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In many applications, sampled data are collected in irregular fashion or are partly lost or unavailable. In these
cases, it is necessary to convert irregularly sampled signals to regularly sampled ones or to restore missing
data. We address this problem in the framework of a discrete sampling theorem for band-limited discrete sig-
nals that have a limited number of nonzero transform coefficients in a certain transform domain. Conditions
for the image unique recovery, from sparse samples, are formulated and then analyzed for various transforms.
Applications are demonstrated on examples of image superresolution and image reconstruction from sparse
projections. © 2009 Optical Society of America
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. INTRODUCTION
mages and other signals are usually represented in com-
uters in the form of their samples taken on a uniform
ampling grid. However, in many applications, sampled
ata are collected in irregular fashion and/or it may fre-
uently happen that some samples of the regular sam-
ling grid are lost or unavailable. In these cases, it is nec-
ssary to convert irregularly sampled signals to regularly
ampled ones or to restore missing data. Typical examples
re filtering “salt-and-pepper”-type noise in images trans-
itted through communication channels with error detec-

ion coding, reconstruction of surface profiles in geophys-
cs and in optical metrology, restoration of image
equences acquired in the presence of camera or object vi-
rations or through a turbulent medium, and image su-
erresolution from multiple chaotically sampled frames,
o name a few.

There are two approaches to treat this problem. One
pproach is empirical in nature and is based on simplistic
umerical interpolation procedures such as, for instance,
hepard’s interpolation by means of a weighted summa-
ion of known samples in close vicinity of sought samples
ith weights inversely proportional to the distance be-

ween them [1]. A review of these methods can be found in
2].

The second approach is based on generalizations of the
lassical Whittaker–Kotelnikov–Shannon sampling
heory to nonuniform sampling. In this approach, it is as-
umed that the available signal samples are obtained
rom a continuous signal that belongs to a certain ap-
roximation subspace M (subspaces of band-limited sig-
als, splines subspaces, etc.) of the parent Hilbert space
usually, L2 Hilbert space of finite energy functions) and it
s required that the interpolation procedure has to deter-

ine a continuous signal that satisfies two constraints:
1) the interpolated signal has to belong to the subspace
1084-7529/09/030566-10/$15.00 © 2
and (2) its available samples have to be preserved.
onditions for the existence and uniqueness of the solu-

ion are dependent on the signal model (underlying ap-
roximation subspace) and on the set of given samples.
or the band-limited case, Landau proved that a neces-
ary and sufficient condition for the unique reconstruction
f a continuous band-limited 1D signal with bandwidth W
rom its irregularly spaced samples is that the density of
ts samples should exceed the Nyquist rate 1/W [3]. It is
lso shown that this condition is necessary for
-dimensional signals with band-limited Fourier spec-

rum. These results have been generalized to other shift-
nvariant subspaces by Aldourbi and Grochenig [4]. A
omprehensive presentation of this approach can be found
n [5].

An attractive alternative approximation model is asso-
iated with spline subspaces [6]. However, due to their lo-
alized nature, their use for the recovery of large gaps in
ata is limited. A practical numerical algorithm for inter-
olation and approximation of 2D signals, based on mul-
ilevel B-splines, is suggested by Wolberg and colleagues
7]. The algorithm approximates 2D functions from sparse
ata by an iterative procedure based on lattice control
oints. At each iteration, the values of available samples
re preserved (if possible) or approximated. At the next it-
ration, a denser grid of control points is created to ap-
roximate the reconstruction error, and the process con-
inues iteratively. A similar spline-based algorithm, which
ses nonuniform splines for interpolation, was suggested
y Margolis and Eldar [8].
All of the mentioned methods are theoretically oriented

t the approximation of continuous signals, specified by
heir sparse samples. There are also publications that
onsider discrete models. However, those publications
reat only various special cases. Fereira considers discrete
ignal recovery from sparse data in the assumption of sig-
009 Optical Society of America
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al band-limitation in the discrete Fourier transform
DFT) domain [9]. Hasan and Marvasti suggest a method
or recovery of discrete signals suffering from missing
ata during data transmission using error-detecting cod-
ng. For signal recovery, they suggest using the discrete
osine transform (DCT) -domain band-limitation assump-
ion [10]. In [11], the problem of nonuniform sampling in
he Fourier domain in multidimensional polar coordi-
ates, is addressed in connection with image reconstruc-
ion from projections. In another publication, Averbuch
nd Zheludev discuss image reconstruction from projec-
ions with omissions using biorthogonal wavelet over-
omplete basis functions [12].

