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Air pollution management and control are key factors in maintaining sustainable societies. Air quality fore-
casting may significantly advance these tasks. While short-term forecasting, a few days into the future, is a well-
established research domain, there is no method for long-term forecasting (e.g., the pollution level distribution
in the upcoming months or years). This paper introduces and defines long-term air pollution forecasting, where
long-term refers to estimating pollution levels in the next few months or years. A Discrete-Time-Markov-based
model for forecasting ambient nitrogen oxides patterns is presented. The model accurately forecasts overall

pollution level distributions, and the expectancy for tomorrow's pollution level given today's level, based on
longitudinal historical data. It thus characterizes the temporal behavior of pollution. The model was applied to
five distinctive regions in Israel and Australia and was compared against several forecasting methods and was
shown to provide better results with a relatively lower total error rate.

1. Introduction

Air pollution is a significant risk factor for multiple health issues and
impacts negatively on the environment (Venkatadri and Rao, 2014;
Heroux et al., 2015). The estimation of future air pollution levels is one
of the major tools for air pollution management and control (Ott, 1978).
However, predicting future pollution levels may fail to be sufficient.
Recent findings (Di et al., 2017; Zhang, 2017) suggest that pollution
levels in general not only damage the human body and its physiological
processes but daily differences in pollution are also key factors. This
underscores the urgent need for forecasting not only pollution levels but
also its daily transitions. Although a wide variety of techniques have
been developed for forecasting air quality, none have addressed long-
term (i.e., 12 months) or the daily gradients.

Broadly speaking, forecasting methods can be categorized into
empirical, statistical and deterministic approaches (Zhang et al., 2012).
The empirical approach is based on observations of several past data
points. It covers the persistence (Garner and Thompson, 2012), clima-
tology (Broday et al., 2012; Dye et al., 2003), moving average (Gardner,
1985), exponential smoothing (Gardner, 1985) and double exponential
smoothing (Holt-Winters method) (Gardner, 1985) methods.

The statistical approaches consist of Classification and Regression
Trees, CART, (Athanasiadis et al., 2006), Regression Analysis, RA,
(Agirre-Basurko et al., 2006; Tranmer and Elliot, 2008; Donnelly et al.,
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2015), Artificial Neural Networks, ANN, (Ibarra-Berastegi et al., 2008),
and a combination of these methods (Gong and Ordieres-Meré, 2016).
These methods are based on finding correlations in the historical data
and exploiting them to estimate future pollution levels. This is typically
done on short historical windows.

Deterministic models forecast air pollution through mathematical
formulations and simulations of emissions, transport, diffusion, trans-
formation, and removal of air pollution such as meteorological and
emission models (Finardi et al., 2008; Manders et al., 2009; Corani and
Scanagatta, 2016).

While this extensive body of work addresses air pollution fore-
casting, all of them only provide short-term prediction, typically
24-72h. Clearly, however, any planning and implementation of air
pollution strategies can benefit from long-term forecasting. There is no
consensual definition of long-term air-pollution forecasting in the lit-
erature. Long-term forecasting makes little sense if the purpose is to
predict actual values (e.g., what will the pollution levels be on a specific
date in the distant future, say in a year from now). For this reason, we
define long-term forecasting in terms of air quality behavior; i.e., dis-
tribution and transitions, in the next few months or years.

The Discrete-Time Markov Chain (DTMC) is a well-known prob-
abilistic model used to describe and analyze stochastic processes (Ye,
2000). DTMC makes it possible to predict and investigate the behavior
of a given process and has been proved to be effective and useful in a
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wide range of areas such as chemistry (Vereecken et al., 1997), medi-
cine (Zipkin et al.,, 2010) and computer science (Almasizadeh and
Azgomi, 2008). In the field of air pollution, DTMC has been used for
estimating the probability that a daily maximum ozone level would
exceed a predefined threshold in a metropolitan area of Mexico City
(Rodrigues and Achcar, 2013) and for developing a transportation
emission model (Crisostomi and Kirkland, 2011).

