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A B S T R A C T   

A method for producing dense air pollution maps, based on any given air-pollution dispersion model, is pre
sented. The scheme consists of two phases. At the first stage, sources’ locations and emission rates, i.e., source 
term estimation, as a function of the model’s parameter space are sought (“backward computation”). Then, the 
source term is used to generate the dense maps utilizing the same dispersion model (“forward computation”). 
The algorithm is model-invariant to the dispersion model, and thus is suitable for a wide range of applications 
according to the required accuracy and available resources. A simulation of an industrial area demonstrated that 
this method produced more accurate maps than current state-of-the-art techniques. The resulting dense air 
pollution map is thus a valuable tool for air pollution mitigation, regulation and research.   
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1. Introduction 

Air pollution is a major public health concern and negatively impacts 
the environment (WHO, 2019). Today, air pollution is considered one of 
the worst environmental health risks. Therefore, there is a great need to 
detect and monitor the various air-pollution sources and their effect on 
the environment. Typically, air pollution studies are based on data 
collected from standard air quality monitoring stations (AQMS). AQMS 
supply accurate and continuous measurements; are operated by pro
fessional personnel; and the data undergoes a process of quality control 
(Broday and Yuval, 2010). This has made AQMS the gold standard for air 

pollution data measurements (CDC, 2018). However, their construction 
and maintenance costs are high, they are bulky, and the equipment is 
usually immobile (Castell et al., 2017). Thus although AQMS networks 
are very reliable, they are spread thinly in space (Kumar et al., 2015). To 
illustrate, in the greater Chicago metropolitan area there are only three 
EPA AQMS that monitor NO2 levels (EPA, 2019). 

To evaluate the spatial variability of a concentration field, AQMS 
measurements do not provide sufficient coverage. Thus, any study that 
aims at analyzing the spatial distribution of air pollution, such as 
exposure assessments and epidemiological studies, needs to implement a 
variety of techniques to overcome measurement sparsity. The most 
common methods are land use regression (LUR), atmospheric dispersion 
models and spatial interpolation schemes. LUR techniques aim at 
inferring pollution levels in all non-monitored locations in the catch
ment region from a set of predictors such as land use, physical geogra
phy, and transportation variables (Morley and Gulliver, 2018). 

Spatial interpolation is the process of finding a continuous function 
that best describes the whole study area. It can be classified as deter
ministic or geostatistical. The best-known deterministic schemes are the 
inverse distance weighted (IDW) and nearest neighbor (NN) algorithms. 
The geostatistical schemes include various types of Kriging (Li and Heap, 
2014). Using these methods, Sacks et al. (2018) developed a software, 
which was based on the IDW algorithm for estimating how changes in 
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air quality affected economic and health factors. Beauchamp et al. 
(2017) used a Kriging-domain estimation to investigate the represen
tativeness of an AQMS, and the exceedance area of a pollutant, which 
does not always overlap. 

A study analyzing exposure to air pollution in Toronto Canada 
implemented IDW interpolation, and used the AQMS as a reference 
(Buteau et al., 2017). Using both Kriging and LUR hybrid schemes, Wu 
et al. (2018) established a coupled Kriging and LUR model to estimate 
PM2.5 over Taiwan measured from 71 AQMS between 2006 and 2011. 
Using the hybrid method, the correlation between the actual and 
computed concentration was higher compared to the LUR method. The 
amount of improvement depended on the nature of the problem. For 
example, at time resolution of one month, the R2using the conventional 
LUR method was 0.70 compared to 0.88 using the hybrid method. 

Regardless of the interpolation method, mathematically, all inter
polated values over the domain are a weighted average of the mea
surements. Both interpolation and LUR techniques disregard the 
physicochemical characteristics of pollutants, the physics governing the 
dispersion of the polluting materials, and meteorology. Thus, an alter
native approach that uses AQMS data incorporated with a dispersion 
model and meteorological data may provide much more accurate, sen
sitive readouts than the classic interpolation techniques. 