In this paper, we suggest a general framework for re-
overy of discrete signals that originate from continuous
ignals, from incomplete sets of their samples. The basis
f this framework is the following assumptions:

• Continuous signals are represented in computers by
heir samples. In sampling a continuous signal, say, a�x�,
he physical coordinates of the samples are known with a
ertain accuracy. The ratio N=X /�x of the signal support
nterval X and the sample position accuracy �x defines
he signal’s regular uniform sampling grid with N sam-
ling positions. If all these N samples were known, they
ould be sufficient for representing the continuous signal.
• Available are K�N samples of this signal, taken at

rregular positions of the signal regular sampling grid.
• The goal of the processing is to generate, out of this

ncomplete set of K samples, a complete set of N signal
amples in such a way as to secure the most accurate, in a
ertain metric, approximation of the discrete signal that
orresponds to the signal that would be obtained if the
ontinuous signal it is intended to represent were densely
ampled in all N positions. For the certainty, we will use
2 metrics.

The mathematical foundation of the framework is pro-
ided by the discrete sampling theorem for band-limited
iscrete signals that have only a few nonzero coefficients
n their representation over a certain orthogonal basis.
his theorem is introduced in Section 2. The rest of the
aper is as follows. In Section 3 we discuss the validity of
he assumptions put in the basis of the presented ap-
roach. In Section 4 we briefly describe algorithms for sig-
al recovery from sparse sampled data. In Section 5,
roperties of certain transforms that are specifically rel-
vant for signal recovery from sparse data are analyzed,
nd experimental illustrations of precise signal recon-
truction from sparse data are provided. Finally, in Sec-
ion 6 we discuss application issues and illustrate the
iscrete-sampling-theorem-based methodology of discrete
ignal recovery on the examples of image superresolution
rom multiple frames and image recovery from sparse
rojection data. Section 7 summarizes the paper.

. DISCRETE SAMPLING THEOREM
et AN be a vector of N samples �ak�k=0,. . .,N−1 that com-
letely define a discrete signal, �N be an N�N orthogo-
al transform matrix,
�N = ��r�k��r=0,1,. . .,N−1 �2.1�

omposed of basis functions �r�k�, and �N be a vector of
ignal transform coefficients ��r�r=0,. . .,N−1 such that

AN = �N�N =��
r=0

N−1

�r�r�k��
k=0,1,. . .N−1

�2.2�

Assume now that only K�N signal samples �ak̃�k̃�K̃ are
vailable, where K̃ is a K-size nonempty subset of indices
0,1, . . . ,N−1�. These available K signal samples define a
ystem of K equations:

�ak = �
r=0

N−1

�r�r�k��
k�K̃

�2.3�

or signal transform coefficients ��r� of certain K indices r.
Select now a subset R̃ of K transform coefficients indi-

es �r̃�R̃� and define a “KofN”-band-limited approxima-
ion ÂN

BL to the signal AN as

ÂN
BL = �âk = �

r̃�R̃

�r̃�r̃�k�� . �2.4�

ewrite this equation in a more general form,

ÂN
BL =�âk = �

r=0

N−1

�̃r�r�k�� , �2.5�

nd assume that all transform coefficients with indices
�R̃ are set to zero:

�̃r =��r, r � R̃

0, otherwise� . �2.6�

hen the vector ÃK of available signal samples �ak̃� can be
xpressed in terms of the basis functions ��r�k�� of trans-
orm �N as

ÃK = KofN� · �̃K = �ak̃ = �
r̃�R̃

�r̃�r̃�k̃�� , �2.7�

here K�K subtransform matrix KofN� is composed of
amples �r̃�k̃� of the basis functions with indices �r̃�R̃�
or signal sample indices k̃�K̃, and �̃K is a vector com-
osed of the corresponding subset ��r̃� of complete signal
ransform coefficients ��r�. This subset of the coefficients
an be found as

�̃K = ��̃r� = KofN�
−1 · ÃK, �2.8�

rovided that matrix KofN�
−1 inverse to the matrix KofN�

xists, which in general is conditioned for a specific trans-
orm by positions k̃�K̃ of available signal samples and by
he selection of the subset �R̃� of transform basis func-
ions.

