. In contrast, the
MinVolFit algorithm can accommodate some amount of noise
via careful selection of the regularization weight 7. Any non-
zero value of 7 allows a slight increase in fitting error if it
allows a decrease in the volume measure, which can allow
the estimated foreground material signature to have a smaller
volume measure than would be given by noisy endpoints. How-
ever, selecting an optimal regularization weight is non-trivial.
In contrast, the EPFit algorithm does not require any hyperpara-
meter selection.

B. Real Data Experiments

To verify that our algorithms can perform in a practical
setting with potentially unknown variations, we consider ex-
periments in a real data scenario. Our goals for real data ex-
periments are as follows: to demonstrate that algorithms which
account for per-patch background variation can perform better
than algorithms which do not take such variation into account;
and to verify that our algorithms have some robustness to un-
known variations that may be present in real data. We will show
that our algorithms, which can adapt to varying backgrounds per
patch, will obtain more accurate foreground material signature
estimates than a benchmark algorithm which does not account
for varying backgrounds. For the MinVolFit algorithm, we will
show that for an appropriate choice of regularization weight
the estimated foreground material signature will be close to the
expected signature. Similarly, for the EPFit algorithm we will
show that the estimated foreground material signature will be
close to the expected signature.

Data sampling: We use the dataset created by Kendler et al. [9].
The dataset consists of several annotated hyperspectral cubes of
a particular scene. The scene consists of many background ma-
terials, with a mix of five distinct foreground materials (sugar,
polystyrene, silicone, white silicone, and jam) deposited on
the surfaces of several background materials. A depiction of
this dataset is provided in Figure 2 of [9]. The locations of
background and foreground materials in the scene are annotated
in the dataset. However, the specific coverage at the per-pixel
level is unknown; the annotation specifies only whether a pixel
contains any amount foreground material. To facilitate experi-
ments, we selected regions containing two different background
materials (ceramic tile and plywood) and one shared foreground
material (silicone deposit). We sampled patches by sweep-
ing a 12 x 12 square window with a one-pixel offset through
each region.

Algorithms: To account for the significant noise present in real
data, we make a~slight modification to the EPFit algorithm. In
this, the matrix Y contains the vectors of all patches projected
onto a rank-2 span. The final step of the algorithm is to find
the pair of vectors with maximum SAD, under the assumption
that these vectors represent endpoints in the original data. In
the presence of noise, it is possible for vectors which are not
endpoints to be perturbed such that they produce a larger SAD
with respect to other vectors in the span than the true endpoints.
To account for these possible errors, we consider removing
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Fig. 3.

Recovered foreground material signatures of a silicone deposit on both ceramic tile and plywood backgrounds obtained using (a) the proposed

MinVolFit algorithm with various choices of regularization weight \; (b) the proposed EPFit algorithm with various choices of endpoint removal ratio 7; (c)
the MinVoINMF benchmark algorithm with various choices of regularization weight A; (d) the five best estimates produced by the BMMF-LS-NM benchmark
algorithm; (e) the five best estimates produced by the SNPALQ algorithm. The figure (f) shows a collection of the most accurate estimated foreground material

signatures (by smallest SAD from oracle signature) obtained with each method.

some proportion 7 of columns from Y which yield the largest
SAD. In addition, we change the hyperparameters of SNPALQ
to account for the unknown number of true spectral signatures
in the data. From our modeling assumptions, we infer an upper
bound on the number of spectral signatures as the sum of the
number of patches (one background signature per patch) plus
the foreground material signature. From our sampling approach,
we infer a lower bound as the sum of the two background
materials (at least signature each) and the foreground material
signature. We provide these bounds for hyperparameters in
SNPALQ.