One form of noxious air pollution comes from nitrogen-dioxide gas
or NO,, which is known to be harmful to human health. Short-term
exposure may cause respiratory problems such as wheezing, coughing,
bronchitis and to aggravate respiratory diseases such as asthma
(Koenig, 1999; Clark and Demers, 2010). Long-term exposure may also
increase the risk of asthma (United States EPA, 2017). NO, originates
primarily from combustion sources in vehicles and industrial plants. It
is also the precursor of several harmful secondary air pollutants, such as
ground-level ozone, and nitrates which contribute to increased respir-
able particle levels in the atmosphere and plays a role in the formation
of acid rain. Thus, analyzing and understanding NO, pollution level
behavior can be used as an indicator for general pollution conditions
and as an exposure assessment tool in a region (Clark et al., 2014). NO,
has highly spatiotemporal variability, especially in urban areas (Mayer,
1999). NO, has a short lifetime (hours), and its temporal (i.e., diurnal,
weekly and seasonal) cycles are affected by many factors including
traffic and industry emissions, metrological conditions, and chemical
processes (Liu et al., 2018; O'Leary and Lemke, 2014).

Here we implemented an Air Pollution Discrete-Time Markov Chain
(AP-DTMC) model for long-term forecasting of NO, levels. The AP-
DTMC is harnessed here to provide a new means of assessing and more
importantly estimating future air-pollution characteristics and pollution
characteristics; namely: (a) the number of days within a time period,
e.g. a year, pollution levels will exceed a predefined threshold; (b) the
pollution distribution, i.e., the fraction of time the pollution will have a
specific level within this time period, which was defined here as the
stationary distribution; (c) the probability of observing any degree of
pollution in the proceeding time period, given the current level, or brief
historical data. This set of probabilities forms the transition matrix.
Both the stationary distribution and the transition matrix constitute
novel tools for analyzing air quality and more importantly its behavior.
This model was compared to well-known long-term forecasting
methods such as multiple linear regression (Zeger et al., 2000; Schwartz
et al., 2002; Sousa et al., 2007), moving average (Schwartz et al., 1996),
exponential and double smoothing (Schwartz, 1991, 1994; Kandya
et al., 2009) and the persistence method (Kang et al., 2005) and was
shown to be superior in terms of estimation error.
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2. Method
2.1. Study area

This study is based on NO, pollution levels in five different regions.
Four were situated along the Israeli coastline and included the Haifa
metropolitan area, the urban coastline between Haifa and Tel-Aviv
(Sharon region), the Tel-Aviv metropolitan area and the Israeli
Southern Coastal Plain (SCP), see Fig. 1a; and the fifth in Queensland,
Australia. These regions were selected to present both geographically
close and remote locations to better assess the ability of the AP-DTMC
to predict future air pollution levels based on previous measurements
regardless of the chosen location. The sensor locations in all are pre-
sented in Fig. 1 b-f.

The Haifa metropolitan area is about 250 km? and has a population
of roughly 500,000. It is located along the northern part of the Israeli
Mediterranean coastline. The area includes the city of Haifa and its
satellite towns. The Haifa Bay area in the center of the region is one of
the major industrial complexes in Israel and houses petrochemical in-
dustries and refineries. The Haifa seaport is also part of this area. The
Haifa bay area is the main transportation hub between central and
northern Israel. Overall these features generate a complex pollution
pattern composed of heavy industry, a high transportation volume, and
a dense population.

The Sharon plain lies between the Mediterranean Sea to the west
and the Samarian hills to the east and extends from Mount Carmel in
the north to the Yarkon river in the south. It covers about 650 km? and
has a population of about 800,000 residing primarily in 4 mid-sized
cities (Netanya, Herzliya, Hadera, and Ra'anana). The largest combus-
tion power plant in Israel is located on the Hadera coast and represents
about 20% of the Israel Electric Corporation's total generation capacity.
This region is relatively sparsely populated with medium-low inter-city
traffic activity.

The most densely populated and traffic-heavy region in Israel is the
Tel-Aviv metropolitan area. It covers about 150 km? and has a popu-
lation of roughly 2,000,000. It includes Tel-Aviv, the most highly po-
pulated city in Israel, and other large municipalities such as Ramat-Gan,
Petah-Tikva, Rishon LeTsiyon, and Holon. Its borders, as defined here
were the Mediterranean Sea to the west, Petah-Tikva to the east, Ramat-
Hasharon to the north and Rishon LeTsiyon to the south.

The southern coastal plain begins at the city of Yavne in the north
and extends all the way to the Gaza Strip in the south, and from the
Mediterranean Sea to the west and the Shfela hills to the east. It covers
about 820 km?. The main cities in this region are Ashdod, Ashkelon,
and Rehovot, and has a population of about 400,000. It incorporates the
Ashdod seaport, which is the main maritime port of entry in Israel and,
at its southwest border, the Rutenberg Power Station, the second largest
power station in Israel.