Dispersion modeling is a mathematical description of how pollutants 
disperse in the atmosphere using source and meteorological parameters 
over a defined period of time (Masey et al., 2018). These models make 
use of source parameters such as emission rate, source locations and 
stack height together with meteorological conditions such as humidity, 
atmospheric stability, as well as wind speed and direction. These models 
range from relatively simple ones such as the Gaussian Air Pollution 
Dispersion Model (GAPDM) (Ermak, 1977), to complex models such as 
AERMOD (Cimorelli et al., 2005) and CALPUFF (Scire et al., 2000). 

Cambridge Environmental Research Consultants’ (CERC) Atmo
spheric Dispersion Modeling System Ver. 5 (ADMS-5) is a popular 
variant of the GAPDM. The ADMS-5 can handle several kinds of terrains 
including urban, coastal or mountain areas. ADMS has been used for 
environmental studies including densely populated areas.(Carruthers 
et al., 1994). Choosing the dispersion model requires a balance between 
several factors: 1) the nature of the problem, i.e., climatic condition, 
terrain size, and topography; 2) the required precision; and 3) available 
resources to perform the computations (Leel}ossy et al., 2014). While 
these models facilitate, in many cases, a reliable and accurate repre
sentation of the dense pollution filed, they require a comprehensive 
knowledge on the sources and on the problem’s physicochemical attri
butes. These data are often not available. Thus, the need for mechanisms 
that provide accurate pollution estimations with limited datasets. 

Here we present an interpolation scheme that generates dense spatial 
pollution maps by integrating dispersion models into the process. This 
allows for more accurate dense pollution maps than the state-of-the-art 
interpolation schemes, as physicochemical model is integrated in the 
process, while alleviating the requirement for exact knowledge about 
the problem’s characteristics. This is achieved by utilizing the model for 
source term estimation (backward computation). Then, the source term 
is used for calculating the pollution dense maps (forward computation). 
This concept was presented for the theoretical case of a single source by 
Nebenzal and Fishbain (2017). Here, this methodology is extended to a 
source term with multiple sources having different attributes. There are 
no constraints on the type of the dispersion model, such that any 
dispersion model regardless of complexity can be used, i.e., this meth
odology is model invariant. 

2. Methodology 

2.1. Notation 

The following notation is used for formal description of the problem 
and is briefly defined here. Let Ωbe the research area. Let fSgbe a set of 
sources in Ω, where each s 2 fSg, is located in ωs 2 Ω, and its emission 
rate is qs. The number of sources is jSj:Let {Rg be the set of receptors 
(sensors) located in Ω, where each r 2 fRgis located at ωr 2 Ωand the 
pollution level measured by ris denoted by cr. The number of sensors is 
jRj. Let mrsbe the pollution transfer function of the dispersion model, 
which associates sensor r’s readings with the emissions of source s: 

cr¼mrs⋅ qs (1) 

For a multiple sources scenario, each sensor’s reading consists of the 
contribution of all sources, i.e.: 

cr¼
X

s2fSg

mrs⋅ qs (2) 

For the set {Rg, the sources’ contribution can be formulated as a 
matrix formulation: 

c!¼M q! t (3)  

where c!is the row measurement vector, M is the transfer matrix con
sisting of mrs, and q! tis the emission column vector. The values of mrsfor 
each source-sensor combination are determined by the dispersion 
model. Note that in order to obtain accurate estimation, one must 
include in Ωall sources that might affect cr. 

Let Ebe the inverse operation of M; i.e., the inverse dispersion 
transfer function (backward computation). For each cr, Eprovides the 
corresponding emission rate of qsfor source s. For a single source case: 

qs¼ esr⋅cr (4)  

And for multiple sources case, the matrix formulation of Eq. (4) is: 

q!¼E c!t (5) 

Finding E is an ill-posed problem (Kabanikhin, 2008), since the 
number of variables is significantly larger than the available 
measurements. 

Regardless, if q!is obtained, then one can apply a forward compu
tation of the dispersion model and determine the ambient pollution 
level, cωfor all ω 2 Ω: 

cω¼
X

s2fSg

mωs⋅ qs (6) 

Using the above notation, the interpolation scheme is detailed below. 
Section 2.2 presents the theoretical case of a single source detection as in 
Nebenzal and Fishbain (2017). Section 2.3 describes the extension of 
this algorithm to a more realistic scenario with multiple sources. 