Evaluation scheme: Unlike the synthetic data experiments, the
true foreground material signatures for the real data experiments
are unknown. However, with the label information for the lo-
cations of foreground and background materials, we can make
a reasonable inference as to the value of the true foreground
material signature up to scaling and noise effects. Given a region
containing exactly one background and foreground material, we
may compare all possible foreground pixels with all possible
background pixels and extract candidate foreground signatures
by taking the elementwise ratio of these combinations. To avoid
issues of small variations in the background material, we select
pairs of pixels that are within 10 pixels of each other. This
is similar to the background subtraction method in [9]. Then,
we may sort all candidate foreground material signatures by
their volume measure (see (8)) and obtain a denoised reference
foreground material signature by averaging the top k signatures.
For our experiments, we let k = 10.

Results and Analysis: Results for foreground signature extrac-
tion of silicone deposit on ceramic tile and plywood are shown
in Fig. 3. We observe that for all three of our algorithms, there
is a choice of hyperparameter that yields a foreground signature

TABLE 1
TOTAL RUNTIME AND AVERAGE PER-ITERATION RUNTIME FOR
VARIOUS ALGORITHMS AND BENCHMARKS

Algorithm AT Total Time (s) | Avg. Per-Iter. Time (s)

104 2.217 x 102

MinVolpit |0 107 | 2479 x 107 2.508 x 10~!
2% 10° | 3.111 x 102
109 2.239 x 102

EPFit all 2.454 x 102 2.454 x 1071
0.1 3.162 x 10!

MinVoINMF |2 3.097 x 107 3.172 x 10—2
2 3.264 x 10!
10 3.168 x 10!

estimate that is close to the reference signature. In contrast, all
three benchmarks show some difference between the estimates
and reference. In particular, the MinVoINMF and BMMEF-LS-
NM algorithms show significant deviation from the reference
signature. For MinVoINMEF, this is expected as the approach is
to concatenate all patches and solve for endpoint vectors as a
rank-2 NMF problem, an assumption which does not hold when
we consider a scenario with multiple backgrounds. For BMMF-
LS-NM, the theoretical guarantees for the algorithm are not met
in a similar manner to the synthetic data experiments.

VI. CONCLUSION

In this paper, we explored the problem of foreground material
signature extraction under an intimate mixing bag-of-patches
model. The problem of non-uniqueness of the solution for
the foreground signature was identified and the space of all
feasible solutions was derived. Conditions and criteria under
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which identifiable solutions are guaranteed were suggested and
proven. Several algorithms with identifiability guarantees were
proposed based on the previously suggested criteria. Exper-
iments on synthetic data demonstrated the capability of the
proposed algorithms to obtain identifiable solutions in settings
where existing methods do not succeed.

This paper considers the specific case of one foreground
material deposited on several background materials. A more
general model may consider the case of multiple foreground
materials. Foreground materials may still appear isolated per
pixel, or may appear in combination within individual pixels. A
further extension of the model would be to remove the restric-
tion of each patch containing only one background material.
This would remove the need to carefully select patches. Our
current theory on identifiability in the bag-of-patches model is
not sufficient to handle these extended models, but may serve
as a good foundation for analysis of an extended model.

APPENDIX
A. Proof of Theorem 1

We use the following result in the proof of Theorem 1:

Lemma 3: Assume s = c(tv + (1 — ¢)1) @ (uv + (1 — u)1)
with ¢ >0 and v strictly positive such that v ® v,v,1 are
independent. Let K (s) = [|s|?||1]|?> — (s71)? and K»(s)=
—(|Is]|* = (sT(s @ 8))(sT1)). If t — u # 0, then

1) 1, s, and s ® s are linearly independent and

2) Ki(s) and K»(s) are strictly positive.

The proof of Lemma 3 is given in the supplementary material.
We proceed with the proof of Theorem 1:

Proof: Let S be the set of all feasible solutions as given

in Proposition 1. For every feasible solution s € S, there must
exist parameters «, (3,7, d such that the following hold:

s=(af +p1) o (vf + 61),

5—rg 5ry=r a=pry
w120 w5-py 20 a5y 20,

amax f; + >0, amin f; + 5 >0,
ymax f; + 6 >0, ymin f; +§ >0,
and ad — By #0,

ar,—fB
ad— LBy 2 0’

19)

where r, and r;, are defined as in (7). The volume-minimization
problem in Definition 2, i.e., the volume minimization of (8)
may be replaced with the following maximization problem:

(s"1)

=2 (20)
[Isll2

max ¢g(s)

seS

Reparameterization: Before we proceed, we would like
to point out that w.l.o.g. we make the assumption that
min; f; < 1 < max; f;.> Consider the following reparameteri-
zation of the problem using

s=c(tf+(1-9)1) 0 (uf + (1 —u)l). (1)

SNote that since f is linearly independent of 1, it cannot be constant
and hence min; f; < max; f;. To ensure that f used in the proof satisfies
min; f; < 1 < max; f;, a scaling can be applied to the original f so that s
is defined in terms of the scaled version of f without loss of generality.

4093

Every element in S has a representation in (¢, ¢,u). To show
this, note that every element s € S can be parameterized by
(c, 8,7, 0). Consider

s=(af +B1) 0 (vf +61)
9+ a 8 ¥ J
Ca+8 (oz+ﬁf+a+,31>®("y+5f+'y+6l>'
(22)

Note that dividing by o + 5 and v + ¢ is always well-defined.
Suppose o+ $=0: then amin f; + 8 =ca(min f; — 1) <0
(by assumption that min f; < 1). This violates the constraint
in (19), so a + 3 must be non-zero. This follows similarly for
~ + 0. Finally, taking ¢ = (v + 0)(a + 8), t = a/(a + f8), and
u= f/(a+ [3), we have that s has a representation in (¢, t, u).

The mapping (¢, ¢, u) — s is bijective for feasible solutions
(see proof in supplementary material). Further, the manifold
produced by this mapping is differentiable everywhere. To show
this, consider the Jacobian of s with respect to the parameter
vector 0 = [e,t,u]T:

ds 1 0 0 -1
j:f[s(ys s 1] t—u cc (23)
do c(t — u) 0 -2 0

The Jacobian is well-defined within the set of feasible solu-
tions.® The determinant of the matrix on the right is det =
c?(t — u), which is strictly non-zero for all feasible s as ¢ > 0
and ¢t —u # 0, and therefore this matrix has full rank. The
columns s ® s, s, and 1 in the matrix on the left are linearly
independent, so this matrix also has full rank. Then the Jacobian
has full rank in the set of feasible solutions. Thus, the mapping
(c,t,u) — s is differentiable everywhere within the feasibility
set of the maximization problem. In summary, the mapping
(¢, t,u) — s produces a differentiable manifold, and therefore
we may recast the problem of maximization over s into a
problem of maximization over (c, t, u).

Using the new parameterization, the volume minimization
problem can be recast as follows

max g¢(s) = (s™1)
BE
1—u—ur, (I —w)rp,—u
S.t. 76(1,‘ — u) 5 4C(t — ’U,) Z 07
c(t — (1 —t)ry) c(try — (1 —1))
c(t —u) - c(t —u) 20,

c(tmax f; + (1 —¢)) >0, c(tmin f; + (1 —1¢)) >0,
umax f; + (1 —u) >0, wmin f; + (1 —u) >0,
and c(t —u) #0. (24)
Finding local maxima: Let 6 = [c,¢,u]|T. To identify local
maxima, we can consider the maximization over c¢(t — u) >0
and over ¢(t — u) < 0 as two separate maximization problems

6Simple algebraic manipulation of the Jacobian shows that the denominator
c(t — u) cancels out of each term in the Jacobian. The Jacobian is unde-
fined only if uf; + (1 —u) =0 for some %, which violates the feasibility
constraints.
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and identify local maxima in each. First, assume ¢(t — u) > 0.
If ¢(t — w) > 0, then we can rewrite the problem as

ST
9(s) = D
15112

st. 1—u—wur,>0, (1 —wu)r,—u>0,
et — (1 —=1t)rp) >0, c(tro — (1 —1)) >0,

max
6

c(tmax f; + (1 —1¢)) >0, c(tminf; + (1 —1¢)) >0,
umax f; + (1 —u) >0, wmin f; + (1 —u) > 0,
e(t —u) > 0. (25)

