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Mathematical Estimation of Particulate Air
Pollution Levels by Aerosols Tomography

Or Vernik , Amir Degani , and Barak Fishbain

Abstract—Air pollution control and mitigation are impor-
tant factors in wellbeing and sustainability. To this end, air
pollution monitoring has a significant role. Today, air pol-
lution monitoring is mainly done by standardized stations.
The spread of those stations is sparse and their cost hin-
ders the option of adding more. Thus, arises the need for
cheaper and available means to assess air pollution. In this
article, a mathematical method to solve the inverse problem
of aerosols tomography is proposed. The suggested method
applies filtered back-projection method on a pixel-wise blur
estimation. Using the method, particles’ concentrations in a
3D space is reconstructed from photos taken from different
angles. The proposed method is shown to be very effective
for assessing air pollution levels by means of multi angle imaging. Specifically, estimating images’ blur as an indication
for Particulate Matter (PM) ambient levels. The results of the research point towards strong correlation between image
blur and pollution level in the medium and the ability to reconstruct the aerosols distribution in space.

Index Terms— Air pollution monitoring, filtered back projection, Monte-Carlo, multi-angle imaging.

I. INTRODUCTION

PARTICULATE Matter (PM) is a mixture of particles
suspended in the air that may result from direct emis-

sions or by chemical reaction of other gaseous pollutants
(e.g., salts, fossil fuel, nitrates and sulphates). Exposure to
PM is known to be one of the predominant factors in mor-
bidity and mortality, causing the premature death of millions
of people a year [1]–[3]. Thus, measuring and monitoring
PM pollution is an important task the world needs to deal
with in order to ensure public health.

Currently, PM monitoring is standardly done by Air Qual-
ity Monitoring (AQM) stations that are considered accurate.
Examples for AQM use can be found in Latin America [4],
China [5] and Israel [6] among other places. Due to their size
and cost, the stations are sparsely dispersed, resulting in a
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low-resolution concentration map. This limitation is typically
addressed by interpolation schemes [7]. However, the interpo-
lation is a complicated task as PM concentrations are char-
acterized by high spatial variability and may present different
behaviours for different fractions and geographical areas [8].

These drawbacks have led researchers to seek other
approaches for air pollution monitoring, either high-resolution
devices or less costly and portable monitors, i.e., Micro
Sensing Units (MSUs) [6], [9]. These methods can be used
for taking measurements, validating new technologies or
guidance of interpolating in-situ measurements. MSU-based
methods, although answering the price and portability require-
ments, are not a reliable source for assessing air pollution
on their own [9], [10] and an ideal method is yet to be
found [1], [6], [9], [11].

Methods for retrieving PM by multi-angle imaging are
in use by satellites. Instruments such as Multi-angle Imag-
ing SpectroRadiometer (MISR) and Airborne Multi-angle
SpectroPolarimetric Imager (AirMSPI) are currently applied
for remote sensing of aerosols [12], [13]. However, these
devices have the disadvantage of measuring the full vertical
atmospheric column, making their measurements less relevant
to the amount of pollution at ground level, that can indicate
health hazards [14]. The retrieval of PM concentration from
the optical depth measurements is highly dependent on aerosol
type, relative humidity (RH), planetary boundary layer height
(PBLH), wind speed and direction, and the vertical structure
of aerosol distribution [15].
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In this work, we focus on visual means for assessing
PM levels in the atmosphere. An image processing technique
for deriving quantitative measurement of visibility, using Red-
Green-Blue (RGB) standard camera network, was suggested
by Graves and Newsam [16]. The method evaluates the
extinction coefficient β, a measure that quantifies local radi-
ance attenuation and is used as a standard for measuring
atmospheric visibility. To this end, the atmospheric transmis-
sion t (the ability of radiation to pass through the atmosphere)
is derived from standard photos, based on image analysis
techniques such as local image contrast and dark channel prior.
For l, the length of the visual pathway, assuming homogeneous
atmosphere throughout the scene, the transmittance has a
simplified closed form, inverse relationship, with the extinction
coefficient:

t (x) = e−β×l . (1)

It is important to note that the assertion of homogeneous
atmosphere often does not hold in reality [17]. Thus, equa-
tion (1) is an approximation of the relationship, neglecting
other components effects and physical phenomena such as
hygroscopic growth of aerosols.