2.2. Single source interpolation 

The algorithm consists of two phases. In the first stage, using the 
sensor measurements, c!and the inverse dispersion transfer function, E, 
the source’s location and emission rate are obtained. For a simple case 
with a single source, this is done by computing the estimated emission 
rate, qωas described in Eq. (4) for all possible source locations ωs 2 Ω. 
This procedure is carried out separately for each sensor r 2 fRg, 
resulting in jRjestimated emission values for all locations ω 2 Ω. 
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Assuming the dense pollution maps are a collection of isolines, the 
estimated emission rate values based on all sensor’s readings should 
agree in one grid location (Ballard, 1991). For a single source scenario, 
the location ω* 2 Ωwith the highest agreement among all the sensors is 
said to be the source’s location. Agreement here means that all sensors 
assess the emission rate, qω, of the source at location ω*as having 
roughly the same value. Using the standard deviation (STD) of the es
timates as an agreement measure, the location with the lowest standard 
deviation is the approximate location of the source: 

ω*¼min
ω2Ω

std
��

qr¼1
ω ; q2

ω;…; qjRjω
��

(7) 

Once ω*is found, the emission rate is evaluated by the average 
estimates: 

bqω* ¼
1
jRj
XjRj

r¼1
qr

ω*

�
�
�
�
�
8r 2 fRg (8) 

Fig. 1 illustrates this process, where, for simplicity’s sake, Ωis 
divided into a 2-D regular grid, under the assumption that each grid cell 
is small enough so the pollution level, all over the cell, is uniform. For 
the illustrations in Figs. 1 and 2, the grid size is 20 � 20m. An important 
step in future implementation of this method, is to assess the grid size 
according to the problem specific conditions and requirements. In this 
example Ωcontains a single source, s1, and three sensors, R ¼ fr1; r2; r3g

as depicted in Fig. 1a. r1, indicates a pollution level of 33 μg=m3(i.e. c1 ¼

33) and is located at grid cell (1,3); r2, is located at (2,2), measures 
29 μg=m3; and r3, at (3,3) measures a level of 30 μg=m3. 

Next, we plug in Eq.(4) to estimate the source’s emission rate over 
Ωgiven only r1(backward computation). Since each grid cell presents a 
uniform pollution level, the estimated emission value, qω, is the same for 
the entire cell. Fig. 1b illustrates the process for a simple exponential 
decay dispersion model. A source in cell (2,4), would have yielded an 

estimated emission rate, q2;4, based on Sensor r1’s measurement, of 38. If 
the source had been located at (4,5), then q4;5, based on Sensor 1, would 
have been 47.3 μg=m3. Fig. 1c and 1d are the estimation grids generated 
in the same way as Fig. 1b, for Sensor r2and Sensor r3respectively. 

To evaluate the agreement between sensors, for each grid cell, we 
compute the standard deviation of the estimates of the three sensors. The 
lower the STD, the higher the agreement, as described by Eq. (7). This is 
illustrated in Fig. 1e. The smallest STD is for location (1, 5), where, in 
this example, the source is located. 

Once ω*is obtained, we can evaluate bqω* by plugging in Eq. (8), which 
is 39.9. Now, having the estimated source’s location, ω*and its corre
sponding emission rate, qω* , we can estimate the dense pollution map 
over all Ω(forward computation) using the dispersion transfer function 
in Eq. (6). 

2.3. Multiple source interpolation 

Given the single source formulation, we next present the extension of 
the methodology to a scenario with multiple sources, where the number 
of sources, jSj, as well as sources’ emission rates, qsfor all s 2 fSg, are 
unknown. In this formulation, the problem is ill-posed (Kabanikhin, 
2008). One approach to cope with this challenge is to solve it by the 
enumeration of the solution space; i.e., by placing the sources in all 
possible locations with all possible emission rates. Then, for each of the 
configurations, Eq. (3) is computed to get the model’s estimation of the 
sensors’ readings; i.e., crfor all r 2 Rat the sensors’ locations, ωr 2 Ω. 
These are then compared against the actual readings. The configuration 
with the minimum discrepancy is the one selected. This process, how
ever, results in jΩj!