The constraints simplify to ¢ € [(1 +7,)71, (1 — min f;) 1),
u € (—(max f; — 1)~ 7, /(1 + 1)), and ¢ > 0. The derivation
of this simplified set of constraints is given in the supplemen-
tary material. Note that r,, /(1 + 1) < 1/(1 4+ r,), sot > wand
hence ¢(t — w) > 0 holds implicitly. Denote the feasibility set
containing all ¢ which satisfy the aforementioned constraints
by ©1. We can write the maximization as

max J(c, t,u), 26
0cO, ( ) ( )
where J(c,t,u) = sT(c,t,u)1/|s(c,t,u)|].” To show the ex-
istence of a local maximum, we consider the derivative of the
objective with respect to 6:

AIJd0" = s 0.~k (5), LK(s)]
Ki(s) = |Is|IP[1]* = (s"1)?,
Ka(s)=(s"(s®s))(s"1) —[Is|*. 27)

The computation of this derivative is given in the supplementary
material. Note that ¢ >0 and ¢(t —u) >0 for any 6 € ©4,
and therefore ¢t — u > 0. Given that t — u # 0, it follows from
Lemma 3 that K (s) and K»(s) are both strictly positive. Based
on the derivative, the objective is constant along ¢, monotoni-
cally decreasing along ¢, and monotonically increasing along
u. Our feasibility set is defined by box constraints on ¢ and u,
so a local maximum is obtained for any c¢* > 0 at the lower
bound for ¢ and the upper bound for u. At any other point, it
is possible to either move in decreasing ¢ or increasing u and
further increase the objective. Thus, a local maximum only ex-
ists at (¢, (1 +74)" %, rp/(1+ 1)) for any ¢ > 0. Substituting
the parameters for a local maximum yields

c(l+rp)

s= W(wa?“al) o (rf +1)=¢f,.

Due to space limitations, we omit the derivation for the neg-
ative sign case, which can be derived using a similar approach
as to the positive sign case. In the case of negative sign, it holds
that s = ¢/ f . 0

(28)

B. Proof of Theorem 2

Proof: Let Y = {Yy V) K1 be a set of patches fol-
lowing the bag-of-patches model in (5) with a true foreground
material signature f € ]RKL, and assume 1, f, f© f are

TTo find a local maximum, we need to find c¢*,¢*,u* such that
J(c*,t*,u*) > J(c, t, w) in the neighborhood ||s(0*) — s(0)|| < € for some
e>0.
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linearly independent. We will begin by showing that any end-
point fit solution f* satisfies f* =cfy or f* =cl @ fy.
Forward direction: Let f* be an endpoint fit solution. As
1, f, f © f are linearly independent, Property 1 is applicable.
According to Property 1, every coefficient matrix of a feasible
solution has the form

-1

= (k) 1 |a Y (k)

CcC ' =— C
€k [5 5]

where ¢, >0 and ad — Sy # 0. The ith column of the kth

coefficient matrix is therefore

(29)

k k
E(k) _ 1 [5651) - ’Ycéi)‘| (30)
i k k
ex(ad — 37) acg ) ﬁcgi)
Note that the coefficient matrices C ) for k=1,..., K must

be non-negative (see Definition 1). Recall also that ¢;; > 0. Then
for all 7 and k, the following inequalities must hold:

509—70&?) ac(k) ﬁc(’?)
i TR0 5 () gpd —2t P> 31
ab—py 20 o5, 20 O

Recall the definition of an endg)omt fit solution: there exists
1nd1c:es k:1 and ko such that C

and C contalns a column [0, y]” where x,y > 0. Thus, an
endpoint fit solution must satisfy the inequalities in (31) for
every column of every coefficient matrix, and must satisfy the
two equality conditions for some column(s). The set of endpoint
fit solutions is therefore all choices of «, 3,7, d such that the
following hold:

contains a column [z,0]7

k) k
(chz — fycgl) >0 and 021 BC
ad — By

>0, Vi, k,
ad — By "
E'Zl,kl S.t. 6C(k1)

yehyt) =0,

Jio, ko s.t. acékg) ﬂ( 2) — .

