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Optimal Noise Filtering of Sensory Array
Gaseous Air Pollution Measurements

Barak Fishbain, Shai Moshenberg and Uri Lerner

Abstract One of the fundamental components in assessing air quality is continuous
monitoring. However, all measuring devices are bound to sensing noise. Commonly
the noise is assumed to have zero mean and, thus, is removed by averaging data
over temporal windows. Generally speaking, the larger the window, the better the
noise removal. This operation, however, which corresponds to low pass filtering,
might result in loss of real abrupt changes in the signal. Therefore, the need arises
to set the window size so it optimally removes noise with minimum corruption of
real data. This article presents a mathematical model for finding the optimal aver-
aging window size. The suggested method is based on the assumption that while
real measured physical phenomenon affects the measurements of all collocated sen-
sors, sensing noise manifests itself independently in each of the sensors. Hence, the
smallest window size which presents the highest correlation between the collocated
sensors, is deemed as optimal. The results presented here show the great potential of
the method in air quality measurements.
Keywords Air pollution measurements ⋅ Noise filtering ⋅Micro sensing units

1 Introduction

Air quality has a tremendous effect on public health and the environment (Künzli
et al. 2000). Many studies have associated various adverse effects to general air pol-
lution and its specific components such as nitrogen dioxide (NO2), ozone (O3) car-bon monoxide (CO) and particular matter (PM), to name a few (Kampa and Castanas
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2008). These pollutants, for example, affect the respiratory system, the cardiovascu-
lar system and other systems in the human body (Laumbach and Kipen 2012). Some
of the pollution is due to natural phenomena and some due to anthropogenic activity
(Robinson and Robbins 1970; Cullis and Hirschler 1980). Regardless of its sources,
air pollution undergoes a set of chemical processes in the atmosphere, depending
on initial concentration and ambient conditions. The large number of sources and
the intricateness of the chemical processes, lead to the creation of complex scenar-
ios, displaying highly variable spatial and temporal pollution patterns rendering the
analysis of air-pollution and its effects as a challenging task (Nazaroff and Alvarez-
Cohen 2001; Levy et al. 2014).

One of the primary tools for assessing air-pollution patterns is continuous moni-
toring of pollutants’ ambient levels. To accomplish that, numerous chemical-physical
methods have been developed and standardized Air Quality Monitoring (AQM) sta-
tion networks have been spread around theworld. However, as any other sensor, these
AQM stations are bound to measurement errors due to sensors’ and circuitry noise.
This noise limits AQM’s capability to accurately capture ambient pollution levels
and thus, hinders the study of air-pollution (Duyzer et al. 2015). With the grow-
ing usage of Micro Sensing Units (MSUs) for measuring ambient pollutants’ levels
(Künzli et al. 2000; Kampa and Castanas 2008; Mead et al. 2013; Williams et al.
2013; Moltchanov et al. 2015; Lerner et al. 2015), this problem increases as MSUs
are more error prone than the standard measuring equipment (Tchepel and Borrego
2010; Mead et al. 2013; Williams et al. 2013; Moltchanov et al. 2015; Lerner et al.
2015). Thus, in order to better utilize the sensing equipment, noise must be effec-
tively filtered out.

Filtering the noise out requires full characterization of either the noise or the sig-
nal. The statistical properties of the sensing noise may be known from the certifica-
tion of the monitoring system. However, in many applications these data are unavail-
able. Further, it was shown that MSUs’ accuracy, i.e. sensory noise level, varies over
time, which makes any characterization futile, as it is valid for only a limited time
period (Künzli et al. 2000; Gupta et al. 2011; US Environmental Protection Agency
2012; Mead et al. 2013; Moltchanov et al. 2015).

Sensing noise is often characterized as Additive White Gaussian Noise (AWGN)
(Schwartz andMarcus 1990; Rao and Zurbenko 1994; Varotsos et al. 2005). Thus, for
xi, the true pollutant’s ambient level and !i, the noise at time step i, the measurement
yi is given by: yi = xi + !i, where !i is a normally distributed random variable with
zero mean and unknown variance (Wu and Huang 2009).

Realistically, changes in the composition of the atmosphere happen over relatively
long period of time when compared to the sampling rate, i.e. order of tens of minutes
with respect to the sampling rates of tens of seconds (Rao and Zurbenko 1994; Wang
et al. 2003; Peng et al. 2006). Even when considering photochemistry in hot regions,
a global change in air-pollution composition takes a much longer time than the sam-
pling rate (Leighton 2012; Weinstein et al. 2016). Combined with the assumption
of AWGN, noise may be filtered out by averaging the signal over a temporal sliding
window, i.e., replacing each measurement, yi, with the computed average of samples
within a temporal window centered at i (Schwartz and Marcus 1990). This proce-
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dure is also known as Kolmogorov-Zurbenko (KZ) (Zurbenko 1986) or Sinc filtering
(Yaroslavsky 2014), and for a window size of 2K + 1 is given by:

yi =
1

2K + 1

K∑
j=−K

yi+j (1)

The KZ operator essentially suppresses abrupt changes in the signal. The larger
the temporal window is, the smoother the output signal (Yaroslavsky 2014). This
is equivalent to removing higher frequencies of the signal, thus, low-pass filtering
(Zurbenko 1986; Schwartz and Marcus 1990; Yaroslavsky 2014).

