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ABSTRACT

Low-cost air quality sensors offer high-resolution spatiotemporal measurements that can be used for air
resources management and exposure estimation. Yet, such sensors require frequent calibration to pro-
vide reliable data, since even after a laboratory calibration they might not report correct values when
they are deployed in the field, due to interference with other pollutants, as a result of sensitivity to
environmental conditions and due to sensor aging and drift. Field calibration has been suggested as a
means for overcoming these limitations, with the common strategy involving periodical collocations of
the sensors at an air quality monitoring station. However, the cost and complexity involved in relocating
numerous sensor nodes back and forth, and the loss of data during the repeated calibration periods make
this strategy inefficient. This work examines an alternative approach, a node-to-node (N2N) calibration,
where only one sensor in each chain is directly calibrated against the reference measurements and the
rest of the sensors are calibrated sequentially one against the other while they are deployed and
collocated in pairs. The calibration can be performed multiple times as a routine procedure. This pro-
cedure minimizes the total number of sensor relocations, and enables calibration while simultaneously
collecting data at the deployment sites. We studied N2N chain calibration and the propagation of the
calibration error analytically, computationally and experimentally. The in-situ N2N calibration is shown
to be generic and applicable for different pollutants, sensing technologies, sensor platforms, chain
lengths, and sensor order within the chain. In particular, we show that chain calibration of three nodes,
each calibrated for a week, propagate calibration errors that are similar to those found in direct field
calibration. Hence, N2N calibration is shown to be suitable for calibration of distributed sensor networks.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

nitrogen oxides (NOy), carbon monoxide (CO), sulfur dioxide (SO5),
and particulate matter (PM). While AQM stations provide reliable

Air pollution is known to levy severe health effects and high
risks for the public (World Health Organization, 2013; Crouse et al.,
2012; Lepeule et al., 2012), hence air quality is regularly monitored
in many regions worldwide. Regulatory air pollution monitoring is
mainly performed by stationary and routinely calibrated reference
Air Quality Monitoring (AQM) instruments, which measure the
concentrations of different criteria pollutants, typically ozone (O3),
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and accurate measurements, they are expensive to install and to
operate, and require professional maintenance and personnel.
Therefore, the spatial distribution of AQM stations is rather sparse.
The use of geospatial interpolation or regression methods for
estimating ambient concentrations of (and exposure to) monitored
pollutants away from the AQM stations is a common procedure for
bridging over the sparse spatial availability of the observations
(Yuval and Broday, 2006; Eitan et al., 2010; Whitworth et al., 2011;
Myers et al., 2013; Sampson et al., 2013). Yet, such a mapping is
significantly affected by the spatial distribution of the stations
(Yuval and Broday, 2006) and the temporal resolution of the re-
ported data, and may involve spatially biased model errors (Yuval
et al., 2017). Such model errors tend to propagate when concen-
tration maps are used for, e.g., exposure estimation, in particular in
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areas that are characterized by considerable spatiotemporal con-
centration variability (Yuval et al., 2017; Zandbergen et al., 2012;
O'Leary and Lemke, 2014; Reggente et al., 2015).

Recently, miniaturization of sensor technology has enabled
deployment of multi-sensor Micro Sensing Units (MSUs, herein-
after nodes) as part of Wireless Distributed Sensor Networks
(WDSNSs) for air quality measurements (Kumar et al., 2015; Kotsev
et al, 2016; Mead et al., 2013; Moltchanov et al., 2015). Dense
deployment of such sensor nodes can capture the spatiotemporal
variability of urban air pollution and provide more reliable expo-
sure and risk estimates. Yet, these sensors have limited accuracy
(Moltchanov et al., 2015), tendency to degrade and age relatively
fast (De Vito et al., 2008; Saukh et al., 2015), and they suffer from
severe interference by co-existing airborne pollutants and meteo-
rological parameters (Fishbain et al., 2017; Castell et al., 2017).
Many of these limitations are normally unaccounted for during lab
testing and calibration, which are performed in controlled cham-
bers (Mead et al., 2013; Castell et al., 2017; Williams et al., 2013).
These limitations call for frequent field calibrations under real
environmental conditions, to assure reliable measurements.

Field calibration of WDSN sensors has been studied using the
so-called collocation procedure, where the nodes are placed next to
a standard AQM station and the time series recorded by the sensors
are regressed against the co-measured AQM data (Mead et al., 2013;
Moltchanov et al., 2015; Fishbain et al., 2017; Castell et al., 2017;
Williams et al., 2013; Holstius et al., 2014; Deary et al., 2016;
Spinelle et al., 2015; Jiao et al., 2016). Specifically, this approach
relies on placing the sensor next to a reference device for a certain
time-period, averaging the rich sensor data to fit the lower sam-
pling frequency of the reference device, and performing a pairwise
linear-regression between the sensor and the AQM datasets. The
regression coefficients are then used to correct the sensor mea-
surements and make them follow the reference data.

Let y and x be the registered measurements by the reference
device and by the WDSN sensor, respectively. Assuming a linear
relationship between y and x (Moltchanov et al., 2015; Spinelle
et al., 2015),

y=aXx+(+e, (1

where « and ( are the slope and intercept of the linear model,
respectively, and e is a vector of the model errors, which are

A
assumed to have a zero mean. Let & and 6 be the estimated co-
efficients that are obtained using the collocation data. The cali-

A .
brated measurements, X, are given by:

R=ax+8. )

It is noteworthy that the length of the collocation period in
which the sensors are adjacent to the AQM station until a reliable
calibration is obtained may vary, depending on the environmental
conditions (Moltchanov et al., 2015; Saukh et al., 2015; Balzano and
Nowak, 2007; Hasenfratz et al., 2012) and the sensor technology
(Williams et al., 2013; Holstius et al., 2014). Moreover, relocating
the sensor nodes to the AQM station for calibration is labor inten-
sive, and for a WDSN with a large number of nodes can become
cumbersome. Frequent relocations of nodes to the AQM station for
calibration involve also loss of measurements until the sensors are
returned to their prescribed deployment sites. As such, this strategy
counteracts the main advantage of the WDSN concept — richness
and continuous data.

A field calibration procedure that does not require collocation at
an AQM station has been suggested (Fishbain and Moreno-Centeno,
2016) for cases where the measurement errors comply with certain

limitations. Yet, since the sensors are calibrated against the mean
reading of all the reporting WDSN nodes, they may still provide
values that do not conform with those measured by a reference
device. For example, if all the sensors have a systematic measure-
ment error this method will come short of reporting accurate
concentrations (Moltchanov et al., 2015).