This research aims at improving this notion, by looking
at a 3D volume with changing concentrations at each voxel
(as opposed to the homogeneous atmosphere assumption made
by Graves and Newsam), attaining a quantitative measurement
for PM concentration at each voxel (volume element). The
underlying assumption here is that due to the particles’ optical
properties of scattering, different concentrations of particles
will cause the light field to scatter differently [14]. The higher
the concentration of scatterers, the more refractions the light
will go through. Refracted light impairs human visibility and
expression for this phenomenon manifests itself in standard
photos [16]. Particles suspended in the air cause a level of
blurriness in the acquired photo. Having this relationship
between blurriness and amount of scatterers in the air leads
us to the approach of estimating the particles’ concentration
by measuring image blurriness.

The blur of an image is positively correlated with the
integral of the attenuation (extinction) coefficient over the Line
Of Sight (LOS) to the object. Thus, by measuring the blurri-
ness of one image we cannot infer the concentration at each
voxel. The initial intensity of the light’s direct transmission
(I0) is attenuated by the scattering (here we assume that the
absorption by particulate matter is mostly negligible) and I ,
the measured radiation intensity is computed by:

I = I0e− ∫
L OS β(l)dl . (2)

Our objective then is to find β, which is strongly related to the
PM concentration. Let � be the volume in which we would
like to measure PM concentrations; let ω = (x, y, z) ∈ �
be a specific location in space; and n(ω) denotes the PM
concentration at position ω. Having σ as the extinction cross
section, β is the result of multiplication of the two:

β(ω) = σ · n(ω). (3)

The extinction cross section, σ , depends upon the light’s
wavelength and the particle’s shape and size. For our purposes

it is assumed spherical shaped particles of a constant size.
Assuming we know the values of the extinction coefficient
integral for a large number of angles (having a correlation with
the blurriness measure), the inverse problem is mathematically
solvable by the Radon transform [18].

Radon transform is widely used in Computational Tomog-
raphy (CT) applications, allowing us to reconstruct the object
being scanned from its measured projections. The classi-
cally used form of the Radon transform and that we are
going to describe, is the 2D Radon, for each reconstruc-
tion, z-coordinate will be considered constant. A projection
is the integral over the extinction coefficient which, using
equation (2), equals to:

p(x, y) =
∫

β(x, y)︸ ︷︷ ︸
our

objective

dy = − ln

(
I (y)

I0

)
︸ ︷︷ ︸
assumed known

. (4)

The projections are assumed to be known in regular CT scans
as we have a controlled radiation source, with known initial
intensity I0, and the final intensity, I , is measured by the
scanner when exiting the body.

The most effective way for reconstructing β from the
projections is by using Filtered Back Projections (FBP) that
is equivalent to the Inverse Radon Transform (IRT) but less
computationally costly. Let θ be the angle in which the rays
are sent, in relation to the X-axis (rays are sent parallel for
each image), and let R be the displacement of projection on the
axis perpendicular to θ (the radiation detector location along
the axis). The Radon Transform is simply a transformation
of the projections from the image X-Y plane to the plane of
R-θ lines (also called the Sinogram image).

The Radon transform represents the data as it is obtained
in scanning an object through lines in different angles of the
body. The reconstruction is done using FBP on the Sinograms
received. The projections are convolved (’∗’ operator) with
High Pass Filter (HPF), q(r), called ramp filter, before being
back projected, arriving at:

C(x, y) =
∫ π

0
p(r, θ) ∗ q(r)dθ. (5)

The filter is convolved with the projections in order to
prevent blurring effects in the reconstructed image. Although
ideally using ramp filter results in an exact reconstruction,
when projections are impaired with noise, HPF has the unde-
sirable effect of magnifying it. A more commonly used and
suitable filter is the Ram-Lak filter [19].