ðΩ� jSjÞ! ​ ⋅jQj
jSjdifferent source configurations. For a small 

jΩjand small jSj, the entire solution space can be enumerated, but as jΩj, 
and jSjincrease, the enumeration of all possible configurations becomes 
infeasible. 

Fig. 1. Qualitative (not in scale) illustration of single source detection, grid origin is at the bottom left corner. (a) The domain Ω, with one source, located at (1,5) and 
3 sensors. (b–d) estimated emission rate of s1over Ωas reflected from sensors 1–3 respectively. (e) The STD of each cell, according to the estimations from fRg, the 
point (1,5) has the smallest STD. 
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Fig. 2. Illustration of multiple source detection. (a) The domain Ω, with two sources, and 2 sensors. (b) Estimated relative contribution of s1to the pollution data 
measured by sensor 1. (c–d) Estimated emission rate of the second (last) source s2, when s1is located at (1,5) and (2,5) respectively. (e) Estimated relative 
contribution of s1to the pollution data measured by sensor 2. (f–g) Estimated emission rate of the second (last) source s2, when s1is located at (1,5) and (2,5) 
respectively.(h–i) The STD of estimated emission rate of s2, given s1located at (1,5) and (2,5) respectively. Overall, the lowest STD, 0.25 is when s1is located at (1,5) 
and s2located at (3,3), (highlighted at (h)). 
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Using the single source interpolation scheme above, and by limiting 
the upper and lower bounds of the possible emission rate for each 
source, the solution space can be significantly reduced. Further decrease 
in computation time can be made if some of the sources parameters are 
known in advance and only few of them are unknown. Such an approach 
is very effective for regulators who may possess some knowledge 
regarding the interrogated area. To do so, the estimated pollution rate of 
jSj � 1sources is derived from a Pollutant Release and Transfer Registers 
(PRTRs) regulatory reporting system (Kerret and Gray, 2007; Sullivan 
and Gouldson, 2007; Ayalon et al., 2015). If no PRTR records are 
available in the target region, one can still derive the upper and lower 
bounds on the emission rates of each source based on the sensors’ 
measurements and the dispersion model in use. This can be done 
through nested enumeration; in other words, by making an initial run to 
estimate the source set, and then performing a fine-tuning phase to 
obtain more accurate sets. Regardless of the emission rate estimates, the 
source locations, ωs 2 Ω, are unknown. 

Let the set fSygbe a set of fS � 1gsources, out of the |S| sources in Ω. 
As mentioned above, the emission rate of these sources is estimated 
using PRTR or by an enumeration process. For fSyg, the contribution of 
the last source s 2 SnSyto sensor r is given by: 

cresidual
r ¼ cr �

X

s2Sy
mrs⋅qs (9) 

The residual is computed for all possible source locations in Ω. After 
having found the residual, the location and emission of s 2 Scan be 

computed as described above in section 2.2. This process is illustrated by 
the simple configuration in Fig. 2a with two sources and two sensors. 
The source s1is located at (1,5) and s2at (3,3). The emission rates of 
q1and q2are 720 kg/h and 1260 kg/h respectively. Assuming a simple 
decay dispersion model; r1, (located at (1,3)) measures 55 μg=m3and r2, 
(at (3,2)) records 81 μg=m3. Now, because both ωsand qsare unknown for 
all fSg, PRTR or the enumeration process must be used to evaluate the 
contribution of fSygto cr; r 2 fRg. In this illustration we assume two 
sources (by the PRTR/enumeration process): s1with a known emission 
rate of 720 kg/h and s2with an unknown emission data, both sources 
locations are unknown in this example. Fig. 2b depicts the contribution 
of s1to r1, if it had been located in each of the grid cells. For example, if 
s1had been located in (1,5), its contribution to r1would have been 20 
μg=m3. Had it been located at (2,5), its contribution would have been 
17.9, and so on. 