We propose here an alternative strategy, designated node-to-
node (N2N) calibration. The idea is to employ chain calibration of
the sensors in the field, with minimal interruption to the contin-
uous measurement and fewer hops of the nodes between their
deployment sites and the reference (AQM) site. Whereas N2N
calibration is not limited to stationary nodes, for simplicity we
assume in the following WDSNs with stationary nodes. WDSN
sensors require proactive frequent calibrations, therefore a cali-
bration procedure that involves a smaller number of collocations at
AQM stations is advantageous as it enables versatile calibration
logistics. Moreover, continuous measurement at the deployment
sites guarantees little missing data and better spatial and temporal
analyses. Reducing the number of collocations is also cost effective
and environmental friendly, since WDSNs may be deployed quite
far from AQM stations, i.e. the nodes may be closer to each other
than to a distant AQM station.

Let AQM «—uq « Uy U3« -« U,_q1 < Uy Tepresent a sequence
of collocated nodes, such that sensor u; is collocated next to an
AQM instrument for a period T. Then it is relocated and collocated
with sensor u; (during a non-overlapping period T). Next, sensor
is relocated and collocated with sensor u3 (during a non-
overlapping period T), etc. Finally, the last sensor uj, is collocated
next to sensor u,_;. At this stage, sensor u, can be N2N calibrated
against the AQM data. Yet, the process can end also by relocating
sensor u, to the AQM station, such that the N2N calibration process
can be evaluated. Namely, the N2N calibration procedure proposes
that all the sensors {uy, uy, ---, u,} are calibrated one against the
other in a sequential manner, with all of them (but u;) not collo-
cated at the AQM station. In fact, N2N calibration has been sug-
gested before but its mathematical model for stationary nodes was
developed only for two sequential sensor pairings (Hasenfratz et al.,
2012; Bychkovskiy et al., 2003). Similarly, N2N calibration of mobile
sensors was also suggested by pairing events, inherent for roaming
sensors mounted on vehicles (Saukh et al., 2015), using Geometric
Mean Regression (GMR) to reduce the propagation of the calibra-
tion error relative to Ordinary Least Squares (OLS) regression.
However, the study accounted only for the slope and disregarded
the effect of the intercept on the accumulated calibration error.

Here, we study N2N calibration of stationary sensors both
analytically, computationally, and experimentally, demonstrating
the effect of the number and order of the nodes on the propagation
of calibration coefficient errors (slope and intercept) and the overall
calibration uncertainty. We present a detailed derivation of chain
calibration equations and of the respective error propagation, fol-
lowed by computational results that confirm the analytical deri-
vation and reveal certain limitations of the process. Next,
experimental results of WDSN nodes that were first collocated at an
AQM station and then deployed in the field are presented, and the
N2N calibration process and the propagation of calibration errors
throughout the network are demonstrated. We conclude by dis-
cussing the suitability of the method for field calibration of air
quality WDSNs.

2. Methods
2.1. Theoretical aspects of node-to-node calibration

Let sensor u; be collocated next to an AQM reference device for a
time-period T; and let sensor u, be collocated next to sensor u for
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Fig. 1. Schematic representation of the N2N calibration process. In blue are the sensors' initial deployment locations. Black dashed arrows represent sequential relocations of the
sensor nodes, with time progressing from left to right and with each dashed line representing a non-overlapping period of T days (for practical reason, T;=T). Blue arrows represent
node-to-AQM or N2N calibrations, with time progressing from left to right and with each arrow representing a new calibration period. Collocation sites are designated by boxes. The
double headed red arrow represents the first T-days period following the current n-T days sequence length, where both evaluation of the N2N calibration and analysis of the
propagation of the calibration errors can be performed, and correction measures can be applied by re-calibrating the nth sensor. This sensor serves as the first calibrated sensor in a
new calibration sequence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

a consecutive time-period T, that does not overlap with T; (Fig. 1).
Assuming linear relationships between the sensors’ and the AQM
station data, the N2N calibration process implies t{lat for any
pollutant we can obtain the calibrated measurements, X,, of sensor
u; by applying Eq. (2) sequentially. Namely, by performing a
sequence of sensor-to-sensor calibration we can first obtain AQI\% v
i.e. calibration of the raw data from sensor 14 against the reference
AQM data,

A

b xi + 3)
X =o0o1-X]+ 04,
AOM 1 1-X1 1
and then use the calibrated sensor to indirectly calibrate sensor u;
to the reference AQM records, by calibrating it to u; while they are
collocated,

A A A A A A A A
X2=041’]X2+ﬂ1 =ap- (02X + 02 ) + 64

= (&1'&2)'Xz+ (&1'8z+31>- (4)

Clearly, a similar chain calibration can be applied for longer
sensor sequences. For example, for a chain of three sensors that are
calibrated against each other during non-overlapping time-periods
with only one sensor collocated next to a reference device, the
equivalent expression is

A A A A " n N
X3 = 0 (0‘2 (0‘3 X3+53) +52) + 61

AAA AN A A
(041'1312‘043) X3 + (a1-a2~ﬁ3+a1-62+61). (5)

This expression can be easily generalized to a sequence of n
sensorsAin a row, with the calibrated measurements of the nth
sensor, Xy, being

A no, n j-1 A A A
xn:(Hai>-xn+z<<ﬂai>~ﬁj>+ﬁ1. (6)
=1 =2 \\ix1

Due to the linear nature of the process, Eq. (6) reveals that the
order of the sensors in the calibration sequence is unimportant. In a
more concise writing, the linear regression of u, against the AQM
data can be written as

A A A

n — (49 ‘Xn + 6 ) (7)

AQM«—n AQM«—n

where

A n A

o = Q, 8
st~ 11 (8)
and

A n j-1 A A N
g = << ai)'ﬁj) + 64 9)
AQMen - 555 i1

It is noteworthy that N a

depends on all the estimated
QM«n

. A . N
sensor-to-sensor regression slopes, ¢;, and that the intercept (
AQM«n

is affected both by the slopes, &i, (except for &n) and the intercepts,

(Aii. Consequently, the estimation errors of the regression co-
efficients of each sensor in the calibration chain propagate
throughout the N2N calibration procedure and accumulate in the
overall calibration error. Yet, as will be demonstrated, by carefully
tracking the propagation of the calibration errors throughout the
N2N calibration it may be possible to detect the failure of specific
Sensors.