To this end, low-pass filtering in its simplest form means zeroing all signal’s fre-
quency coefficients above a given frequency, called the cut-off frequency. The larger
the window size, the lower the cut-off frequency.

Previous analyses suggested to set the cutoff frequency so it maximizes the coef-
ficient of determination, R2, of a regression model associating mortality (Peng et al.
2006) or temperature (Rao and Zurbenko 1994) with air-pollution measurements.
In both cases, the temporal window size found was considerably large (order of
days), heavily smoothing the signals. This outcome is expected as signal’s tempo-
ral local variations, whether originated from genuine signal’s fluctuations or from
noise, degrade R2 value. Thus, removing these perturbations improves the regres-
sion model, but deteriorates the signal’s high frequencies.

Therefore, using such a filter for noise filtering calls for a method to determine the
ideal cutoff frequency or the size of the temporal window, so it eliminates as much
noise as possible, while preserving real data. Here we present a mathematical model
to optimally set the window’s size.

2 Materials and Methods

2.1 Optimal Filtering Window Size

Typically, as the level of noise increases, the correlation between the real signal and
the measured signal decreases (Fishbain et al. 2008). Assuming that the noise affects
each sensor independently, if a pollution signal is measured by two separate collo-
cated devices, the correlation between them is expected to decrease as the noise level
grows. This is illustrated in Fig. 1, where Fig. 1a depicts real-life NO2 time series,
AN , acquired between January 1st and December 31st, 2010 (16,949 samples) by a
standard AQM station located at the heart of the Haifa industrial/commercial area
(LAT/LON: 32.78919/35.04038)—see (Moltchanov et al. 2015) for more details on
the study area. AN’s maximum measurement was 48 [ppb], its average was 4.67
[ppb] and its standard deviation was 5.98. From this signal a synthetic noisy sig-
nal, Sk, is generated by adding random AWGN, !" , with zero mean and standard
deviation, so the signal to noise ratio (SNR) is 5. The process is then repeated with
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Fig. 1 Correlation coefficient as a function of noise standard deviation. aReal-lifeNO2 time series
acquired between January 1st and December 31st, 2010 (16,949 samples) by a standard AQM sta-
tion located at the heart of the Haifa industrial/commercial area (LAT/LON: 32.78919/35.04038).
bCorrelation between two sets of synthetic noisy signals as a function of added noise characteristics
(solid-red) and between the original signal and one of the synthetic signals (dashed-blue)

SNR={4.9, 4.8,… , 0.1}. Hence, a set of fifty signals with noise increasing standard
deviations is created. Two such sets are used here.

Figure 1b shows the correlation between the two sets of synthetic noisy signals
as a function of the added AWGN’s standard deviation (solid-red) and between the
original signal, AN , and one of the synthetic signals (dashed-blue). It is evident that
indeed the correlation drops as the noise level increases.

Signal’s energy is a characteristic used in signal processing for quantifying the
amount of data within a signal. For a continuous signal, p(t), the energy is given by:

E = ∫
∞

−∞
|p(t)|2dt (2)
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Following the Parseval’s theorem (Boas 1966), the energy of a signal is equal to
the energy of its frequency transform, P(#):

E = ∫
∞

−∞
|P(t)|2d# (3)

Hence, the function |P(#)|2 represents the energy distribution in the frequency
domain. Applying discrete sampling, (3) becomes:

E =
N∑

#=1
|P(#)|2 (4)

Given (4) and the notion presented in Fig. 1, the optimization goal is to find the
highest cut-off frequency such that as little information, i.e., energy, in the higher
frequencies is removed, while the correlation between two collocated sensors reaches
its maximum.

This is the essence of the suggested filtering scheme. For removing AWGN, a
temporal window is suggested. For finding the optimal window’s size, one should
balance between the window size which presents the highest correlation between two
sensors measuring the same physical phenomenon, and by evaluating the signal’s
spectrum in search of a cut-off frequency, which removes as little as possible of a
signal’s energy, i.e., information.

The same physical phenomenon can be identically measured when the sensors
are collocated (Mead et al. 2013; Moltchanov et al. 2015; Williams et al. 2013). This
mode of operation is applicable mainly when MSUs are in use. Due to MSUs’ inher-
ent limitations, collocating is currently the common practice (Fishbain and Moreno-
Centeno 2016; Lerner et al. 2015;Mead et al. 2013;Moltchanov et al. 2015;Williams
et al. 2013). When the sensors are not collocated, measuring the same phenomenon
can be achieved when it is uniform in all measuring points (Moltchanov et al. 2015).