Relying on the above principals, a new mathematical
method to solve the inverse problem of aerosols tomography is
proposed. The Radon transform is used in specific conditions
where the radiation source is controlled. Rays are sent at a
certain angle with known initial intensity and the intensity
on the other side of the medium (usually a body) can be
measured. Thus, the values of the projections for each angle
can be easily computed. We suggest to use a pixel-wise blur
measure to replace the projections value. Doing so, there is no
need in knowing the initial rays’ intensity or measure the exact
final intensity. We use the Monte-Carlo method as the image
formation model and reconstruct the original concentrations
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using filtered back projection method with image blur values
as the integral over the concentrations.

It is known that pixel blur estimation will only be valuable
on image edges, whereas inside homogeneous areas blur
could not be detected. Our expectations are to have good
reconstructions around contamination edges when a strong
homogeneous pollution cloud is imaged, or, next to scenery
edges when there is a less visible contamination. In practice,
the PM concentration has high spatial variability and is not
usually homogeneous. For this type of pollution, we expect
good reconstruction.

We have tested the reconstruction scheme with different
scenarios and found it to be useful for generating 3D dense
map of the area of contamination, giving highly accurate value
for the particle concentration.

II. METHODOLOGY

Our experiment consists of two parts. The first is deriving
images of the scene, subjected to air pollution blur. The
second, reconstructing the concentrations based only on the
first stage results, i.e., the images. The second part contains
our conjuncture that reconstruction is possible solely based on
images’ blur, and the first is the platform for testing it.

A. Constructing the Images
To examine the potential of the suggested method,

we designed a simulation of the image acquisition process
of the light field in a 3D volume, using the Monte-Carlo
method [20]. This extends the work of Vernik and
Fishbain [21], in which, the blur effect was demonstrated on
a 2D plane.

For the mathematical description of the problem, let us
recapitulate the notation above. We define a 3D rectangular
volume domain � ⊂ R3, with parameters {a, b, c} defining
the extent of the volume, as:

�={(x, y, z) : 0< x <a, 0< y <b, 0< z <c, a, b, c∈ R}.
(6)

At each voxel ω = (x, y, z) ∈ �, the extinction coeffi-
cient β(ω), is defined, depending on the concentration map
we wish to simulate.

We relate to the physical behaviour of light propagating
through a volume containing PM in different concentrations as
a random process [22]. The light, taken in its particulate sense
of photons, passes a medium, which has spatially variable
optical depth (a measure of the light ability to propagate
through the medium) denoted by τ . At each stage, τ is sampled
from the optical depth Cumulative Density Function (CDF):

F(τ ) =
∫ τ

0
e−τ �

dτ � = 1 − e−τ . (7)

Using the Monte-Carlo method, we get a random optical
depth sampled from its CDF. For this, we use the uniform
distribution (U[0,1]) CDF for sampling a random number u,
and derive τ by:

τ = F−1(u). (8)

By using the random τ we sampled, we can determine l,
the distance the ray propagates until the next diffraction. Let
σ be the extinction cross section, and n, the PM concentration
at each voxel ω. The distance, l, is computed using numerical
integration over β based on the following relationship:

τ =
∫ l

0
β(ω)dl =

∫ l

0
σ · n(ω)dl. (9)

Once l is found, the scattering angle after the collision
has to be determined. The angle is computed in a similar
fashion, assuming randomness in the process and relying on
Mie scattering theorem under the assumption of spherical
particles [23]. The Mie-Lorenz theorem provides a physical
solution for the scattering of an electromagnetic wave by
spherical uniform particles about the size of the light wave-
length. Computing the scatter angle using the theorem involves
computing an infinite series and is considered a complicated
numerical task. Often, the solution for the scattering angle is
approximated. In this study, we chose the Henyey-Greenshtein
phase function (HGPF) approximation due to its simplicity,
involving only one parameter. Defining μ = cos θ and g
as the asymmetry parameter indicating type of scattering
(ranges from backscattering to forward), HGPF provides the
probability of a photon to be scattered at a certain angle θ :

P(μ) = 1

2

1 − g2

(1 + g2 − 2gμ)
3
2

. (10)