Brisbane is the capital and most populous city of the Australian state
of Queensland, and the third most populous city in Australia with a
population of about 2,200,000. The current study focused on center-
east Brisbane, which covers about 260 km? from St Lucia to the west
and Raby Bay to the east and from Brisbane Airport to the north and
Salisbury to the south. Most of the area is relatively densely populated
and includes residential and industrial zones including the Brisbane air
and sea ports.
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Fig. 1. Focal Areas. Red circles show Air Quality Monitoring Stations North is at the top of all maps. (source: Google maps).

2.2. Data

NO, data collected between 2010 and 2015 were used. This lengthy
temporal window insured that both seasonality and long-term trends
were present in the data and thus accounted for. In Israel, the data were
collected by the Israeli Ministry of Environmental Protection (I-MEP)
and Non-Government Organizations (NGOs). The raw data acquired
from I-MEP went through validation and data correction processes
(Yuval and Broday, 2006). In all the Air Quality Monitoring (AQM)
stations, the data are saved as half-hourly mean concentrations, in ppb
units. In Australia, the data were gathered by the Department of En-
vironment and Heritage Protection, Queensland Government
(Environment and Heritage Protection, Queensland, 2015). These data
are saved as one-hour averages in ppm units. In both Israel and Aus-
tralia, the NO, levels were measured by chemiluminescence-based
measuring equipment (Vacher et al., 2018), which was calibrated and
maintained according to ISO-17025 laboratory equipment standards
(ISO, 2005).

The collected data were divided into historical (i.e., training) and
validation sets. The former consisted of NO, measurements acquired
from 2010 to 2014, and the latter comprised NO, data collected
throughout 2015. Over the years there have been some changes in the
number of AQMs: in some cases, stations have stopped operating, and in
other cases, new stations have been set up. We only chose stations that
were active during the entire period to make an accurate comparison
between the training and test sets. The number of stations used in each
region is as follows: Haifa - 14 (out of 16 active AQMs overall in both
periods); Sharon 13 (18); Tel-Aviv - 14 (15); SCP 20 (22); and center-
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east Brisbane - 5 (7).

In this study, the pollution levels at 6:00 p.m. were used as the daily
characteristic measurement. Six p.m. was chosen since in most locations
the level of pollution is at its peak or close to that at this time. This is
because one of the most significant sources of NO, is transportation,
and at 6:00 p.m., the highest quantity accumulates before it reacts with
other substances or disperses. There are at least three advantages for
using this time of day rather than any other time or an average. The first
is that a single point of time serves as a better daily characteristic mea-
surement, due to the high diurnal variability of NO, (Mayer, 1999).
Second, daily-max values and percentiles are features of interest in
regulations and air quality control policies (EPA, 2018), and third, this
is consistent with several studies designed to analyze pollution tem-
poral patterns; e.g., (Broday et al., 2012). Note that this model was
tested at different times of day (e.g., AM peak and night time) as the
characteristic measurement as well as hourly and daily averages. In all
these experiments the same promising results were obtained.

The representative pollution level, for each region was thus the
average NO, level calculated over all measurements acquired by the
AQM stations in that region at 6:00 p.m. AQM stations are categorized
by purpose, such as monitoring transportation or industrial pollutants.
The specific purpose of an AQM determines which pollutants it moni-
tors and its physical configuration. Since we were interested in the
representative level at 6:00 p.m., all AQMs were included in the cal-
culations. Although there may be considerable differences between a
busy street and a station located in a park nearby, the characteristic
levels of pollution of the entire area were taken into consideration.
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2.3. Air pollution discrete-time Markov model

Let a/ € A" be region r's daily NO, characteristic measurement at day
t, where t € T = {1,2,3...} is the day index and A" is the entire region's
time series consisting of the time series {a/}. Let S be a set, {s;}, of
pollution severity labels, e.g., {“low”; “high”} or {“low”; “medium-
low”; “medium-high”; “high”}. The number of labels in S is denoted by
K; i.e., |S| = K. The label, s/ € S is the severity tag associated with a;.
The label s, can be determined in several ways. It can be set according
to a standard, such as the Air Quality Index standard (AQI) (Cheng
et al., 2007; Bishoi et al., 2009), or with respect to other characteristic
measurements obtained in the same region; i.e., with respect to A", or
with respect to all measurements acquired on the national level. Here
we use a regional labeling system and label each region's measurements
independently; i.e., w.r.t A" for each r. Similar to the definition of A", S”
is the labels' time series of region r. It is assumed that S" fulfills the
Markov property; i.e., the conditional probability distribution of the next
label, s{,;, depends solely on the present label s,

P{s/.Is/, s{_1,.... 8,8} = P{s{,Is/}

@

This assumption stems from the typical gradual behavior of air
pollution and meteorology. Both phenomena tend to show stability over
a cycle of a few days; e.g., diurnal and weekly patterns (Wilby and
Tomlinson, 2000; Broday et al., 2012). Due to this slow change, the
assumption is that the previous day is sufficient to indicate the next
day's pollution level and thus air pollution fulfills the Markov property.
Sections 3.3 and 3.4 show that this assumption indeed holds for all the
regions studied here.