By virtue of Parceval’s relationship for orthonormal
ransforms, the band-limited signal ÂN

BL approximates the
omplete signal A with mean square error (MSE):
N
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MSE = �AN − ÂN�2 = �
k=0

N−1

	ak − âk	2 = �
r�R

	�r	2. �2.9�

his error can be minimized by an appropriate selection
f the K basis functions of the subtransform KofN�. In or-
er to minimize the error, one must know the energy com-
action ordering of basis functions of the transform �N. If
n addition one knows, for a class of signals, a transform
hat features the best energy compaction in the smallest
umber of transform coefficients, one can, by selection of
his transform, secure the best band-limited approxima-
ion of the signal �ak� for the given subset �ãk� of its
amples.

In this way, we arrive at the following discrete sam-
ling theorem which can be formulated in these two state-
ents:
Statement 1. For any discrete signal of N samples de-

ned by its K�N sparse and not necessarily regularly ar-
anged samples, its band-limited, in terms of certain
ransform �N, approximation defined by Eq. (2.5) can be
btained with mean square error defined by Eq. (2.9) pro-
ided that positions of the samples secure the existence of
he matrix KofN�

−1 inverse to the subtransform matrix
ofN� that corresponds to the band limitation. The ap-
roximation error can be minimized by using a transform
ith the best energy compaction property.
Statement 2. Any signal of N samples that is known to

ave only K�N nonzero transform coefficients for certain
ransform �N (�N-transform band-limited signal) can be
ully recovered from exactly K of its samples provided
hat positions of the samples secure the existence of the
atrix KofN�

−1 inverse to the subtransform matrix KofN�

hat corresponds to the band limitation.

. VALIDTY OF THE ASSUMPTIONS
he applicability of the above results depends on the va-

idity of the assumption that band-limited, in a certain
asis, approximation of signals is an acceptable solution
n image recovery. We believe that this assumption is vali-
ated by a consensus in the signal processing and image
rocessing community regarding signal compression,
here such transforms as DCT and certain wavelets are
nown for their very good energy compaction properties
or wide variety of signals in image and audio processing.
hese transforms are used successfully for compression
y means of replacement of signals by their band-limited
pproximations. Recent advances in compressive sensing
13] also are based on the signal’s “band-limitedness” as-
umption. Haar transform and Walsh transform were
ound to have good energy compaction properties for bi-
evel images such as drawings and documents. An impor-
ant application, in which the assumption of image band-
imitedness is supported by the physical reality, is
omputed tomography, in which slice projections can very
requently be regarded in the inverse Radon transform
omain as band-limited signals, because outer parts of
lices are usually known to be empty.
. ALGORITHMS FOR SIGNAL RECOVERY
ROM SPARSE NONUNIFORMLY
AMPLED DATA

mplementation of signal recovery from sparse nonuni-
ormly sampled data according to Eq.(2.8) requires matrix
nversion, which is generally a very computationally de-

anding procedure, though for some transforms, such as
FT, DCT, Walsh, Haar, and others that feature fast Fou-

ier transform (FFT)-type algorithms, pruned versions of
hese algorithms can be used [14–16]. In applications, one
an also be satisfied with signal reconstruction with a cer-
ain limited accuracy and apply for the reconstruction of a
imple iterative reconstruction procedure of the
ershberg–Papoulis [17] type shown in the flow diagram

f Fig. 1. We used this algorithm in the experiments re-
orted in this paper. One can find a review of other itera-
ive and noniterative algorithmic options in [9].

. ANALYSIS OF TRANSFORMS
. Discrete Fourier Transform
onsider the KofNDFT

LP -trimmed DFTN matrix:

KofNDFT
LP =�exp
i2	

k̃r̃LP

N
�� �5.1�

hat corresponds to a DFT KofN low-pass band-limited
ignal. Due to the complex conjugate symmetry of DFT of
eal signals, K has to be an odd number, and the set of
requency domain indices of KofNDFT-low-pass band-
imited signals in Eq. (5.1) is defined as

r̃LP � R̃LP = ��0,1, . . . ,�K − 1�/2,N − �K − 1�/2, . . . ,N − 1
�.

�5.2�

or such a case, the following theorems hold:
Theorem 1. KofN-low-pass DFT band-limited signals

f N samples with only K nonzero low-frequency DFT co-
fficients can be precisely recovered from exactly K of
heir samples taken in arbitrary positions.