2.2. Error propagation in N2N calibration

Let s2, s2, and sA8 be the variance and covariance of the cali-
B b; A
. . A
bration coefficients ¢; and §; between sensors u; and u;_; (where

upis the reference AQM sensor). For simplicity, we designate

A A
a= a and 6= @ . According to the error propagation
AQM —n AQM«—n

theorem (Taylor, 1997), the errors of these calibration coefficients
are given by

2 2 A A
nolaa) L, I foa) , o oa
5= Z(A S&,+Z A SA+E ATA S&.fg ’
i1 \0q; toist \ag;/ B =1 \oa gg, NP
(10)
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(11)
Using Eqgs. (8) and (9) for calculating the partial derivatives of &

A
and g (see details in the electronic Supporting Information) and
assuming that they are uncorrelated (e.g. s, b= 0, see justification
&

below), the calibration error of any measurement by sensor uy,, i.e.
which accompanies Eq. (7), is

A 2 A 2
0xX, 0x,
Sy o= <—"> s 24 (=2 s.2= [x25,2 45,2, (12)
Xn a/\ o A 5 o ﬂ
o aﬂ

where x,, is an element of X,. The normalized calibration error is

S, X2 S&2 + 5,2 552
S, ==\ B _ sA2+i2. (13)
X Xp x2 a X2

Due to having x2 in the denominator of Eq. (13), the normalized
calibration error has a lower bound (Xlim Eﬁ = s&) but it is un-
n —> 0 n

bounded for very low x,. Thus, in general, low measurements (x,)
are expected to show higher normalized calibration errors. More-
over, Egs. (10—13) suggest that the overall calibration error in-
creases with the length of the calibration sequence.

2.3. Computational calculation of the propagation of calibration
errors

To examine the theoretical predictions (Eq. (13)), we used half
hourly O3 concentrations measured during 14 days in winter 2014
by 16 collocated sensor nodes (Elm, Perkin Elmer, USA; see sensor
specifications in the SI), and calculated the linear regression co-
efficients between each pair of sensors (120 pairs in total). The
negligible mean covariance between the slope and the intercept,
5.~ = —0.04+0.03, supports our assumption to ignore it in Eq. (12).

aiP;

Starting with a single pair of sensors (i.e. a chain length of one), we
simulated adding one sensor at a time and generating sensor se-
quences of increasing lengths, from one and up to 20 sensors. To
simulate the N2N calibration process, the sensor sequence was
developed by drawing a random pair from all the permissible
possibilities, accounting for the last sensor that has been added but
allowing the use of sensors more than once throughout the cali-
bration process (as will be demonstrated in the field study, Fig. S1).
To avoid a possible selection bias, construction of the calibration
chains was repeated 10 times, creating 10 different sequences for
each sensor-chain length. The regression coefficients between each
pair in the sequence were used for calculating the normalized
calibration error, Eq. (13), as sensors were added to the chains.

As derived theoretically, the normalized calibration error is
larger for lower concentrations, x,, regardless of the sensor
sequence length, and it increases with the sensor sequence length
(Fig. 2) and can attain large values for long chains. However, this
can be circumvented by avoiding long calibration chains and/or by
using better sensors (e.g. super-nodes), since the rate at which the
calibration errors accumulate depend on the performance of indi-
vidual sensors. In general, more accurate sensors enable main-
taining longer calibration chains before the error exceeds a preset
threshold.

STD(%)

100 T T T T T T T T T

Measurement value (ppb)
80 20 40
— 40
> 60
s 60 — 30
& = 100

40 20

20

2 4 6 8 10 12 14 16 18 20
Length of N2N sequence (number of nodes)

Fig. 2. Normalized calibration errors (Eq. (13)) of N2N calibration as a function of the
length of the sensor sequence. The curves represent average results of 10 chains for
which the concentration reported by the last sensor to be added, x;, is as noted. The
color of the dots represents the STD of the 10 chains (of the same length and xy). (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).

3. Experimental design
3.1. Study area

To evaluate the N2N calibration procedure (Fig. 1), air quality
measurements were conducted in the Neve Shaanan neighborhood
and at the Atzmaut downtown area of the Mediterranean coastal
city of Haifa, Israel (Fig. 3). Collocation measurements were per-
formed at two AQM stations, located in two different yet typical
urban microenvironments. The Neve Shaanan (NSH) AQM station is
located in a planar residential area on the northeastern slop of
Mount Carmel, about 200 m a.s.l. A major road crosses the neigh-
borhood and connects the northeastern and southwestern slopes of
the Carmel Ridge, passing through the Ziv junction - a small yet
busy neighborhood commercial area. The mean traffic volume in
the neighborhood during the day ranges from 300 vehicles h~! in
quiet roads and up to 2000 vehicles h~! in the neighborhood main
artery. The Atzmaut (ATZ) AQM station is a roadside (e.g. trans-
portation affected) site, located in a downtown commercial area
near the Haifa harbor and train station. The mean daytime traffic
volume in its vicinity is ~3000 vehicles h™".

3.2. Sensor technologies

Two ambient pollutants were studied: NO (a primary pollutant
emitted in urban areas mainly by traffic) and O3 (a secondary
pollutant). The measurements of these pollutants were performed
by distinct sensor technologies and platforms. Namely, ambient O3
concentrations were measured using metal oxide (MO) sensors
(Aeroqual, New Zealand) mounted in Elm nodes (Perkin Elmer,
USA) (Moltchanov et al., 2015) whereas NO concentrations were
measured using electrochemical (EC) sensors (AlphaSense, UK)
mounted in AQMesh pods (Geotech, UK) (Mead et al., 2013) (see the
SI for additional sensor specifications). Data were recorded every
30 min (03) and 15 min (NO) by the two WDSN arrays (Table 1).

3.3. Calibration period

It has been shown (Moltchanov et al., 2015) that convergence of
the estimated regression coefficients requires a minimum calibra-
tion period. Let t. be the number of collocation days needed until
convergence of the calibration coefficients is attained, T be the
actual number of days of sensor collocations, and 7 be the number
of days a sensor can operate reliably between consecutive calibra-
tions. Assuming t. and 7 to be constant (i.e. not to change from



904 E Kizel et al. / Environmental Pollution 233 (2018) 900—909
190 193 196 199 202
N
S J A LS
e 2
%1 =
= Atzmaut AQ{\/I 5=
2 : -2
= Haifa =
Mediterranean Sea
. e 4
N Neve Shaanan AQM 3
o L o
= =
[~ L ©
- -
| o -~
0 5 1 2 4
e Kilometers
190 193 196 199 202

Fig. 3. Study area, with the Neve Shaanan and Atzmaut AQM stations (marked by triangles) and the Neve Shaanan neighborhood (marked by a red polygon). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 1
Details of the collocation campaigns.