For two labels s;, s; € S, let P; denote the probability of shifting to
label s;, given the current label s;:

P; = P{s/.,=sjls{ =si}, si, 5] €S

(2

For K labels in S, the AP-DTMC transition probability matrix, P,
describes all probabilities to shift from any label s; to any label s;, and is
denoted by:

Py P Pk
p- P.21 P.22 P.ZK
Py, Py, ... Pgx 3

The probabilities populating matrix P are derived from the histor-
ical data, simply by counting how many times, out of the total days, s;
followed s; . Utilizing the entire historical database, which incorporates
both major pollution gradients as well as moderate changes; i.e., sea-
sonality, allows the method to account, to some extent, for these
changes in the analysis. Each row in the matrix is a probability vector;
hence Z,-K:l PBj = 1 for each j. The n-day transition probability matrix, Py,
describes the probability of having label s; at time t + n, given the label
s5; at time t:

Pj = {8{,n = sjls{ = si} = P" 4

Based on these definitions, a label time series, S”, is an ergodic
Markov chain. Hence, it is irreducible, positive recurrent and aperiodic
(Pakes, 1969). This also means that the rows of P", for n>, are the
same and represent the stationary distribution, 7;, of the AP-DTMC:

—_ 1 n
5= R ®)

Recapitulating the notion above, the transition matrix, Eq. (3), ex-
presses the probability of having label s;, at the next time step t+1,
provided that the current time step label is s;. This can be extended to
represent more complicated connections, accounting for a longer his-
tory, say past M days:

r r r r r r r r r
P{sils), 81, 8o S_paa}s- £ S, 81, 80 Smi} €S

(6)
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2.4. Applications

2.4.1. Threshold analysis

In many air pollution mitigation plans, the percentage of days where
NO, levels exceeds a given threshold is key. The threshold can be set to
any value, such as the level considered by the authorities as hazardous,
or a specific air-control policy goal (Rodrigues and Achcar, 2013; Gong
and Ordieres-Meré, 2016). In this case, two labels are considered in the
Markov model: i.e., S = {“low”; “high”}, which correspond to below
and above the threshold. Thus, the transition probability matrix (Eq.
(3)) is of the form:

P,y Py
Pyr Pyn )]
The analysis here would result in obtaining the stationary dis-
tribution 7;, Eq. (5), which represents the future, estimated, distribution
of time between “low” and “high” pollution levels. This information can
be used for example to apply a policy whose goal is to achieve a better

distribution than expected by the model (thus, a higher portion of “low”
days) in the upcoming year.

2.4.2. Stationary distribution

The stationary distribution, 7;, facilitates the investigation of pol-
lution signal behavior in the long run. In particular, 7; can serve to
identify the fraction of time AP-DTMC assumes each label. This in-
formation is extremely helpful in designing and applying air pollution
mitigation policies where decision makers can use the expected dis-
tribution to set lower goals; i.e., a lower proportion of days with high
pollution levels.

The stationary distribution also facilitates the Air Quality Index
(AQI) measure (Kyrkilis et al., 2007), which is commonly used for as-
sessing air quality in general and personal exposure assessment in
particular. This is because personal exposure is affected by many fac-
tors; hence, the variance of the dose response function is typically high
and dominates the attributed relative risks/hazard ratio results re-
gardless of sensor accuracy (Lebret, 1990; Zeger et al., 2000; Jerrett
et al., 2005). Therefore, a common practice for estimating individual
exposure is to use a coarse scale such as the AQI, rather than the sen-
sors' actual readouts. The stationary distribution enables these types of
analyses in present and future times.