For the case, where s1is located at (1,5) and its contribution to r1is 
20μg=m3, the residual, cresidual

r¼1 is 35. Once 35 μg=m3has been deduced, the 
single source methodology; namely, computing the estimated source’s 
emission rate for all ωs 2 Ωapplying Eq. (4) (backward computation) is 
executed. This is shown in Fig. 2c and d for s1located in (1,5) and (2,5) 
respectively. The same process is repeated for all r 2 R. In this example, 
the process is repeated for r2and is described in Fig. 2e through g, which 
corresponds to Fig. 2b through d. 

Like the single source estimation procedure, the standard deviation 
of the source estimations, considering all sensor and source locations, 
are computed. This is presented in Fig. 2h and i, where the standard 
deviation for the source estimation was found for s1located at (1,5) and 
at (2,5) respectively. The lowest standard deviation was found for 
location (3,3) in Fig. 2h, which corresponds to the case, of s1situated at 
(1,5). Thus, given only the estimated emission rate of s1, the algorithm 
can successfully identify the locations of both s1and s2. 

Once the source locations have been determined, the estimated 
emission rate of s2can be deduced from Eq. (8) (forward computation). 
In this example, q2 ffi349.7, where the true value is 350 μg=m3. This 
process is also described in the pseudo-code provided in Alg. 1. 

Alg. 1. A pseudo code depicting the major process involved in this 
search procedure. Main process are in bold font. 

Fig. 3. The 12 km2 study area. The four sources are marked with a black factory icon, and numbered in blue. The 9 sensors are marked by red circles and numbered 
in black. The wind direction is 270� and is represented by the pink arrow. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Table 1 
Ambient data measured by the sensors (units are in μg/m3) for the GAPDM 
model.  

Sensor # Value Sensor # Value 

(1) 8.01 (6) 0.39 
(2) 165.03 (7) 85.13 
(3) 119.02 (8) 34.36 
(4) 16.07 (9) 60.23 
(5) 134.56    
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2.4. Simulation study 

The simulated region of interest (ROI), Ω, was a 12 km2 area, with 4 
sources and nine sensors, as depicted in Fig. 3. 

Similarly to the analysis of Nebenzal and Fishbain (2017), the 
ambient pollution level, cr, in a Cartesian coordinate system, r ¼ ½x; y�, 
generated by a source, s 2 S, over Ω, was simulated by the GAPDM 
(Ermak, 1977): 

cr

 

x;y;z

!

¼
qs

2πσyσzu
exp

 

�
y2

2σ2
y

!

⋅
�

exp
�

�
ðz � HÞ2

2σ2
z

�

þexp
�

�
ðzþHÞ2

2σ2
z

��

(10) 

In this formula, x is coaligned with the wind direction and y is the 
crosswind direction. z is the vertical distance from the source; uis the 
time-averaged wind speed at the height of release H; and σyand 
σzrepresent the standard deviations of the crosswind and the vertical 
Gaussian distribution of the pollutant concentration, respectively. The 
model also assumes full reflection from the ground. 

The ambient data measured by the sensors were captured by a single 
measurement acquired at a given point in time. The values are derived 
from the GAPDM model and are summarized in Table 1. In this example, 
emission rate of sources number 1–3 are known – 25.2, 28.8 and 18 kg/ 

h, but their locations are unknown. The fourth source location and 
emission rate (21.6 kg/h) are unknown. The results show exact esti
mation of all four sources locations. The computed emission rate of the 
fourth source is underestimated by less than 5% from the set value. 

The suggested method can handle, in principle, any number of 
sources by setting a source in every grid cell with a lower bound for 
possible emission of 0 kg/h. Since run time scales as jSj2⋅jSj(jSj being the 
number of sources), the problem becomes intractable quickly as the 
number of sources increases. This can be handled by parallel computing 
or the use of heuristics, which are the common practice is such situations 
(Lee and El-Sharkawi, 2007; Altinel et al., 2008; Burke et al., 2013; 
Fishbain et al., 2013; Shanmugasundaram et al., 2014). Such modifi
cation is beyond the scope of this work which focusses on the 
proof-of-concept. 

3. Results and discussion 

After setting up the problem and the search method, the accuracy of 
the pollution dense map computed in this method is compared to the 
classical methods. 