Proof. As follows from Eqs. (2.3)–(2.8), the theorem is
roved if the matrix KofNDFT

LP is invertible. A matrix is in-
ertible if its determinant is nonzero. In order to check
hether the determinant of the matrix KofNDFT is non-

ero, permute the order of columns of the matrix as fol-
ows:

ig. 1. Flow diagram of the iterative signal recovery procedure.
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r5 � R5 = ��N − �K − 1�/2, . . . ,N − 1,0,1, . . . ,�K − 1�/2
�

�5.3�

nd obtain the matrix

KofNDFT
DFTsh =�exp�i2	

k̃r5

N
��

= �exp�i2	
N − �K − 1�/2

N
k̃�
�k̃ − r̃̃̃ ��

��exp�i2	
k̃r̃̃̃

N
�� , �5.4�

here

r̃̃̃ � R̃̃
˜

= ��0, . . . ,K − 1
�. �5.5�

The first matrix in this product of matrices is a diago-
al matrix, which is obviously invertible. The second one

s a version of Vandermonde matrices, which are also
nown to have a nonzero determinant if, as in our case,
ts ratios for each row are distinct [18].

As permutation of the matrix columns does not change
he absolute value of its determinant, Eq. (5.4) implies
hat the determinant of KofN-trimmed DFTN matrix of
q. (5.1) is also nonzero for arbitrary set K̃= �k̃� of posi-

ions of K available signal samples.
One can easily see that for DFT KofN-high-pass band-

imited signals for which

KofNDFT
HP =�exp
i2	

k̃r̃HP

N
�� , �5.6�

here

r̃HP � R̃HP = ���N − K + 1�/2,�N − K + 3�/2, . . . ,�N + K

− 1�/2
�, �5.7�

similar theorem holds
Theorem 2. KofN-high-pass DFT band-limited signals

f N samples with only K nonzero high-frequency DFT co-
fficients can be precisely recovered from exactly K of
heir arbitrarily taken samples.

Note that due to the complex conjugate symmetry of
FT of real signals, K in this case has to be odd whatever
is.
Obviously, the above Theorems 1 and 2 can be extended

o a more general case of signal DFT band limitation
hen indices �r̃� of nonzero DFT spectral coefficients form
rithmetic progressions with common difference other
han one, such as, for instance,

r̃mLP � R̃mLP = �0,m, . . . ,m
�K − 1�

2
,N − m

�K − 1�

2
, . . . ,N

− m
�K − 1�

2
+

�K + 1�

2 � . �5.8�
. Discrete Cosine Transform
-point DCT of a signal is equivalent to 2N-point shifted

iscrete Fourier Transform (SDFT) with shift parameters
1/2,0� of a 2N-sample signal obtained from the initial
ne by its mirror reflection [16]. KofN-trimmed matrix of
DFT �1/2,0�

KofNSDFT =�exp
i2	
�k̃ + 1/2�r̃

2N
�� �5.9�

an be represented as a product

KofNSDFT =�exp
i2	
k̃r̃

2N
��exp
i	

r̃

2N�
�k − r���
= KofNDFT�exp
i	

r̃

2N�
�k − r�� �5.10�

f a 2N-point DFT matrix and a diagonal matrix
exp�i	r̃ /2N�
�k−r��. The latter one is invertible, and the
nvertibility of the KofN-trimmed DFT2N matrix
ofNDFT can be proved, for the above-described band

imitations, as was done above for the DFT case. There-
ore, theorems for DCT similar to those for DFT hold.

These theorems hold also for 2D DFT and DCT trans-
orms provided that the band-limitation conditions are
eparable. The case of nonseparable band limitation re-
uires further study. In the discussion of experiments
hat follows, we will compare separable and nonseparable
and limitation in the DCT domain. Note that working in
he DFT or the DCT domain results, in the case of low-
ass band limitation, in signal discrete sinc-interpolation
19].

We illustrate the above reasoning by some simulation
xamples. The plots in Fig. 2 illustrate exact reconstruc-
ion of a DFT-band-limited signal (solid curue) for two
ases, when all the signal samples are randomly placed
ithin signal support [Fig. 2(a)] and when all available

ignal samples form a compact group [Fig. 2(b)]. Figure
(c) illustrates restoration of the same signal with ran-
omly placed samples by means of the iterative algo-
ithm, while Fig. 2(d) shows standard deviation of signal
estoration error as a function of the number of iterations.
ote that the speed of convergence of the iterative algo-

ithm depends heavily on the realization of sample posi-
ions and, for some samples, realizations of sample posi-
ions might be very slow.