2.2 Frequency Representation

In this study the transformation of the pollutants’ time-series to the frequency domain
is executed through the 2nd Discrete Cosine Transform (DCT). The DCT is well doc-
umented to have high energy-compaction, i.e., most of the signal’s energy, in the fre-
quency domain, lays with a small number of low-frequencies coefficients (Zurbenko
1986). UsingDCT increases the amount of information in the lower frequencies, lim-
iting true signal’s information in the higher frequencies. For a pollutant time series,
AN , that is composited ofN data points—ak, the frequency coefficient, $r is given by:

$r =
2√
2N

N−1∑
k=0

⎛
⎜
⎜
⎜⎝

ak cos
[
%
(
k + 1

2

)]

N
r
⎞
⎟
⎟
⎟⎠

(5)
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2.3 Data

For demonstrating the suggested filtering scheme, two Air-Quality MSU pods
(AQMesh 2015) were placed near an AQM station in Haifa, Israel (Lat:32.78741,
Lon: 35.02119, height above ground level: 12 [m], height above sea level: 208 [m]).
Each AQMesh unit was equipped with five environmental sensors: NO, NO2, O3,atmospheric pressure (AP), and relative humidity (RH). Additionally, the AQMesh
measured the unit’s internal temperature (Temp). Each pod has its own battery and
communication device, wirelessly-transmitting the measurements to a central server
every 15min.

In order to compare the AQM and the MSUmeasurements, the time resolution of
both should be the same. If that is not the case, the time series with the fine tempo-
ral resolution is aggregated so it fits the coarser resolution. The MSU measurements
were acquired at a 15min resolution, while the AQM time-series had a 30min reso-
lution. Hence, MSU measurements were averaged (without overlapping) to produce
a time-series that corresponds to the AQM temporal resolution.

3 Results

For simulating true sensors’ data post-processing, the measured signals of the two
MSUs were low-pass filtered by averaging, with no overlapping windows and
decreasing filter size, i.e., lowering the cut-off frequency at each iteration. For each
window’s size the correlation between the two averaged sequences was calculated.
As seen in Fig. 2 for O3, there is a peak at around 500min. Also evident is that the
variance of the correlation increases with the window size. This is attributed to the
smaller number of window’s positions, which decreases with the window’s size.

The DCT transformation of the ozone time series is plotted in Fig. 3. Setting the
cut-off frequency so 90% of signal’s energy is preserved, the cut-off frequency was
found to be 53 [1/min]. This is equivalent to averaging the signal over 672min. Eval-
uating this result with respect to Fig. 2, this value is sufficiently close to the highest
correlation (found around 500min) and thus noise can be filtered out without com-
promising on the correlation between the two signals. The 11 h average that was
found by the suggested method agrees with the National Ambient Air Quality Stan-
dards (NAAQS) of the United States Environmental Protection Agency (US-EPA),
which suggests an 8 h average (US Environmental Protection Agency 2012) for mon-
itoring ozone.

Figure 4 illustrates the filtered signal (in red) versus the original noisy signal, in
blue. It is noticeable that the filtered signal manages to describe the measurements
truthfully, while giving a smoother behavior, without peaking at extreme high or low
values.

The same process was performed on an NO2 signal and is described in Figs. 5,
6 and 7. The cut-off frequency was obtained at 2,657. The 2,657 [1/ min] cut-off
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Fig. 2 Correlation between
two MSUs as a function of
the averaging temporal
window size for O3measurements

Fig. 3 DCT transformation
of the O3 time series

is equivalent to averaging over a temporal window of 15min. The correlation, is
highest when averaging the signal over a window of 50min (Fig. 5). The US-EPA
NAAQS for NO2 is one hour (US Environmental Protection Agency 2012), which is
close to the window suggested by our method.

In Fig. 7 the original noisy NO2 signal can be seen in blue, and the filtered signalis in red, and again, it is evident that the filtered signal changes more gradually over
time, and presents lower noise level.



282 B. Fishbain et al.

Fig. 4 DCT transformation
of the O3 time series

Fig. 5 Correlation between
two MSUs as a function of
the averaging temporal
window size for NO2measurements

4 Conclusion

A methodology for finding the optimal averaging window size for noise removal in
air-quality time series is suggested. The window’s size is set by balancing between
two criteria: maximum correlation between two signals obtained by collocated sen-
sors, and applying a low-pass filter with the highest cut-off frequency. Using this
method, the noise affecting the quality of the air pollution signal can be filtered out
based on the actual measurement taken (and not by a common rule of thumb), thus
giving a better assessment of the monitored signal, improving understanding of the
environment.
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Fig. 6 DCT transformation of the NO2 time series

Fig. 7 Original (blue) and filtered (red) nitrogen-dioxide signal

More research regarding the optimal percent of energy preserved is needed. We
assumed that disregarding 10% of the energy from a long signal would not overly
degrade the signal but a guiding methodology is needed. Further studies, which
implement the suggested method on different pollutants acquired from different
places would also be beneficial in supporting further the argument of the suitability
of the method for the general case.
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