Simply by using the data collected from the sensors, a concentration 
field over Ωwas generated using four methods: IDW, Ordinary Kriging, 
NN and the proposed source detection methodology. The results are 
displayed in Fig. 4. 
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One can easily observe that IDW (Fig. 4(a)), Ordinary Kriging (b) 
generate spatial maps whose maximum is obtained near sensors #2 and 
#5, the two highest measuring points. Nearest Neighbor, NN (c), while is 
commonly used (Li and Heap, 2014; Wiemann et al., 2016), is 
completely off. Furthermore, all three methods represent an isotropic 

dispersion, radial-like, formation near each sensor, although this is not 
likely to have been the case given the wind and the decay of pollution. 
According to these maps, pollution is assumed to be located upwind 
from the sources, which is clearly not possible. This is expected, since 
they do not consider the atmospheric conditions or physicochemical 

Fig. 4. Spatial maps based on the GAPDM model 
sensor measurements. (a) IDW (b) Ordinary Kriging 
(c) NN (d) Source detection algorithm. Black dots 
indicate sources and red dots are sensors, the pink 
arrow represents the wind direction. The pollution 
level is represented on a blue (low)- to red (high) 
color scale. The computed sensors’ reading are pre
sented in Table 1 above are in excellent agreement 
(errors less than 5%) with the expected value. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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features of the area(Nebenzal and Fishbain, 2017). Fig. 4(d) depicts the 
pollution field derived from the sensor readings using the new method 
presented here. Clearly it detects the source locations, emission rates, 
and reconstructs the pollution field over Ωaccurately. 

The results presented in Fig. 4(d), show that the suggested method is 
accurate. Computed sources’ locations match the actual locations and 
the computed emissions rates are accurate (under-estimation less than 
5%). This results in a highly accurate prediction of the sensors’ readings 
and the pollution dense map. Such accuracy is certainly superior 
compared to LUR and interpolation method, as also presented in Fig. 4. 
However, we note that real-life scenarios are considerably more 
complicated. For example, sources characteristic, dispersion models, 
and sensors’ attributes will be a significant factor in the capability to 
provide such an accurate estimation of the sources’ locations and 
emission rates. We anticipate that uncertainties regarding the dispersion 
phenomena, including sources properties, such as deposition and 
chemical reactions, the effect of the terrain topography, will reduce the 
estimation accuracy. Additionally, sensors’ attributes, such as the min
imum detectable level, will have to be considered. This real-life 
complexity is a part of our ongoing study in which the suggested 
method is adapted to account for these important issues. 

4. Conclusion 

This paper introduces a methodology for estimating a complex 
source term with different attributes to generate accurate dense pollu
tion maps from sparse sensing. Unlike popular interpolation schemes 
such as LUR, IDW or Ordinary Kriging that do not consider dispersion 
phenomena explicitly, the method presented here incorporates a 
dispersion model into the process which results in a more accurate and 
exploitable dense pollution field from sparse sensor networks. 

The method, described in this manuscript, needs an input regarding 
pollution concentrations in various locations at all times. This is ach
ieved by using a dispersion model that calculates this input using cli
matic conditions and emission rates. The dispersion model, GAPDM, 
applied here serves as a proof of concept. The GAPDM is simple and 
requires minimal computational resources, which makes it attractive for 
real-time risk assessment. Having said that, it is important to note that 
the suggested methodology allows for the use of any dispersion model. 

Future work will incorporate more advanced models, (e.g. (Agirre-
Basurko et al., 2006; Sousa et al., 2007; Hill et al., 2011; Li and Heap, 
2014; Reis et al., 2015; Lauret et al., 2016), into the scheme. Such so
phisticated dispersion models take fine details regarding the source term 
into account such as exhaust velocity, temperature, deposition rate, and 
terrain effect on the flow field. The incorporation of these considerations 
into our computational scheme should generate accurate results even for 
a complex terrain. This method is also applicable for leak detection. In 
this case the known sources are all accounted for, and the marginal 
contributions are then used for allocating unknown sources, i.e., the 
leaks. 
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