Figures 3 and 4 illustrate precise restoration from
parse data of images band-limited in the DCT domain by
square (separable band limitation) and by 90° circle sec-

or (a pie piece, inseparable band limitation). In these ex-
eriments, image restoration using a multilevel B-spline
nterpolation algorithm was used as a benchmark [7]. For
he implementation of the algorithm, a code kindly pro-
ided by G. Wolberg was used.

The image presented in Fig. 3 is a 64�64 pixel test im-
ge, low-pass band-limited in the DCT domain by a
quare of 14�14 samples [Fig. 3(b)]. It has only 14�14
196 nonzero DCT spectral components out of the 64
64 ones. This image was sampled at 196 random posi-

ions obtained from a standard Matlab pseudorandom
umber generator. One can see from the figure that the
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ig. 2. (Color online) Restoration of a DFT low-pass band-limited signal by matrix inversion for the cases of (a) random and (b) com-
actly placed signal samples and (c) restoration by the iterative algorithm. Plot (d) shows the standard deviation of the signal restoration
rror as a function of the number of iterations. The experiment was conducted for test signal length of 64 samples; bandwidth of 13

requency samples (�1/5 of the signal base band).
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ig. 3. Recovery of an image band limited in the DCT domain
y a square: (a) initial image with 3136 “randomly” placed
amples in positions shown by white dots; (b) the shape of the im-
ge spectrum in the DCT domain; (c) image restored by the itera-
ive algorithm after 100,000 iterations with restoration peak
ignal-to-error standard deviation (PSNR) 4230; (d) image re-
tored by B-spline interpolation with restoration PSNR 966; (e)
terative algorithm restoration error (white, large errors; black,
mall errors); (f) restoration error standard deviation versus
umber of iterations for the iterative algorithm and that for the
-spline interpolation.
ig. 4. Recovery of an image band limited in the DCT domain
y a circle sector: (a) initial image with 3964 “randomly” placed
amples in positions shown by white dots; (b) the shape of the im-
ge spectrum in the DCT domain; (c) image restored by the itera-
ive algorithm after 100,000 iterations with restoration PSNR
1.5; (d) image restored by B-spline interpolation with restora-
ion PSNR 7.42; (e) iterative algorithm restoration error (white,
arge errors; black, small errors); (f) restoration error standard
eviation versus number of iterations of the iterative algorithm
or the iterative algorithm and that for the B-spline
nterpolation.
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terative algorithm provides a quite accurate restoration
f the initial image, though precise restoration may re-
uire a quite large number of iterations. An important pe-
uliarity of the 2D case is that the convergence of the it-
ration is very nonuniform within the image. Usually, the
estoration error rapidly becomes very small almost ev-
rywhere in the image, and only in some parts, where
ample density happens to be low, do the restoration er-
ors remain substantial and converge to zero quite slowly.

Image band-limitation by a square is separable, and, as
as shown earlier, it does not impose any limitations on

he positions of sparse samples. However, it is not isotro-
ic. In the case of isotropic band limitation in the DCT do-
ain by a circle sector (a pie piece), the situation is quite

ifferent. Experiments show that the speed of conver-
ence of the iterative algorithm drops dramatically in this
ase. Hundreds of thousands of iterations are needed to
ake the overall standard deviation of the restoration er-

or low enough, though again, restoration error remains
ubstantial only in limited areas of the image. B-spline in-
erpolation error is also high in this case, though it is
ore uniform over the image. The convergence speed of

he iterative algorithm in the case of isotropic circle sector
and limitation can be substantially improved if the num-
er of available image samples exceeds the number of
onzero DCT spectral coefficients, which is redundant
rom the point of view of the discrete sampling theorem.
his is illustrated in Fig. 4. The image presented in Fig. 4

s a 64�64 pixel test image low-pass band-limited in the
CT domain by a circle sector. It has 196 nonzero DCT

pectral components, out of the 64�64 signal’s samples,
ll located within a circle sector shown in white in Fig.
(b). In contradistinction to the image in Fig. 3, this one
as sampled at 248 random positions. The redundancy
48/196=1.27 in the number of samples with respect to
he number of nonzero spectral coefficients is approxi-
ately equal to the ratio of the area of the square to the

rea of the circle sector inscribed into this square. As one
an see from Fig. 4(f), with such a redundancy iterative
estoration converges much faster, though overall restora-
ion error even after 100,000 iterations remains higher
han that for the separable band limitation by a square
llustrated in Fig. 3. The same holds for B-spline interpo-
ation restoration, shown in Fig. 4(d). Once again, one can
ee that the convergence of the iterative algorithm is non-
niform over the image and that relatively large restora-
ion error occurs only in a small area of the image where
he density of available samples happens to be low.