Experiment” Pollutant Sensor type & platform® Sensor ID AQM station Collocation period

Set 1 03 MO (PE) 414, 422, 624, 626 Neve Shaanan (29/04/14)—(28/05/14)
Set 2 03 MO (PE) 418, 621, 620 Neve Shaanan (09/06/14)—(10/07/14)
Set 3 NO EC (GT) 135, 136, 468 Atzmaut (03/02/15)—(26/02/15)
Set 4 NO EC (GT) 220, 465, 471 Atzmaut (27/02/15)—(28/04/15)

2 Sensor data in Sets 1 & 2 were re-sampled from the original time resolution (15 min) to the AQM time resolution (30 min). AQM data in Sets 3 & 4 were re-sampled from

the original time resolution (5 min) to the sensor time resolution (15 min).

b MO — metal oxide, EC — electrochemical, PE - Perkin Elmer (USA), GT — Geotech (UK).

collocation to collocation or among seasons), the N2N calibration
(Fig. 1) can be applied for a sequence length of n = 7/T sensors
before re-collocation at the AQM station of one of the nodes. Both 7
and t. are sensor characteristics that depend on the quality of the
sensors and their sensitivity to the measurement conditions
(physical environment, meteorology, etc.) (Moltchanov et al., 2015;
Fishbain et al., 2017; Castell et al., 2017). On the other hand, T can be
arbitrary as long as T > t.. Clearly, smaller T values enable longer
chain sequences, n. It is noteworthy that according to the N2N
calibration scheme (Fig. 1), each sensor is relocated and calibrated
only once in 7 days. Moreover, applying a continuous N2N cali-
bration, each sensor will be eventually collocated at the AQM sta-
tion once in n-7 days (for a period of T days) and directly calibrated
against data collected by the AQM reference instrument. Since 7
depends on the sensor technology and environmental conditions, it
must be carefully assessed as part of the calibration scheme. Based
on our previous work (Moltchanov et al., 2015; Castell et al., 2017), a
conservative estimate of 7 for both the O3 and NO sensors used in
this study is six weeks (based on continuous sensor monitoring for
up to five months and accounting solely for sensor aging).

The minimum number of collocation days needed for reliable

calibration of a given sensor type, t;, was determined based on the
convergence of the calibration coefficients and of the regression
goodness of fit (coefficient of determination, R> (Crouse et al.,
2012)). We calculated the linear regression (Eq. (2)) based on an
increasing number of records, taking 24 h (i.e. daily) incremental
steps as practical time steps of a field calibration procedure. Spe-
cifically, each additional calibration day added 48 (O3) or 96 (NO)
data points. The actual number of collocation days for a given
sensor type, T, was set as the fixed (protocol) period for field cali-
bration of all the sensors of this type throughout the study, both
against the reference AQM device and against each other. Due to
practical reasons, we applied a common T that was suitable for both
sensor technologies, as explained below. Initially, all the sensor
nodes were collocated at the AQM stations (Table 1), enabling easy
assessment of the required calibration period.

3.4. N2N chain calibration
N2N chain calibration was studied using two experimental de-

signs: with the nodes collocated solely at the two AQM stations and
while they were deployed as an operative WDSN in the Neve
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Shaanan study area. In the former, we used data from Sets 1—4
(Table 1), where the sensors were next to the NSH or AZT AQM
stations. Two scenarios were examined for each Set, with the same
sensor in each scenario calibrated using three sensor chains (se-
quences) of different lengths: a direct calibration of the sensor
against the AQM device and indirect calibration through one or two
intermediate sensors. Based on our results, we set the number of
collocation days used for calibration, T, for both sensor-to-AQM and
sensor-to-sensor for one week. The calibration error was calculated
for each of the above sequences by comparing the calibrated data of
the last sensor in the chain against the AQM reference data, using
records that were not used for the N2N calibration. This design
enabled us to compare direct calibration and N2N calibration under
identical environmental conditions and time-periods, i.e. with
minimal uncertainty. Moreover, this design enabled evaluation of
N2N calibration for a varying length of the sensor chains, and thus
to compare the actual propagation of the calibration errors with the
computational predictions (Fig. 2).

In the second experimental design, we tested N2N calibration
under real deployment conditions against data from an AQM
reference device, using five EIm nodes deployed across the Neve
Shaanan neighborhood, Haifa, between 29/4—29/7, 2014 (with only
one node initially collocated at the AQM station, Fig. 1 and Fig. S1).
The dynamic deployment plan of the O3 sensors enabled us to study
two N2N calibration sequences (see SI and Fig. S1). Data collected
by the last sensor in the sequence were calibrated by means of the
N2N calibration procedure (Eq. (6)) and compared to the mea-
surements of the AQM device, such that the performance of the
N2N calibration process could be assessed. In addition, the mea-
surements of this sensor passed also an independent (i.e. direct)
calibration against the AQM data (Eq. (2)), enabling the onset of a
new N2N calibration chain with this node as the first node. To
evaluate the accuracy and precision of N2N calibration we exam-
ined the residuaISg;(,

en=X—-Y, (14)

X

and the normalized calibration error, eﬁ(k) /y(k), of data points that

were not used for calibration. The statistics used for evaluating the
N2N calibration are detailed in the electronic Supporting
Information.

4. Results and discussion
4.1. Calibration period

Data from Sets 1—4 (Table 1) were used for determining the

required collocation period, based on the convergence of a, 3 and R
(Crouse et al., 2012) against the calibration period length (Figs. S2
and S3). For the Os sensors, convergence of R? is apparent after
seven days whereas for the NO sensors, convergence of R? is

apparent after two days. As seen, the convergence of the slope, a, is

faster than that of the intercept, ,(Ai It is also noteworthy that the
slope of O3 sensor 626 (Set 1, Fig. S2) drifted over time due to the
sensor being faulty and not due to a change in the environmental
conditions, as the other sensors did not show a similar pattern.
Based on these results, the sensors’ operational calibration dura-
tion, T, was set to be one week for all the sensors (this decision
reflects, in part, practical and convenience considerations). This
calibration duration applied for both direct calibration of the sen-
sors against the AQM device and the N2N (sensor-to-sensor)
calibration.