There are several methods for deriving the Mie-equivalent
aerosol asymmetry parameter (g) each using a variety
of parameters such as particles’ size, and RH, among
others [24]–[28]. The analysis here observes a finite volume
element with light emitted from a single angle at a time. In the
analysis done here, the asymmetry parameter, g, was chosen
to be close to 1 (g = 0.99), corresponding to limited angle
change as a result of a collision. In order to find the angle
cumulative density function we will integrate over the phase
probability function as follows:

F(μ) =
∫ μ

−1

1

2

1 − g2

(1 + g2 − 2gμ)
3
2

dg

= 1 − g2

2g
{(1 + g2 − 2gμ)

− 1
2 − (1 + g)−1}. (11)

Using Monte-Carlo simulation, we will sample a random
angle from the HGPF CDF on the intersection plane [22].
At the perpendicular plane, the angle, called the zenith angle,
has uniform distribution in the range [0,2π), so it is selected
randomly. The found angles, will give us the new direction
of the ray’s propagation. Each collision will also cause an
attenuation in the radiation intensity by a factor of γ̄ , that
is the Single Scattering Albedo (SSA), according to aerosols
properties, following [29], we used γ̄ = 0.9.

We repeat this process of finding new distance to the next
collision, new direction and the intensity at each stage, until
the ray exits our defined volume. The described process is done
for each ray in the packet of rays entering from each radiated
voxel. The image acquisition process is done by summing the
values of the exiting rays’ intensities for each pixel at the
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Fig. 1. Sun rays hit the medium and scattered until exiting the grid
boundaries. Image is received on the bottom plane as a result of rays
intersecting the plane.

desired image plane. visualization of the simulation shown in
Figure 1. In the image, our 3D volume is depicted, where the
different concentrations at each voxel are marked by colour.
The red arrows are the sun rays entering the volume and
the blue lines are the paths the radiation goes through in
the volume. Finally, we can see the image created on the
bottom plane, that is the summation of each pixel entering
rays’ intensities.

B. Air Pollution Field Reconstruction
First, we wanted to strengthen the conjecture of the correla-

tion between level of pollution in the volume and the received
image blurriness. The blurriness of the image is determined by
the Blur Metric (BM) suggested by Crete-Roffet et al. [30].
The blur metric estimation of the image blurriness is based
upon the notion that once an image is blurred, blurring it again
will result in smaller differences than blurring a sharp image.
Here, this principle is applied on the pixel level. Let p = (i, j)
be a pixel in the received image, where for each pixel, p, its
blurriness is estimated by its 5 × 5 neighbourhood.

According to the method we take the image, denoted
M0 (the original image), pass it through a low-pass filter
(the averaging filter) and receive a blurred image output (M1).
The averaging filter is then applied on M1, thus receiving
a blurrier result (M2). Finally, the differences between the
original, M0, and M1 are compared with the differences
between M1 and M2. The higher the differences are, the
sharper the original image is. The method yields a value
between zero and one indicating the effective blurriness of
the pixel, relying on its neighbouring pixels.

For testing the correlation, a binary image of ‘Lena’ [31] is
used as our imaged object. Rays are emitted from the image,
propagate through the volume and caught by the camera
lens. The results are indeed a blurred image of the original
Lena (Figure 2). Repeating the same initial conditions only

Fig. 2. From left to right. (left) Lena’s original B&W image. (middle) The
received image with uniform PM concentration in the volume. (right) The
received image with larger PM concentration in the volume (x2).

with growing levels of PM concentrations and measuring the
blurriness of the image using our blur metric, gives us a strong
correlation between the effective image blur and the level of
pollution.