2.4.3. Transition analysis

By applying matrix P, the AP-DTMC provides the probabilities for
tomorrow's pollution's label given today's label. Essentially, this in-
formation constitutes short-term forecasting. Hence, AP-DTMC has a
predictive value both in short and long-term forecasting. In short-term
forecasting, AP-DTMC is considered a good benchmark for tomorrow's
forecast (Garner and Thompson, 2012). The AP-DTMC model provides
two distinct observations: daily stationary distribution levels (see Section
2.4.2), and the transition probabilities. Whereas the former describes the
distribution of pollution levels in the upcoming year; i.e., the fraction of
time pollution presents a specific level within a time period, the latter
provides an indication of the pollution level tomorrow, given today's
pollution level; i.e., the transition behavior. Since the daily differences
also present a health risk (Di et al., 2017; Zhang, 2017), this informa-
tion is highly important and is, to date, only provided by the AP-DTMC
model.

2.4.4. Higher order Markov chain

Matrix P can describe multiple day forecasts by constructing a
higher dimensional transition matrix P. This is done by formulating Eq.
(6) so that the pollution label of Day t+ 1 is predicted based on the past
M days {t, t — 1,---,t — M + 1}. In the case presented here, the model
describes the pollution behavior in a three-day sequence. Thus, P, in
this case, presents the probabilities for all possible pollution labels,
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P(s/.,) on day t+1, given the pollution level at day ¢, and day t-1. For
four pollution levels, P is a 16 X 4 matrix.

3. Results and discussion

The AP-DTMC model was applied on the NO, datasets described in
Section 2.2. The data were divided into a training set, consisted of the
data acquired 2010-2014, and a validation test set, which consisted of
the 2015 data. The performance of the AP-DTMC algorithm in the ap-
plications (Section 2.4) was compared against the results obtained by
multiple linear regression (Zeger et al., 2000; Schwartz et al., 2002;
Sousa et al., 2007), moving average (Schwartz et al., 1996), exponential
smoothing (with « = 0.80) (Schwartz, 1991, 1994), double ex-
ponential smoothing, Holt's method (witha = 0.80, y = 0.2) (Kandya
et al., 2009), and the persistence method (Kang et al., 2005). The a and
y parameters for the exponential smoothing and the double exponential
smoothing methods were selected so that the best prediction results
would be obtained.

3.1. Threshold analysis

In threshold analysis, the goal is to estimate the number of days
pollution will exceed a predefined threshold. For purposes of compar-
ison, the Tel-Aviv metropolitan area, with its 14 AQM stations was
chosen (see Section 2.1). The results of all other study areas are detailed
in Appendix A and are consistent with the results of Tel-Aviv region. For
the performance analysis, both the transition matrix (Eq. (3)) and the
stationary distribution (Eq. (5)) were evaluated. All training data ac-
quired throughout 2010-2014 were used for this analysis. The
threshold was arbitrarily set so that the highest 20% of the samples in
the years 2010-2014 would be considered above the threshold. In the
Tel-Aviv area, the actual value was 35 ppb.

The transition matrix analysis is detailed in Table 1, which depicts
the actual (ground truth) and predicted values of the 2015 transition
matrix P; i.e., {low — low; low — high; high — low; high — high}. The
table shows the results derived by the different methods and sum-
marizes the different methods’ total error, which is the sum of the ab-
solute error of each label. As can be seen from Table 1, all methods
predicted the probabilities for the transition from the 'low' to 'low' state
and from 'low' to 'high' fairly accurately but performed less well when
predicting the other two transitions. The results show that the AP-
DTMC achieved the lowest prediction error, at 8.9%.

The two-state stationary distribution (Eq. (5)) and the total error are
presented in Table 2. As shown, the AP-DTMC method outperformed
linear regression, exponential smoothing, Holt's method and the Per-
sistence method and was comparable to moving average, which was
slightly better.

Combining the results of Tables 1 and 2 shows that the AP-DTMC
method provides better predictions than all the other methods. Further,
the transition matrix, P, and the behavior of the model at infinity; i.e.,
m, are unique observations provided solely by the Markov model. These
features can be extracted by using all the other methods as shown here,

Table 1

Forecasting the transition matrix for threshold analysis; i.e., two states - 'L' and
'H/, for the selected long-term forecasting methods vs. the ground truth and the
total error of each method.
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Table 2
The stationary distribution of threshold analysis and the total error of each
method.

Method L H % total error
Ground Truth 0.826 0.173

Markov 0.825 0.174 0.12%

Multi Linear Regression 0.845 0.154 3.88%
Moving Average 0.826 0.173 0.07%
Exponential Smoothing 0.812 0.187 2.80%

Holt's method 0.849 0.150 4.64%
Persistence 0.843 0.157 3.32%

but these insights are inherent to the DTMC method. Based on the
findings in Di et al. (2017) that day-to-day changes in PM2.5 and ozone
ambient concentrations were significantly associated with a higher risk
of all causes of mortality at levels well below the current standards, the
availability of P and 7; are crucial. The availability of future air pol-
lution transients can allow authorities to set goals and determine policy
with respect to these features, and enables individuals at increased risk
to reduce or mitigate their exposure (Zhang, 2017).