4.2. Individual sensor performance

Fig. 4 and Fig. S4 depict scatter plots of directly calibrated ()A() and
AQM (y) measurements, and histograms of the normalized cali-
bration errors. Apart from O3 sensor 626 (Set 1), all the sensors
showed an almost zero mean calibration error. Since the mean
absolute error (MAE) of sensor 626 (MAEg,s = 5 ppb) was higher
than the average MAE of the other O3 sensors in Set 1
(MAE = 2.7 ppb) while its standard deviation (SDyaE, 626 = 4.1 ppb)
was similar to the average SDyag of the other sensors in Set 1
(SDmag = 3.5 ppb), sensor 626 is clearly inaccurate, as was already
noted. This analysis shows how a careful examination of the WDSN
data can be used to identify faulty sensors and, therefore, to reduce
the propagation of measurement errors throughout the N2N cali-
bration process, by avoiding their use.

As a contrary example, measured NO concentrations in Set 4
ranged between zero and about 500 ppb (Fig. S4) and showed a
considerably higher standard deviation than in Set 3 (Fig. 4).
However, the average of the mean absolute normalized error,
which is blind to the magnitude of the measurement, is similar for
Sets 3 and 4 (MARE = 26% and 21.3%, respectively), and the SDyane
of these sets is 35% and 30%, respectively. Hence, it seems that the
NO sensors performed well during Set 4 measurements and that
the higher NO concentrations measured in Set 4 (0—500 ppb)
relative to Set 3 (0—300 ppb) were reliable.

Thus, we demonstrated for two pollutants (O3 and NO), two
sensor technologies (MO and EC) and two platforms (Elm and
AQMesh) that pooled analysis of calibrated sensor data, collected by
relatively low-cost sensors under common ambient pollutant
levels, can be used for assessing the reliability and performance of
individual sensors.

4.3. Sensor calibration stability

Without continuous calibration the quality of the concentra-
tions reported by the sensors will quickly deteriorate, deeming the
WDSN untrusty. In particular, use of erroneous sensor data for air
resources management, environmental epidemiology studies, or
citizen engagement may bias the estimated exposure and/or raise
unwarranted public concerns. For a calibration procedure to be
effective, it should be stable for long time-periods, thus avoiding
the need for a frequent calibration duty-cycle. In practice, however,
the stability of the calibration coefficients is limited and they may
change due to varying environmental conditions (Moltchanov et al.,
2015; Saukh et al., 2015; Fishbain et al., 2017; Castell et al., 2017,
Spinelle et al., 2015). In fact, calibration consistency is a problem
also of standard monitoring equipment, and AQM operation
guidelines respond to this by requiring frequent automated checks
of the monitoring equipment. For example, the USEPA guidelines
require that Level 1 zero and span checks will be performed every
two weeks, and AQM stations in Israel do this automatically on a
weekly basis. Similarly, detection of changes in the sensor calibra-
tion coefficients can be achieved by regular surveillance of the re-
cords, as part of a quality assurance/quality control procedure.

Here, we report the stability of the calibration coefficients of
four sensors that have been collocated next to an AQM station for a
week (time period I), deployed in another location (time period II),
and then re-collocated at the same AQM station for yet two more
weeks (time period III) (Table 2). Calibration coefficients for each
sensor were estimated based on measurements from the first
period and from the first week of the third period. The two sets of
calibration coefficients were applied to raw measurements from
the second week of period III, and the calibrated records were
evaluated against the AQM measurements from this period. Fig. S5
depicts scatter plots of the pre-calibrated and the calibrated
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Fig. 4. Scatter plots of directly calibrated O3 measurements by the Elm nodes (Set 1) against Neve Shaanan AQM O data (a), and of directly calibrated NO measurements by the
AQMesh nodes (Set 3) against Atzmaut AQM NO data (b). The lower row presents the corresponding histograms of the normalized calibration errors for O3 (c) and NO (d).

Table 2

Mean absolute error (MAE) and mean absolute normalized error (MARE) of calibrated O3 sensor measurements and AQM data from the second week of period IIl (16—22/7,
2014), based on calibrations using measurements from period I (22/5—28/5, 2014) or from the first week of period Il (9—15/7, 2014).

Sensor MAE (ppb) MARE (%)

no- Calibration based on collocation in Calibration based on collocation in Calibration based on collocation in Calibration based on collocation in
period I period III period [ period Il

414 5.5 1.9 13.2 4.8

624 3.1 1.6 7.3 3.9

625 2.8 13 6.7 33

626 6.8 1.3 177 34

measurements, and histograms of the normalized calibration er-
rors. Table 2 reveals that calibrations based on more recent data (i.e.
from the first week of period IlII) were more accurate, showing
considerably smaller node-specific calibration errors. Specifically,
both the MAE and MARE increased by a factor of ~3 (+1.5) over a
course of six weeks, and Fig. S5 and Table 2 show that the cali-
brations of sensors 414 and 626 were less stable than of sensors 624
and 625. In fact, this is unfortunate since, by chance, the former two
sensors were involved in more re-locations during the evaluation of
the N2N calibration procedure in this study.

4.4. Evaluation of node-to-node calibration

4.4.1. Collocated nodes

The MAE and MARE of all the N2N calibration sequences are
summarized in Table 3. Together, Table 3 and Figs. S6 and S7 show
that N2N calibration (with up to two intermediate nodes) did not

propagate considerable calibration errors (MAE <3.6 ppb and
<16.1 ppb for O3 and NO, respectively, MAnE <7.9% and <27.6% for
O3 and NO, respectively) relative to direct calibration (MAE
<2.9 ppb and <16.2 ppb for O3 and NO, respectively, MAnE <7.6%
and <26% for O3 and NO, respectively). It is noteworthy (although
anecdotal) that in some cases (e.g. Set:scenario 1:2 and 4:2, Table 3)
the N2N calibration with two intermediate nodes performed even
better than the direct calibration. Furthermore, for the small
number of nodes (<3) for which we could test the theoretical N2N
calibration predictions, the experimental results of the collocation
setup showed only limited sensitivity to the length of the calibra-
tion chain (Tables S1 and S2 in the SI show the effects, of the N2N
sequence length on the calibration parameters, a and 6).