To examine the blur measure ability to reconstruct the PM
concentrations, as a replacement for knowing the projections,
a simulation is held. In the simulation, a staring camera at
a certain angle θ , relates only to the light that enters the
volume, i.e., we neglect light coming from other directions.
To get accurate results our system takes 180 photos of the
medium in 180 evenly spaced degrees at the range [0, 179].
This is illustrated in Figure 3. The volume, through which
light propagates, contains a box with constant pollution value.
Figure 3.a depicts the initial angle of the radiating plane
theta = 0deg. At this angle the camera is located below
the volume looking up. Figures b and c are the same setup
under rotation of θ = 45◦ and θ = 150◦. A reduction of the
number of cameras is addressed in the conclusions section.
The received photos, in the Monte-Carlo simulation, (each
received from a different angle) are used to estimate the
level of pollution by applying the blur metric as previously
described.

The selected reconstruction method is the filtered back
projection. The reconstruction is actually done for slices
(X-Z planes) of the volume. For each slice we create the
Sinogram of the slice. The Sinogram image consists of the
projections of the slice for all angles, where instead of projec-
tions, the blur metric value is used. We then reconstruct each
slice by preforming FBP on the Sinograms.

III. RESULTS

The experiment was done for many different concentration
patterns. First, patterns that have a defined shape were exam-
ined, so it would be clear to see the reconstruction results.
For example, high uniform concentration in the volume centre
and a dumbbell shape concentration map. These are illustrated
in Figure 4.a and Figure 4.b, which present the sphere in the
center of the volume and the dumbbell respectively.

We simulated with the Monte-Carlo method the rays enter-
ing the volume at specific points and angles and diffracting by
the particles. The simulation is done for all 180 angles in our
range (see Figure 3). For each voxel in the radiation plane we
simulate a beam that hits the voxel and propagates through the
volume until exiting from the grid boundaries. The process is
depicted in Figure 5. Figure 5.a presents a light beam entering
the volume at an angle of θ = 125◦. Figure b is a zoom
into a voxel, where the light is being diflected as a result of
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Fig. 3. Radiation planes for three different angles. When the camera is staring at the volume at angle θ, the rays we relate to in the simulation are
emitted from the yellow plane.

Fig. 4. Initial concentrations.

Fig. 5. Ray’s trace in the volume.

a collision of the light beam with a particle. The image
received on the other end of the volume consists of the rays
that were scattered within the image plane.

We have performed reconstruction using FBP on images
received based on pixels intensity values (the original method,
for comparison) and based on blur metric values (our sug-
gested method).

The Sinograms for the middle layer (volume’s center
X-Z slice) reconstruction, are shown in Figures 6-9.
Figures 6 and 7 present the sinograms for the sphere con-
centration in the volume’s center (see Figure 4.a) when taking
the image intensity levels and the blur metric respectively.
Figures 8 and 9 present the same mid-layer sinograms for the
intensity levels and blur metric respectively for the dumbbell
shaped pollution (see Figure 4.b).

The sinograms are the projections on R-θ plane. For each
angle θ (the horizontal axis), we see the projections for all
the R’s, the locations in the slice, for that angle. As expected,
the blur metric Sinogram is approximately an edge image
of the original Sinogram. The results of the centered sphere

Fig. 6. Sinogram of the volume middle layer - centred concentration.

Fig. 7. Sinogram of the volume middle layer using the blur metric -
centred concentration.

Fig. 8. Sinogram of the volume middle layer - dumbbell concentration.

Fig. 9. Sinogram of the volume middle layer using the blur metric -
dumbbell concentration.

are shown in figure 10, where the lefthand side (a) is the
reconstruction using images’ intensity levels and the righthand
side is the reconstruction of the pollution field through the blur
metric values. Similarly, Figure 11 presents the results of the
dumbbell shaped pollution, for the intensity levels (Figure 11.a
and the blur metric, Figure b. As evident from the results, the
projection reconstruction is much more accurate. Albeit, the
blur metric also gives good estimation for the concentrations at
the edges although poor results in the homogeneous area. This
experiment was done for several levels of concentrations, for
different shapes and types of concentrations. The more variant
the concentration is, the more accurate the blur metric recon-
struction is, in some cases, such as randomized concentration
(shown next), even more accurate than the original method.

The aforementioned experiment ran with the Lenna image.
While presenting a wide range of spatial frequencies [32],
the Lenna image is less representative of a scenery figure,
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Fig. 10. Centered concentration.