1 (32)
We consider two cases based on the sign of ad — S~. First,

assume ad — By > 0. The set defined by (32) simplifies to

acgf) ,Bcgk)>0 and 561Z —’ycé >0, Vi, k,

Jiy, ky s.t. acgzl — Be gljll

Tig, ko s.t. (5052’ — ’ycgfj) =0.
Let S = {(i, k) |c1 #0}, and let S| ={(i,k)| " =0}.
The sets S; and S7 partition the set of all indices. The require-
ment that each Y(1 is rank 2 implies that each C' (%) is rank 2,
and therefore S; is non-empty.® Further, the restriction that no
column of Y*) for all k is a zero-valued column implies that
ch) # 0 for all (i, k) € S]. Consider the constraints on « and
0, partitioned by S; and Sj:

(33)

(k)
/6 < O‘j?lé)a V(Z7 k) € 817
“1i

0<a, V(i,k)eS],
(kz)

3(217]61)681 S.L. ﬂ—Oé (k

Clig

or I(i1, k1) €8] st. a=0.
(34

( ©)

8If Sy is empty, then ¢y, = 0 and therefore every C (%) is rank 1, which

is a contradiction.
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We may discard the case of 3(i1, k1) € S} s.t. « = 0, as this im-
plies 5 < 0 and therefore o f + 51 < 0, which contradicts P1:2
in Proposmon 1. Then we are left with the case of 3(i1, k1) € S1
s.t. ﬁ = acgfj /cle) For [3 to be both a lower bound of the set
{ac x) / A }v(l k)eS: and equal to an element of the set, it must
hold that 5 = min; j ozc2Z /cgl:), where 021) /c is defined as
oo if c(llz) = 0. Note that if o =0, then 3 =0 and therefore
ad — By =0, which is a contradiction. Also, if a <0 then
8 <0, and therefore af + 81 < 0, which contradicts P1:2 in
Proposition 1. Then it must hold that o > 0, and therefore an
endpoint satisfies @ = S min; j, cgf) / cgf) =01, (see (7).
Now, we will consider the constraints on «y and . Let Sy =
{(i, k) | S £ 0}, and let 8 = {(i, k) | ¢S = 0}. The sets S,
and &), partition the set of all indices. Note that S is non-empty,
and c8 ) £ 0 for all (i,k) € 8, by similar reasoning as above.
The constraints on « and §, partitioned by S; and Sf, may be
expressed as
y<é c%i) )

V(i, k) €Sy, 0<9, V(i k) €SS,

§k1)
3(22,]{72) €Sy st. y=90 (;b

2L1

or 3(ig, k2) €85 st. 6 =0.
(33)

We may discard the case of 3(i2, k2) € S} s.t. § = 0, as this im-
plies v < 0 and therefore v f 4+ 1 < 0, which contradicts P1:3
in Proposition 1. Then we are left with the case of J(is, ko) €
Sy sty = 60%’222)0(2];:) For v to be both a lower bound of
the set {5051)/02Z Fv(i,k)es, and equal to an element of the
set, it must hold that v = min, j, 5c§’;)/cg;), where cglz)/cé’;) is
defined as oo if cgf) = 0. Note that if 6 =0, then v =0 and
therefore ad — 3y = 0, which is a contradiction. Also, if 6 <0
then v < 0, and therefore v f + 01 < 0, which contradicts P1:3
in Proposition 1. Then it must hold that § > 0. Therefore, an
endpoint satisfies v = 6 min; j, cgf)cg’f) =0ry (see (7)).