In some applications, there is a natural and substantial
edundancy in the number of available image samples
ith respect to the image’s bandwidth. One such case is

llustrated in Fig. 5, where an example of image restora-
ion from its level lines is given. A 256�256 pixels image,
hown in the figure, is band limited in the DCT domain by
circle sector and contains 302 nonzero spectral coeffi-

ients. The image was sampled in 6644 samples on a set
f its level lines (8 levels), which resulted in 22-fold re-
undancy with respect to the image spectrum. As one can
ee from the figure, such a redundancy accelerated the
onvergence of the iterative algorithm very substantially
nd, after a few tens of iterations, enabled restoration
hat is much superior to that provided by the B-spline in-
erpolation.

. Wavelets and Other Bases
he main peculiarity of wavelet bases is that their basis

unctions are most naturally ordered in terms of two com-
onents: scale and position within the scale. Scale index
s analogous to the frequency index for DFT. Position in-
ex tells only of the shift of the same basis function within
he signal on each scale. Therefore, band limitation for
FT translates to scale limitation for wavelets. Limita-

ion in terms of position is trivial: it simply means that
ome parts of the signal are not relevant. Commonly, dis-
rete wavelets are designed for signals whose length is an
nteger power of 2 �N=2n�. For such signals, there are s

n scales and possible band limitations.
The simplest special case of wavelet bases is Haar ba-

is. Signals with N=2n samples and with only K lower in-
ex nonzero Haar transform (the transform coefficients
K , . . . ,N−1� are zero) are �s̃= ��log2�K−1��+1�� band-
imited, where �x� is an integer part of x. Such signals are

ig. 5. Recovery of an image band-limited in the DCT domain
y a circle sector from its level lines: (a) initial image with level
ines (shown by white lines); (b) image restored by the iterative
lgorithm after 1,000 iterations with restoration PSNR 35,000
note that the restoration error is concentrated in a small area of
he image); (c) image restored by B-spline interpolation with res-
oration PSNR 29.4; (d) iterative algorithm restoration error
white, large errors; black, small errors); (e) restoration error
tandard deviation versus number of iterations for the iterative
lgorithm and that for the B-spline interpolation.
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iecewise constant within intervals between basis func-
ion zero crossings. The shortest intervals of the signal
onstancy contain 2n−s̃ samples. As one can see from Fig.
(a), for any two samples that are located on the same in-
erval, all Haar basis functions on this and lower scales
ave the same value. Therefore, having more than one
ample per constant interval will not change the rank of
he matrix KofN. The condition for perfect reconstruction
s therefore to have at least one sample on each of those
ntervals.

For other wavelets as well as for other bases a general
ecessary, sufficient, and easily verified condition for the

nvertibility of KofN -trimmed transform submatrix is not
nown to the present authors. Standard linear algebra
rocedures for determining matrix rank can be used for
esting invertibility of the matrix.

For Walsh basis functions, the index corresponds to the
sequency,” or to the number of zero crossings of the basis
unction. The sequency carries a certain analogy to the
ignal frequency. Basis functions ordering according to
heir sequency, which is characteristic of Walsh trans-
orm, preserves for many real-life signals the property of
ecaying transform coefficients’ energy with their index.
herefore, for Walsh transform the notion of low-pass
and-limited signal approximation, similar to the one de-
cribed in Subsection 5.A for DFT can be used. On the
ther hand, as one can see from Fig. 6(b), Walsh basis
unctions, similarly to the Haar basis function, can be
haracterized by the scale index, which specifies the
hortest interval of signal constancy. Signals with N=2n

amples and band limitation of K Walsh transform coeffi-
ients have the shortest signal-constancy intervals of 2n−s̃

amples, where s̃= ��log2�K−1��+1�. A necessary condition
or perfect reconstruction is to have K signal samples
aken on different intervals. Unlike the Haar transform
ase, not all the intervals are needed to be sampled but
nly K intervals out of the total number of intervals. For a
pecial case of K equal to a power of 2, there are K inter-
als, each of which has to be sampled to secure perfect re-
onstruction. This is the case when the reconstruction

ig. 6. (Color online) First eight basis functions of the 64-point
a) Haar and (b) Walsh transforms. Intervals of function con-
tancy are outlined by dashed–dotted lines. Functions that be-
ong to the same scale are outlined by dashed boxes.
ondition for Walsh transform is identical to that for Haar
ransform.