Fig. 11. Dumbbell concentration.

Fig. 12. Initial uniform random values in the range [0,10] (a) and the
smoother version with smaller spatial gradients in concentration (b).

Fig. 13. The images scenery.

which is more likely to be obtained in applications which
aims at inferring ambient PM levels. To simulate the system
with more representative image, the experiment was repeated
with a scenery image. To this end, we used a black and white
panorama image of New-York city. The panorama image filters
the incoming rays, as if the rays are coming from this scenery.

Photos were acquired in the same manner as previously
described. Reconstruction using Radon is performed after
subtracting the images received with the images received with
zero concentration at the volume, in order to remove scenery.
In blur reconstruction, this action is not needed, scenery is
what enables us to better reconstruct, relying on its edges. The
results are very good with error two orders of magnitude lower
than concentrations level, with a maximum error of 0.007.
To show the results visually clearer, we present the average of
the volume on the Z-axis.

Fig. 14. Results for random concentration.

Fig. 15. Reconstructions errors.

TABLE I
PM ESTIMATION RESULTS FOR THE SPHERE, DUMBBELL AND

NEW-YORK INPUT IMAGES. THE ERROR IS PRESENTED FOR

THE RECONSTRUCTION USING EITHER IMAGE INTENSITY

LEVELS AND THE BLUR MATIC

The random concentration is created by drawing random
values at each voxel, as illustrated in Figure 12a, and smooth-
ing the result with a 3D box filter. That, in order to create a
more realistic distribution (Figure 12b). Results are shown in
Figure 14 and errors shown in Figure 15. Notice the scale in
relation to the original concentrations, the error is two scales
lower.

IV. CONCLUSION AND FUTURE WORK

Overall we presented here a full back projection based
reconstruction scheme used for finding the original concen-
trations in space, having only the images as input. The mean
squared estimation errors of PM levels estimation in each
voxel is presented in Table I. The results are presented for
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the sphere and dumbbell pollution patterns, as well as for the
New-York city. The PM estimation errors are presented for
all the scenes, using either image intensity levels or the blur
metric.

The results indicate that not only there is a correlation
between image blur and pollution level in the medium, the
blur metric can be used as a good estimation for the PM con-
centrations. Another important conclusion is that the method
actually finds the concentrations contour. The method is most
effective when concentrations are spread in space and not
mostly homogeneous.

The advantages of using the blur metric over the projections
are numerous. We benefit discarding the need to know the
initial rays’ intensity or the ratio between measured rays’
intensity to the initial ones. In our suggested method, recon-
struction is done solely based on images. Other blur metrics
will be also used for comparison in future work [33], [34].

The system discussed here is integral based. Hence, it tends
to be stable and presents small perturbation at the system’s
output as a result of small perturbation at its inputs. Therefore,
we expect this theoretical exercise to show similar results in
real-life applications. Also, assumptions that were made in
order to test our hypothesis can be removed one by one and
the results should still hold. Such assumption is that rays are
coming from one direction, without light coming from the
sides. Because blur is an integrative linear measurement that
relates to how blurry the pixel is relative to its corresponding
front, we believe that the results will be close to the ones we
got here with the underlying assumption. If so, next stage will
be a field campaign to test this scenario.

Finding the end cases, for which this method works best
and does not work well, are also important as we continue our
work. The ways in which this research can develop are endless,
as we can work on improving the method (better modelling
of the light field, ground reflections, time dependency and
more.), testing its results for variety of scenarios (simulative
or experimental).

Currently, we apply the method using many angles of shot.
We are aware of that being a complicated task and we stress
the fact that this was essential for testing the sole feasibility of
the idea. Now, with this concept proven, we aim at lowering
the number of angles needed for the reconstruction as was
shown in [35] and [36]. A good challenge will also be testing
what will be the turning point in terms of accuracy where
lowering the number of cameras downgrades the method
greatly.

Due to the method being useful only on edges, it is possible
to decide a complementary method. The method could fill in
the missing concentrations, when realizing that concentrations
are largely homogeneous. This can be done by image process-
ing means and will be explored in the future.
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