Note that for S=ar, and -~ =dry, it holds that
ad — fy=ad(l —rerp) > 0. Finally, we have

fr=(af+p)o@Bf+1)

=S(F+ra)omf+)=ch. (6

Due to space limitations, we omit the derivation for the neg-

ative sign case, which can be derived using a similar approach
as to the positive sign case. In the case of negative sign, it holds
that f* =cl1 @ fo.
Backward direction: Let f* =cfy= (cf +cr,1) @ (rpf +
1). We will use Property 1 to show that such a solution is an end-
point fit solution. A matching parameterization is (¢, 3,7, ) =
(¢, crq,mp, 1). From Property 1, the ith column of the kth co-
efficient matrix is

4005
where ¢, >0. Recall that 7,:=min;y cgf)/ch and
Tp 1= Imin; k cglz)/cgj). Let (i1,k1) = argmin; j 022)/c(k).
Then

(k1)
ccgfl) — cracglfl) = c(cg;l) ?,2) cglfll)) =0. (38)
iy
Letting (i2, ko) = argmin, j ch)/cgf), it holds that
) =l =l - S 0. 09

2ig
Thus, for solutions of the form f* = cfy, the conditions for an
endpoint fit solution are satisfied. The argument for solutions
of the form f* = cl @ fo follows similarly. |

C. Proof of Lemma 1

Proof: Let C® e RN for k=1,2,...,K be
elementwise non-negative matrices where no column is equal
to the zero vector and at least one matrix is full row-rank.
Let C = [C(l) C(K)]. Note that C' must also be full
row-rank due to at least one of C' (1)7 .., C (K) having full row-
rank. For any invertible matrix T € R2*2, we have T~ 'C =

-1 [C(l) C(K)] - [T—lc(l) T—lc(K)] )
Hence, if the matrix on the left T-*C is elementwise non-
negative the matrix on the right is elementwise non-negative
or equivalently its submatrices T'Cc™ for k= 1,2,....K
are elementwise non-negative. Similarly, if we define the
ith column of C as ¢;, then C=|c ¢,| and
consequently T 'C= [T_lcl T_lcn} . Elementwise
non-negativity of the LHS implies the elementwise non-
negativity of the RHS and vice versa, i.e., T 'C >0 if and
only if T_lci > 0, Vi. Thus,

1™ >0,Vk < T 'e; >0,Vi. (40)

Consider the inequality on the RHS of (40). Since multipli-
cation by a non-negative constant preserves the inequality, we
have T_lci >0 <= 'yiT_ch- >0 <— T_I%-ci > 0 for all
1, where 7; > 0. Using that no column is equal to the zero
vector, we can define a scaling term ; = 1/(cq; + ¢2;) for the
ith column for all 7. Using this choice of ~;, we can introduce

- = . — Cl4 Co4 T
the scaled 7 column ¢; = v;¢; = [cl,;-sl-cﬂ T jw%} . Therefore,
we have
T le; >0,Vi < T ¢ >0,Vi. (41)

Define a; = ¢1;/(c1; + ¢2;); the scaled ith column may be
expressed as ; = [a;, 1 — ;). Let @ = arg max; o; and b =
argmin; o;. Let @; = 2‘7“’7 Since every «; € [ag, o], it

holds that @; € [0, 1]. Usmg ; the definition of G Qj, WE may express
each ¢; as
= | % _~ | @a s Qp
il R M R N

— &), 42)

i.e., as a convex combination of the vectors ¢, and ¢;. Substi-
tuting ¢; into... the RHS of (41), yields T~ '¢; = &;T &, +
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(1- o‘zi)Tfléb >0,Vi. With @; and 1 — a; non-negative,
the inequality holds if T7'&, >0 and T~ ', > 0. Also, if
T_léi > 0 for all ¢, then it holds for 7 = a and 7 = b. Thus,

T71¢>0Vi < T '€,>0 and T '&,>0. (43)

Again, this holds for arbitrary positive scaling of each ¢;. Note

that o, >0 from «, > «;,Vi and C' having full row-rank.

Similarly, 1 — a3 > 0. Consider scaling ¢, by a% and ¢, by
L_ Then

17&}, :

[~

1
T '¢,>0 < T} |:1—a }

Qg Cila
ap Cib
T '6,>0 < T' {1—1%} =1! [cﬂ >0. (44)
Note that
Qg 2 Oli,Vi — 227‘1 = 1;(:“ 1;2” = i?ivv%
ap <y, Vi <= % = lf‘gb < =2V (45)
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