Figure 7 illustrates the case of recovery of an image
and limited in the Haar transform domain. Two ex-
mples are shown: arrangement of sparse samples, for
hich signal recovery is possible (a) and that for which

ignal is not recoverable (b). Note that when the Haar re-
onstruction is possible, it is reduced to the trivial
earest-neighbor interpolation.
An example of perfect reconstruction of Walsh-

ransform-domain band-limited signal of N=512 and
and limitation K=5 is illustrated in Fig. 8. In this ex-
mple, the resulting KofN Walsh matrix is

	KofNWalsh	K=5 = �
1 − 1 1 − 1 − 1

1 − 1 − 1 1 1

1 1 1 1 1

1 1 − 1 − 1 − 1

1 1 1 1 − 1
� , �5.11�

nd its rank is equal to 5. One should note that in this
articular example, perfect reconstruction in the Haar
ransform domain is not possible since one of the shortest
ntervals of the signal constancy contains no samples.

. APPLICATION EXAMPLES
. Image Superresolution from Multiple Differently
ampled Video Frames
ne of the potential applications of the above signal re-

overy technique is image superresolution from multiple
ideo frames with chaotic pixel displacements due to at-
ospheric turbulence, camera instability, or similar ran-

om factors [20]. By means of elastic registration of a se-
uence of frames of the same scene, one can determine,
or each image frame and with subpixel accuracy, pixel
isplacements caused by random acquisition factors. Us-
ng these data, a synthetic fused image can be generated
y placing pixels from all available video frames in their
roper positions on the correspondingly denser sampling
rid according to their found displacements. In this pro-
ess, some pixel positions on the denser sampling grid will
emain unoccupied, especially when a limited number of

ig. 7. (Color online) Two cases of sparse sampling of an image
and-limited in the Haar transform: (a) not-recoverable case, (b)
ecoverable case (sample points are marked with dots). Image
ize 64�64 pixels; band limitation 8�8 (scale 3).
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mage frames is fused. These missing pixels can then be
estored using the above-described iterative band-limited
nterpolation algorithm.

In the implementation of the algorithm, the denser
ampling grid of the fused image is formed accordingly to
he subpixel accuracy, with which positions of pixels are
easured in the sequence of turbulent frames. In our ex-

eriment, the size of the fused image sampling grid was
� that of initial frames. The bandwidth limitation of the
uperresolved image depends on the spread of image
amples acquired in the process of fusion and on the num-
er of frames used for fusion. In our experiments, we set
he final size of the fused-image sampling grid to be twice
hat of the original frames. The simulation result of itera-
ive recovery of unavailable image samples is presented
n Fig. 9, which shows (a) one of the low-resolution turbu-
ent frames, (b) image fused from 50 frames, and (c) the
esult of iterative interpolation achieved after 50 itera-
ions. The figure clearly demonstrates a substantial im-
rovement of image resolution and quality.

. Image Reconstruction from Sparse Projections in
omputed Tomography
he discussed sparse-data recovery algorithm can find a
traightforward application in tomography, where it fre-
uently happens that a substantial part of the slices that
urrounds the body slice is known to be an empty field.
his means that slice projections (sinograms) are Radon
ransform band-limited functions. Therefore, whatever
umber of projections is available, a certain number of
dditional projections that are commensurable, according
o the discrete sampling theorem, with the size of the
lices empty zone can be obtained, and a corresponding

ig. 8. (Color online) Example of perfect reconstruction in the
alsh domain.

ig. 9. Iterative image interpolation in the superresolution pro-
ess: (a) a low-resolution frame, (b) image fused by elastic image
egistration from 50 frames, (c) the result of iterative interpola-
ion of image (b) after 50 iterations.
esolution increase in the reconstructed images can be
chieved using the described iterative band-limited recon-
truction algorithm. Another option is recovery of projec-
ion data that might be missing because of sensor faults
r for other reasons.