4.4.2. Field deployment
To test N2N calibration under real urban deployment conditions,
we used five O3 sensors mounted on Elm nodes to build two N2N
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Table 3
MAE (ppb) and MARE (%) of direct and N2N calibrations in the collocation experiments. (The statistics are detailed in the SI).
Experiment MAE (MARE)
Direct calibration N2N calibration with one intermediate node N2N calibration with two intermediate nodes
Set 1 Scenario 1 (Fig. S4a) 2.4(7.6) 2.3(6.9) 24(7.4)
Scenario 2 (Fig. S5a) 2.4(7.6) 1.9(5.8) 2.0(6.2)
Set 2 Scenario 1 (Fig. S4c) 2.9(6.8) 3.1(7.1) 3.6(7.9)
Scenario 2 (Fig. S5¢) 2.9(6.8) 2.9(6.8) 3.1(6.9)
Set 3 Scenario 1 (Fig. S4b) 5.0 (26.0) 5.4 (26.1) 5.2 (25.7)
Scenario 2 (Fig. S5b) 5.0 (26.0) 6.1 (26.6) 5.6 (26.5)
Set 4 Scenario 1 (Fig. S4d) 15.7 (21.4) 16.1 (26.9) 16.1 (27.6)
Scenario 2 (Fig. S5d) 16.2 (21.1) 15.2 (23.4) 15.2 (22.9)

calibration sequences of length n = 3 (Fig. S1), and compared their
results to that of the direct calibration (Fig. 5 and Table 4). Differ-
ences of MAE <2.4 ppb (MAnE <5.7%) between N2N calibration
with two intermediate nodes and direct calibration were evident.
The corresponding differences in the collocation setup (Set 1 and 2,
Table 3) were MAE <0.7 ppb and MAnE <1.4%. Namely, for a chains
of n = 3 O3 sensors the differences in both MAE and MAnE between
in-situ N2N calibrations (Table 4) and the corresponding direct
calibrations (i.e. during collocation at the AQM station; Table 3) are
larger by a factor of about 3. Hence, while N2N chain calibration can
be applied for in situ calibration of deployed WDSN nodes, it does
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propagate calibration errors that limit its accuracy for long chains,
as was shown also in Fig. 2 (and in contrast to the results of our
collocation experiment). Clearly, firmer conclusions require further
testing on a larger scale. In part, our results represent the quality of
the sensors used in this study (see Sensor Technologies), which
affects the minimal collocation period required for reliable cali-
bration (t;) and the maximal time-period between consecutive
calibrations (7). With better sensors the general properties of the
N2N calibration will still be valid (e.g. its dependence on the quality
of individual sensors and on the length of the sensor sequence in
the calibration chain) but our specific results (t, 7, max n before the
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Fig. 5. Evaluation of direct and N2N calibration of O3 Elm sensors 626 (left) and 414 (right) against AQM NSH O3 data. Panels (a) and (b) present the scatter plots, and panels (c) and
(d) present the histograms of the normalized residual errors. Black: uncalibrated data, red: directly calibrated data based on collocation during the 4th week of the experiment (see
text), blue: N2N calibration with two intermediate nodes, calibration based on paired measurements from the first three weeks of the experiment and evaluation based on data
from the 4th week, each pair of sensors was collocated for one week in a different location (see Fig. S1). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article).
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Table 4

MAE (ppb) and MARE (%) of direct and N2N chain calibrations of MO Os sensors mounted in WDSN nodes that were deployed in the Neve Shaanan urban neighborhood

between 29/4—29/7, 2014 (Fig. 3 and Fig. S1).

MARE (%)

Direct calibration N2N calibration with two intermediate nodes

MAE (ppb)

Direct calibration N2N calibration with two intermediate nodes
Scenario 1 14 3.8
Scenario 2 1.9 2.6

34 9.1
4.7 6.9

normalized calibration error is larger than, e.g., 30%, etc.) may
change.

In-situ N2N chain calibration has few limitations. First, if nodes
are moved around deployment sites the continuity of their mea-
surements is interrupted, yet this is also true for calibration by
collocation at an AQM station. Second, N2N calibration involves
accumulation of calibration errors that may result in a considerable
overall calibration error as the length of the sensor chain increases.
Nonetheless, using relatively short chains (in our case n < 3) en-
ables N2N calibration with manageable calibration errors. In prac-
tice, this means that a large WDSN will require a considerable
number of extra nodes to enable reliable N2N calibration. Based on
our results, it seems that ~30% nodes in excess of the number of
deployment sites are required for maintaining the N2N calibration
process. Alternatively, instead of using identical nodes a dedicated
set of high-quality nodes (“super nodes”) can be used for the N2N
calibration, i.e. using the super-nodes as roaming nodes. The
analytical derivation of the propagation of the calibration error
suggests that using such high-end nodes will reduce the overall
calibration error as a result of (a) reducing the error of any indi-
vidual calibration (due to the improved sensor performance), and
(b) limiting the calibration chain to n = 2 (with n = 1 being the
super-node). Whereas super-nodes will cost more than simple
WDSN nodes, their own calibration against the AQM reference
device will last longer and enable numerous pairings of the super-
node and regular nodes between consecutive calibrations of the
super-node (i.e. a larger 7).

5. Conclusions

We studied N2N chain calibration of WDSN sensors analytically,
numerically and experimentally, and confirmed that after colloca-
tion at an AQM station convergence of the slope, intercept, and
goodness of fit of the linear calibration is attained, in agreement
with (Moltchanov et al., 2015). The theoretical results revealed that
the length of the sensor sequence that can be used for N2N cali-
bration strongly depend on the performance of individual sensors,
as well as on the measured concentrations. In particular, the higher
the ambient concentrations the more accurate the sensors are and
the longer the chain that can be applied for N2N calibration while
the accumulated calibration errors are still low, in accordance with
(Fishbain et al., 2017). This suggests that WDSN for air quality
measurements will perform better in traffic-affected inner-city
sites (Castell et al., 2017), in more polluted geographical regions
(e.g. megapolises in India, China, Pakistan, Nigeria, Bangladesh,
etc.), and when ambient pollutant levels span a decent range that
enables reliable calibration.