The AP-DTMC has additional benefits in that it requires less training
data than the other methods. For the multiple linear regression, at least
5 years’ worth of data (2010-2014) is needed for a simple two-state
model, whereas AP-DTMC only requires 3 year data for its forecasting.

3.2. Stationary distribution

To assess the stationary distribution performance of the different
methods, P was calculated based on the 2012-2014 historical data, as
three years provided sufficient information to obtain adequate results,
and 7; was then deduced from P. Although the model is applicable for
any given number of labels, K (see 2.3), the analysis was conducted for
a quantized scale of four pollution labels: ‘low’, ‘medium-low’,
‘medium-high’ and ‘high’, {L, ML, MH, H}. The mechanism that as-
signs a label to each measurement can be a threshold defined by an air
quality standard or can be set according to a specific official policy.
Here, arbitrarily, for each of the study regions the measurements were
assigned a label according to their quartile, such that the measurements
within the first, second, third and fourth quartiles were labeled ‘L’, ‘ML’,
‘MH’, and ‘H’ respectively. Hence, the value range that correspond to
each of the labels was region dependent. The average values of the
measurements assigned to each label, for all study areas, are detailed in
Table 3.

The results are detailed in Fig. 2 where the observed values of 2015
are on the left (represented by red circles) and the estimated values are
on the right (represented by yellow circles). The gap between the ob-
served and the model's expected values ranged from 0.20% to 8.39%.
The average difference was 3.45% with a standard deviation of 2.19%.
It is evident that the suggested model predicts the pollution distribution
for the different labels with high accuracy in the five distinctive regions
suggesting that it can serve as a tool for assessing the general behavior
of air pollution by allowing for hotspots (Cole et al., 2005; Kandlikar,
2007) and exposure (Hystad et al., 2011; Adgate et al., 2014) analyses,
and thus facilitating the implementation of pollution mitigation po-
licies.

Table 3

Method LL LH HL HH % total error NO, label averages in ppb.

Ground Truth 0.91 0.09 0.428 0.571 Score L ML MH H
Markov 0.901 0.098 0.465 0.534 8.94%

Multi Linear Regression 0.906 0.093 0.515 0.484 18.10% Haifa 3 7 10 20
Moving Average 0.902 0.097 0.470 0.529 10.02% Sharon 3 5 9 19
Exponential Smoothing 0.894 0.105 0.459 0.540 9.40% Tel-Aviv 7 13 20 40
Holt's method 0.916 0.083 0.474 0.525 10.40% SCP 3 5 8 20
Persistence 0.911 0.088 0.473 0.526 9.38% Center-East Brisbane 5 10 14 23
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Haifa . 22%
Sharon ‘ 25%
Tel-Aviv ‘ 23%

SER 26%
Brisbane 27%

29% 26% . 23%
27% ‘ 24% . 24%
28% . 25% ‘ 24%
25% . 24% ’ 25%
26% ‘ 24% ‘ 23%

Fig. 2. Pollution stationary distribution. Observed in red versus expected in yellow.

3.3. Transition analysis

For the transition analysis, we estimated the 2015 transition matrix,
P, describing the probability of the pollution level at day t+ 1, s/, ,, from
the preceding day's pollution level, s;. The 2015 estimation was based
on 2012-2014 historical data. Fig. 3 presents the true values (red) and
the estimated values (yellow) of the 2015 transition matrix for the
Sharon region; the matrices of other regions are depicted in Appendix B
and exhibit similar behavior. Table 4 summarizes the mean absolute
estimation error (MAE) of P at all the selected regions. It is worthwhile
noting that the model also accounts for significant transitions; i.e., from
low to high (e.g., the shift from a weekend to a weekday) and high to
low (e.g., from a weekday to the weekend). To illustrate, in Fig. 3, the
transition matrix of the Sharon region, there are 1%/2% (observed/
expected) transitions between 'L' to 'H' and 5%/7% from 'H' to 'L'. This
coincides with the fact that there are 52 weekends a year; i.e., ~2% and
thus, these transitions may be attributed to weekend vs. weekday pol-
lution behavior.