In order to demonstrate the applicability of the discrete
ampling theorem for image recovery from sparse projec-
ions, one needs a discrete Radon transform and its alge-
raically exact inverse. While the theory defines the con-
inuous Radon integral transform and its inverse, the
iscrete equivalent is not a trivial problem. In our experi-
ents we used a stable forward and inverse Radon trans-

orm described in [21] and the code found in [22]. The ap-
licability of the suggested framework for image
econstruction from sparse projections is illustrated in
ig. 10. By simple segmentation of the initial image
hown in Fig. 10(a) it was found that the outer 55% of the
mage area is empty. Then the same percentage of projec-
ion samples selected randomly using the Matlab random
umber generator were zeroed, after which the iterative
econstruction algorithm was run. The results, shown in
ig. 10(c)–10(f), show that while direct image reconstruc-

ion with missing samples fails completely [Fig. 10(c)],

ig. 10. (Color online) Recovery of missing samples of a sino-
ram: (a) original image and (b) its Radon transform (sinogram),
c) image reconstructed from the sinogram, (d) image corrupted
y the loss of 55% of its randomly selected samples; (e) a sino-
ram recovered from (d) using the iterative band-limited interpo-
ation algorithm, and (f) plot of the standard deviation of the slice
econstruction error as a function of the iteration number.
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irtually perfect recovery of 55% of the missing samples of
inograms is possible with the iterative reconstruction al-
orithm after several hundreds of iterations.

Figure 11 illustrates that recovery of completely miss-
ng projections is also possible. Every second projection of
he image shown in Fig. 10(a) was removed, and then all
nitial projections were recovered by the iterative algo-
ithm, which made use of the fact that the outer 55% part
f the image area is known to be empty. In this case the
tandard deviation of the reconstruction error is not as
ow as in the previous case, which perhaps can be attrib-
ted to the incomplete reversibility of the truncated Ra-
on transforms. However, the achieved low reconstruction
rror of about 10−3 allows us to suggest that for such
ases, when half or more of the image area is known to be
mpty, one can achieve image reconstruction with super-
esolution that corresponds to double the number of avail-
ble image projections.

. CONCLUSION
he paper addresses the problem of reconstruction of dis-
rete signals from their irregular samples and recovery of
issing data. Considering that positions of available sig-
al samples are always specified with a certain accuracy
hat defines the maximal number of signal samples suffi-
ient for signal representation, we suggest a new ap-
roach to optimal recovery of discrete signals from irregu-
arly sampled or sparse data based on the discrete
ampling theorem introduced in Section 2. The discrete
ampling theorem refers to discrete signals band limited
n the domain of a certain transform and states that KofN
and-limited discrete signals of N samples, which have

ig. 11. (Color online) Recovery of missing image projections:
a) original projections (sinogram) of the test image of Fig. 10(a),
b) sinogram with every second projection removed, (c) sinogram
ecovered from (b) using the iterative interpolation algorithm,
nd (d) plot of the standard deviation of the image reconstruction
rror as a function of the iteration number.
nly K�N nonzero transform coefficients, can be pre-
isely recovered from their K sparse samples provided
hat positions of the available samples satisfy certain
imitations depending on the transform. This theorem
lso provides a tool for optimal, in terms of root-mean-
quared error, approximation of arbitrary discrete signals
pecified by their sparse samples with KofN-band-limited
ignals, given appropriate selection of the signal repre-
entation transform.

Two algorithms for discrete sampling theorem based
ignal reconstruction are considered: direct matrix inver-
ion and Gershberg–Papoulis iterative algorithm.

Properties of different transforms, such as discrete
ourier, discrete cosine, Haar, Walsh, and wavelet trans-

orms, that are relevant to application of the discrete
ampling theorem are discussed and, in particular, it is
hown that precise reconstruction of 1D KofN-DFT band-
imited and KofN-DCT band-limited signals is always
ossible from sparse samples regardless of sample posi-
ions on the signal dense grid. The same holds for two-
imensional signals, given separable band-limitation con-
itions. For nonseparable band limitation, such as
imitation by a circle sector in the DCT domain, experi-

ental evidence is obtained that exact image recovery
ay not be possible for arbitrarily placed samples and

hat a redundant number of samples is required.
Applications of the discrete-sampling-theorem-based

pproach to image recovery from sparse data are illus-
rated on examples of image superresolution from mul-
iple randomly sampled frames and image reconstruction
rom sparsely sampled projections. For the latter case, it
s shown that in applications where object slices contain
reas that a priori are known to be empty, reconstruction
f slice images from a given set of projections is possible
ith superresolution.
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