The experimental evaluation of N2N calibration was performed
using two study designs: with the measurements collected during
collocation of the nodes at AQM stations, and with the measure-
ments collected while the nodes were deployed in an urban
neighborhood, imitating an operational WDSN. We showed that a
N2N calibration of individual sensors is possible, and that when the
calibration is performed while the sensors are collocated at the
AQM station the N2N calibration is comparable to a direct

calibration. Yet, a N2N calibration during collocation has no real
merit and it was examined only to gain better understanding of the
propagation of calibration errors throughout the in-situ N2N cali-
bration process. In general, the flexibility of N2N calibration enables
more frequent calibrations of sensors that require it although, for
practical reasons, we applied a uniform calibration period (T = 7
days) throughout the study. It is noteworthy that with current
sensor technology, sensor performance must be monitored
continuously on a sensor-by-sensor (rather than on a batch-by-
batch) basis.

Owing to the sensor sensitivity to varying environmental con-
ditions and to aging (drift), WDSN calibration is a major obstacle to
their deployment and use. We believe that the N2N calibration
scheme can provide a reasonable solution to the required frequent
calibrations of WDSN nodes. We were able to test N2N calibration
chains of up to three sensors, i.e. an overall calibration period of 3
weeks, which for the sensors we used is about half of the calibra-
tion persistence (7 ~6 weeks). While future improvements in sensor
technology may spare the need for frequent calibrations, in the
meantime in-situ N2N field calibration can support the spread of
WDSN technology for air pollution surveillance.

Acknowledgement

This work has been supported by the EU FP7-ENV-2012 grant
agreement no. 308524 - CITI-SENSE, the Environment and Health
Fund (Israel) Grant Award no. RPGA 1201, and the Leona M. & Harry
B. Helmsley Charitable trust grant no. 2015PG-ISLO06. The study
was performed at the Technion Center of Excellence in Exposure
Science and Environmental Health (TCEEH).

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.envpol.2017.09.042.

References

Balzano, L., Nowak, R., 2007. Blind calibration of sensor networks. In: Proc. 6th Int.
Conf. Info. Process. Sens. Networks-IPSN ’07. IEEE, pp. 79—88. http://dx.doi.org/
10.1109/IPSN.2007.4379667.

Bychkovskiy, V., Megerian, S., Estrin, D., Potkonjak, M., 2003. A collaborative
approach to in-place sensor calibration. In: Proceedings of the 2nd International
Conference on Information Processing in Sensor Networks. Springer-Verlag
Berlin, Heidelberg, pp. 301—316.

Castell, N., Dauge, ER., Schneider, P.,, Vogt, M., Lerner, U., Fishbain, B., Broday, D.M.,
Bartonova, A., 2017. Can commercial low-cost sensor platforms contribute to air
quality monitoring and exposure estimates? Env. Int. 99, 293—302.

Crouse, D.L., Peters, P.A., van Donkelaar, A., Goldberg, M.S., Villeneuve, PJ., Brion, O.,
Khan, S., Atari, D.O., Jerrett, M., Pope, C.A., Brauer, M., Brook, J.R., Martin, R.V.,,
Stieb, D., Burnett, R.T., 2012. Risk of nonaccidental and cardiovascular mortality
in relation to long-term exposure to low concentrations. Environ. Health Per-
spect. 120 (5), 708—714.

De Vito, S., Massera, E., Piga, M., Martinotto, L., Di Francia, G., 2008. On field cali-
bration of an electronic nose for benzene estimation in an urban pollution
monitoring scenario. Sensors Actuators B Chem. 129, 750—757.

Deary, M.E., Bainbridge, S.J., Kerr, A., McAllister, A., Shrimpton, T., 2016. Practicalities
of mapping PM10 and PM2.5 concentrations on city-wide scales using a
portable particulate monitor. Air Qual. Atmos. Heal 9 (8), 923—930.

Eitan, O., Yuval, Barchana, M., Dubnov, ], Linn, S., Carmel, Y., Broday, D.M., 2010.
Spatial analysis of air pollution and cancer incidence rates in Haifa Bay. Isr. Sci.


https://doi.org/10.1016/j.envpol.2017.09.042
http://dx.doi.org/10.1109/IPSN.2007.4379667
http://dx.doi.org/10.1109/IPSN.2007.4379667
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref2
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref2
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref2
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref2
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref2
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref3
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref3
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref3
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref3
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref4
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref4
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref4
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref4
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref4
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref4
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref5
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref5
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref5
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref5
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref6
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref6
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref6
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref6
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref7
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref7

E Kizel et al. / Environmental Pollution 233 (2018) 900—909 909

Total Environ. 408, 4429—-4439.

Fishbain, B., Moreno-Centeno, E., 2016. Self calibrated wireless distributed envi-
ronmental sensory networks. Sci. Rep. 6, 24382—24392.

Fishbain, B., Lerner, U, Cole-Hunter, T, Castell-Balaguer, N., Popoola, O.,
Broday, D.M., Martinez-Iniguez, T., Nieuwenhuijsen, M. Jovasevic-
Stojanovic, M., Topalovic, D., Jones, R.L. Galea, K, Etzion, Y. Kizel, F,
Golumbic, Y., Baram-Tsabari, A., Robinson, J., Kocman, D., Horvat, M., Svecova, V.,
Arpaci, A., Bartonova, A., 2017. An evaluation tool kit of air quality micro-
sensing units. Sci. Tot. Env. 575, 639—648.

Hasenfratz, D., Saukh, O., Thiele, L., 2012. On-the-fly calibration of low-cost gas
sensors. In: Picco, G.P., Heinzelman, W. (Eds.), Wireless Sensor Networks, EWSN
2012, Lecture Notes in Computer Science, vol. 7158. Springer-Verlag Berlin,
Heidelberg, pp. 228—244.

Holstius, D.M., Pillarisetti, A., Smith, K.R., Seto, E., 2014. Field calibrations of a low-
cost aerosol sensor at a regulatory monitoring site in California. Atmos. Meas.
Tech. 7 (4), 1121-1131.

Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R,
Caudill, M., Rickard, ], Davis, M., Weinstock, L., Zimmer-Dauphinee, S.,
Buckley, K., 2016. Community Air Sensor Network (CAIRSENSE) project: eval-
uation of low-cost sensor performance in a suburban environment in the
southeastern United States. Atmos. Meas. Tech. 9, 5281-5292.

Kotsev, A., Schade, S., Craglia, M., Gerboles, M., Spinelle, L., Signorini, M., 2016. Next
generation air quality platform: openness and interoperability for the Internet
of Things. Sensors 16 (3), 403—419.

Kumar, P., Morawska, L., Martani, C.,, Biskos, G., Neophytou, M., Di Sabatino, S.,
Bell, M., Norford, L., Britter, R., 2015. The rise of low-cost sensing for managing
air pollution in cities. Environ. Int. 75, 199—205.