As can be seen in both Fig. 3 and in Table 4, the model predicts the
behavior of pollution distribution with high accuracy. The results also
show the tendency of air pollution systems to maintain stability, in that
the diagonal values are mostly higher than the off-diagonal ones.
Therefore, the highest probability for a specific pollution level on day t
+1 is to maintain the current pollution level. Thus, if the level was
s{y1 = 'L’, on day t, there is a greater likelihood that the level will be 'L'
on the following day as well. Although the likelihood of shifting from a
specific pollution level to a neighboring level (e.g., from 'ML' on day n
to 'L' or 'MH' on day t+ 1) is lower than maintaining the same level, it
does present a higher likelihood than shifting two levels, for instance
from 'ML' to 'H'. Shifting three levels, which can occur solely in the
transition from 'L' to 'H' and vice-versa, is very rare.

The likelihood of maintaining level ‘H’ on day ¢ + 1 after having 'H'
on day ¢ are more than double from its stationary distribution (Fig. 2);
namely, 57% (observed) as compared to 21%, and 57% (expected) as
compared to 24%. Similar behavior was observed for both ‘ML’ and
‘MH’ levels but at lower statistical significance.

Weather conditions have enormous influence on air pollution.
Meteorological parameters such as wind speed and direction, tem-
perature, humidity, rain, clouds and solar radiation clearly affect air
quality (Zannetti, 1990). Synoptic-scale weather typically exhibits si-
milar characteristics for several days, such that weather changes occur
gradually rather than immediately (Dye, 2010; Broday et al., 2012).
The characteristics described above for the transition matrix can par-
tially be attributed to this weather behavior. Both Israel and Brisbane
are characterized by unstable weather, especially in the transitional
seasons (Goldreich, 2003; Ren and Tong, 2006). However, even in times
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L . 48% ‘ 35% ® 9% 2%
ML ‘ 33% ‘ 39% . 20% ® s»
v @ 12% . 21% . 36% ‘ 31%

H ® % ® 1 ‘ 25% . 57%

Fig. 3. Transition matrix for the Sharon region. Observed in red versus ex-
pected in yellow.

Table 4

Transition matrix Mean Absolute Estimation error.
Region Haifa Sharon Tel-Aviv SCP Brisbane
MAE (%) 5.37 1.90 3.66 4.49 2.94

of instability, a synoptic system tends to last a few days; thus, due to the
influence of meteorological conditions on air pollution, there is a clear
tendency to remain at the same pollution level as shown in the model
(Dye, 2010; Broday et al., 2012). Evaluating the results for all study
regions (Appendix B) indicates that the model obtained good results in
both Israel and Australia. This underscores the ability of the AP-DTMC
to predict future air pollution levels based on previous measurements
regardless of the chosen location.

Recent findings suggest that mortality as a result of air pollution can
be attributed not only to the actual levels but also to transients; i.e., the
daily gradients of the pollution signal (Di et al., 2017; Zhang, 2017).
The transition analysis, presented here, provides the means to do ex-
actly that.

3.4. Higher order Markov chain

Fig. 4 depicts the probabilities in the transition matrix of the Center-
East Brisbane region for a three-day sequence (the results for the other
regions appear in Appendix C). Thus, obtaining a specific label s/, ,

given the labels of the two preceding days, {s/, s/_,}.
Pis/ iIs/, s{_)s. t. {s{+1, S{ S} ES (8)

Similar to the stationary and transition analyses, the training data
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L L ‘ 62% ®
L L .e 31% ‘
L M ®: 15% 0%
L H B 17% ®:
ML L . 61% o
ML ML [ S 249% 379:
ML MH »: 14% ®:
ML H 0% 9% P
MH L ®: 76% ‘
MH ML ™ 23% ®
. o o 14% 9
MH H 0% 3% L0
" . 67% 0%
m L 10% 22% .c
" i a% 4% 310
" . 0% 0% 190

27% 5% 9% 1% 2%
42% ® 22% 0% 5%
29% B 52% . 4%
17% 0% 50% . 16%
24% 0% 14% B 1%
44% B 20% o 12%
26% ®: 39% a0 21%
24% B 21% . 46%
17% 1 4% 18 3%
42% 299- 220% s 13%
21% 420 38% »: 27%
9% 350: 29% s20 59%
33% 0% 0% 0% 0%
319 ®: 25% [ 3 229%
229 o 34% 9 40%
12% 380 29% . 59%

Fig. 4. Three-day sequence transition matrix for Center-East Brisbane. Red circles indicate the observed probability and yellow the expected.

used here were comprised of NO2 measurements acquired throughout
2012-2014. In terms of the three-day transition matrix, sequences
showing stability were much more frequent than unstable ones. Tuple
sequences of the same level were very frequent. For example {L, L, L}
had a 76%/62% (Observed/Expected) likelihood; {H, H, H} 52%/59%
(Observed/Expected). Stability at intermediate labels was less frequent:
{L, ML, MH} had a 16%/22% (Observed/Expected), {H, MH, ML} had a
31%/21% (Observed/Expected). Unstable sequences were significantly
less frequent - {H, H, L} had 0% (both Observed and Expected), {L, L,
H} - 1%/2% (Observed/Expected), and {H, L, H} had 0% (both
Observed and Expected).

A comparison of the results of section 3.3, transition matrix analysis,
and the results of this section suggests that the preceding day has more
impact than the day before it This means that the Markov property (Eq.
(1)) assumption does hold and that the Markov chain model is suitable
for the analysis of long-term air pollution patterns.

4. Conclusion

This paper introduced the concept of long-term air pollution fore-
casting in terms of pollution distribution and transition probability
analyses. These two properties of the pollution signal were derived by
modeling the pollution time series as a Markov chain model. The model

Appendices

Appendix A — Threshold exceeding model results

was applied to NO, measurements acquired from 2010 to 2014, in four
distinctive regions in Israel and one in Australia. This large number of
regions enabled proper evaluation of the model. It was able to accu-
rately predict both the pollution distribution and transition matrices of
2015 based on the historical data. The model was shown to be useful
and appropriate for several applications; namely, threshold exceeding
estimation, pollution level pattern distribution and transition matrix
analysis. As is the case for any other prediction method, the AP-DTMC
presented here is vulnerable to dramatic changes in natural or an-
thropogenic conditions. Future research should address the issue of the
rapid detection of changes in transition probabilities, P, estimated
versus observed and to determine changes in these conditions.
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For the model predicting the percentage of days in a given period exceeding a predefined threshold, the threshold was set as the top 10% highest
pollution level for each region. The results are detailed in Fig. 5. The mean differences in all regions was 4.06% (13.38% - Haifa; 1.28% - Sharon;
3.10% - Tel-Aviv; 2.22% - SCP; and 0.28% - Center-East Brisbane) with a standard deviation of 4.52%. The prediction was based on the data acquired

throughout 2012-2014 and was validated on data acquired in 2015.
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Appendix B — Transition analysis results
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Fig. 6. Daily Transition matrix for the Haifa region.

L ‘ 509%
ML ' 24% ‘ 519%

.o 12%

» 3%

8
® -

‘ 580/0

Fig. 7. Daily Transition matrix for the Tel-Aviv metropolitan area.
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Fig. 8. Daily Transition matrix of the SCP region.
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Fig. 9. Daily Transition matrix of the Center-East Brisbane region.

Appendix C — Higher order Markov model results

I

L L . 2% 8 47% £ 25% 20 5%
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b i B 12% [ 3 120 »: 49% o 27%
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Fig. 10. Three day sequence transition matrix analysis for the Haifa region. Observed measurements from 2015 in red and expected results based on data from 2012
to 2014 in yellow.
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Fig. 11. Three day sequence transition matrix analysis for the Sharon region. Observed measurements from 2015 in red and expected results based on data from 2012
to 2014 in yellow.
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Fig. 12. Three day sequence transition matrix analysis for the Tel-Aviv region. Observed measurements from 2015 in red and expected results based on data from
2012 to 2014 in yellow.

'- L . 520 S 29% »: 15% 0% 5%
L ML . 2% [ 3 49% »: 18% 3% 10%
L MH % 100 8 36% B 310 . 240
L i) 0% 9% 0% 0% 0% 27% 0% 64%
ML L . 5208 [ 3 330 o 149 0% 1%
ML v @ 37% [ ) 36% o 20% * 7%
ML 'Y " 23% » 28% ‘ 27% S 220
ML v @ a9 0% 26% [} 26% [ ) a39%
M . @ 55% ®: 28% B 15% 0% 3%
MH ML . 28% »: as% [ 3 19% 0% 9%
MH i B 18% ® 16% | 3 36% [ ) 30%
MH H 0% 7% » 7% - 26% . 619%
o 0 [ 3 4% 0% 25% . 19% 0% 13%
" w 14% [ Y 27% [ 3 50% 0% 9%
- R % 9% ®: 179% . 399% 9 35%
" P LY 5% s % B 5w . 3%

Fig. 13. Three day sequence transition matrix analysis of SCP region. Observed measurements from 2015 in red and expected results based on data from 2012 to
2014 in yellow.
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