Lepeule, J., Laden, F.,, Dockery, D., Schwartz, J., 2012. Chronic exposure to fine par-
ticles and mortality: an extended follow-up of the Harvard Six Cities study from
1974 to 2009. Environ. Health Perspect. 120 (7), 965—970.

Mead, M.L, Popoola, O.A.M., Stewart, G.B., Landshoff, P., Calleja, M., Hayes, M.,
Baldovi, J.J., McLeod, M.W., Hodgson, T.E, Dicks, J., Lewis, A., Cohen, ]., Baron, R.,
Saffell, J.R., Jones, R.L., 2013. The use of electrochemical sensors for monitoring
urban air quality in low-cost, high-density networks. Atmos. Environ. 70 (2),
186—203.

Moltchanov, S., Levy, L, Etzion, Y., Lerner, U., Broday, D.M., Fishbain, B., 2015. On the
feasibility of measuring urban air pollution by wireless distributed sensor
networks. Sci. Total Environ. 502, 537—547.

Myers, V., Broday, D.M.,, Steinberg, D.M., Yuval, Drory, Y., Gerber, Y., 2013. Exposure

to particulate air pollution and long-term incidence of frailty after myocardial
infarction. Ann. Epidemiol. 23 (7), 395—400.

O'Leary, B.E, Lemke, L.D., 2014. Modeling spatiotemporal variability of intra-urban
air pollutants in Detroit: a pragmatic approach. Atmos. Environ. 94, 417—427.

Reggente, M., Peters, J., Theunis, J., Van Poppel, M., Rademaker, M., De Baets, B.,
Kumar, P.,, 2015. A comparison of strategies for estimation of ultrafine particle
number concentrations in urban air pollution monitoring networks. Environ.
Pollut. 199, 209—-218.

Sampson, P.D., Richards, M., Szpiro, A.A., Bergen, S., Sheppard, L., Larson, T.V,,
Kaufman, J.D., 2013. A regionalized national universal kriging model using
partial least squares regression for estimating annual PM2.5 concentrations in
epidemiology. Atmos. Environ. 75, 383—392.

Saukh, O., Hasenfratz, D., Thiele, L., 2015. Reducing multi-hop calibration errors in
large-scale mobile sensor networks. In: Proceedings of the 14th International
Conference on Information Processing in Sensor Networks, pp. 274—285.

Spinelle, L., Gerboles, M., Villani, M.G., Aleixandre, M., Bonavitacola, F., 2015. Field
calibration of a cluster of low-cost available sensors for air quality monitoring.
Part A: ozone and nitrogen dioxide. Sensors Actuators B Chem. 215, 249—257.

Taylor, J.R., 1997. An Introduction to Error Analysis - the Study of Uncertainties in
Physical Measurements, second ed. University Science Books, USA.

Whitworth, KW., Symanski, E., Lai, D., Coker, A.L, 2011. Kriged and modeled
ambient air levels of benzene in an urban environment: an exposure assess-
ment study. Env. Heal 10, 21-31.

Williams, D., Henshaw, G., Bart, M., Laing, G., Wagner, ]J., Naisbitt, S., Salmond, J.,
2013. Validation of low-cost ozone measurement instruments suitable for use
in an air-quality monitoring network. Meas. Sci. Technol. 24 (6), 5803—5814.

World Health Organization, 2013. Review of Evidence on Health Aspects of Air
Pollution — REVIHAAP Project. WHO Regional Office for Europe, Copenhagen,
Denmark. http://www.euro.who.int/__data/assets/pdf_file/0004/193108/
REVIHAAP-Final-technical-report-final-version.pdf?ua=1.

Yuval, Broday, D.M., 2006. High-resolution spatial patterns of long-term mean
concentrations of air pollutants in Haifa Bay area. Atmos. Environ. 40 (20),
3653—3664.

Yuval, Levy, 1., Broday, D.M., 2017. Improving modeled air pollution concentration
maps by residual interpolation. Sci. Tot. Environ. 598, 780—788.

Zandbergen, P.A., Hart, T.C., Lenzer, K.E., Camponovo, M.E., 2012. Error propagation
models to examine the effects of geocoding quality on spatial analysis of
individual-level datasets. Spatial Spatiotemporal Epidemiol 3 (1), 69—82.


http://refhub.elsevier.com/S0269-7491(17)31181-8/sref7
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref7
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref8
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref8
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref8
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref9
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref9
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref9
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref9
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref9
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref9
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref9
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref9
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref10
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref10
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref10
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref10
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref10
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref11
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref11
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref11
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref11
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref12
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref12
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref12
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref12
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref12
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref12
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref13
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref13
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref13
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref13
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref14
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref14
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref14
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref14
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref15
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref15
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref15
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref15
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref16
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref16
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref16
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref16
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref16
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref16
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref17
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref17
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref17
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref17
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref18
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref18
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref18
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref18
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref19
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref19
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref19
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref20
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref20
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref20
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref20
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref20
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref21
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref21
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref21
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref21
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref21
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref22
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref22
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref22
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref22
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref23
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref23
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref23
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref23
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref24
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref24
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref25
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref25
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref25
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref25
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref26
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref26
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref26
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref26
http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf?ua=1
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref28
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref28
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref28
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref28
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref29
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref29
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref29
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref30
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref30
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref30
http://refhub.elsevier.com/S0269-7491(17)31181-8/sref30

	Node-to-node field calibration of wireless distributed air pollution sensor network
	1. Introduction
	2. Methods
	2.1. Theoretical aspects of node-to-node calibration
	2.2. Error propagation in N2N calibration
	2.3. Computational calculation of the propagation of calibration errors

	3. Experimental design
	3.1. Study area
	3.2. Sensor technologies
	3.3. Calibration period
	3.4. N2N chain calibration

	4. Results and discussion
	4.1. Calibration period
	4.2. Individual sensor performance
	4.3. Sensor calibration stability
	4.4. Evaluation of node-to-node calibration
	4.4.1. Collocated nodes
	4.4.2. Field deployment


	5. Conclusions
	Acknowledgement
	Appendix A. Supplementary data
	References


