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Abstract — A two stage fusion image processing system has begrd atmosphere turbulence distortions compensasion

developed for visual and thermal range video streakt the
first stage, an intra-channel-inter-frame fusiorajgplied to each
channel images independently, addressing each ehapecific
limitations. Noise removing processing by mear@b{spatial-
temporal) local DCT adaptive filtering is applied the thermal
channel video sequence. An algorithm that compessatage
distortion due to the atmospheric turbulence is legpto the
visual range channel video sequence. The secoige &anter-
frame intra-channel fusion. At this stage, thernaald visual
range channel image frames are fused frame-by-fragieg a

carried out. At the second, inter-channel intrarfea
fusion stage, the two channels are combined torgene
final single channel video.

Several classes for digital image improvement and
enhancement methods can be found in the literamne.
class of methods uses the spatial (intra-frame)néancy
in images for image deblurring and denoising. Among
these methods one can mention Wiener and empirical
Wiener linear filtering for image denoising and dpee

weighted average scheme with locally adapted weightorrection [10, 11], local adaptive linear filteginin

Experimental results obtained for both simulated! aral life
thermal and visual range image sequences are denated

transform, specifically, in DCT domain [12, 13],danon-
linear rank filtering [14, 15]. Another group of theds is

Keywords: Fusion, 3-D DCT, Elastic Registration Methodintended for processing video sequences and uses th

Sinc-interpolation, Optical Flow, Wiener FilteringVeighted
Average, Noise Estimation.

1 Introduction

The development of new imaging sensors has brou

with it a need for image processing techniques taat
effectively exploit data obtained from differeninsers or

for multiple images produced by the same sensois T
can be achieved by combining inputs from differe

sources to obtain a single composite frame witlereed
or enhanced information content. The goals of guston
process are to extract all the useful informatidtheut
artifacts while maintaining reliable and robustteys with
temporal stability and consistency. A number of kgor
can be found in the literature regarding imagediudil-

9]. Most of the works treat the fusion problem as a

“Intra-Frame — Inter-Channel” fusion, hence usimpgke
pair of frames, usually from two different sensdus, the

temporal redundancy in an image sequence. In toigpg
one can find moving average integration [10, 16jtions
estimation and AC/DC methods.

Observation systems, both thermal and video,
roduce a stream that is affected by imaging system
Ltector and electronics) and environmental ndigeile

combining a signal to a video sequence this noése e
described using 3-D noise models [10, 17, 18]. &loze
estimation of noise and signal restoration igdman 2-D
1-D domains, it remains suboptimal and can ptedu
substantial artifacts. In particular,

e Intra-frame (2-D) processing of video sequences
results in flickering artifacts when observing freuty

frame processed video.

Inter-frame only processing leaves artifacts due to
image blur and fix pattern noise unprocessed.
Efficient temporal noise reduction needs a longnza

averaging [10] which may affect scanning scenes and

fusion process. This paper addresses the problem of moving objects.

temporal and spatial fusion of thermal and videngea This motivates development of 3-D spatial/temporal
image sequences for terrestrial Long Range Observatprocessing of video sequences. In this paper, we
Systems (LOROS). A two-stage fusion algorithm idemonstrate two such methods: 3-D local adaptive
suggested and implemented. At the first stage,nter-i filtering in DCT domain for image denoising and gpee

frame (temporal) intra-channel fusion for noiseustn correction, and elastic (local) and selective image



registration for compensating atmosphere turbulente the filtered imagea is obtained from its spectruna

steady scenes. 1
. through transforml  inverse toT :
The Thermal Range and the Visual Range Channels g

,l;\

have different behavior and feature different image a=T "a (3)_ _
distortions. Visual Range long distant near-earthPPlying the Mean Square Error (MSE) criterion for
observations are usually heavily affected by atrhesp evaluation of deviation of the processed imagé&om the
turbulence. This causes spatially and temporalhdoan target imagea one can obtain that the optimal filter
fluctuations in the index of refraction of the aspbere coefficientsn . that minimize MSE are defined as:
[19]. Thermal sensors, on the other hand, do nbtbétx * ) ,
atmosphere fluctuation sensitivity but quite ofteuffer TNopt =AV{a-B }./AV{B| } (4)
from substantial additive noise due to their wogkinghere Av{}is the averaging operator used in evaluation
conditions and to some other physical charactesig0]. Ca s . S

. ; . of MSE. ‘./’ is element-wise division of vector
In this paper, we present two different temporadida 5
techniques applied on each channel according to d¢smponents an4ﬁ| is element-wise squared modulefof
special cha_racterlstlcs, while both channels aee fased £, 5 signal distortion model formulated in thengrm
to produce improved results. domain as

The paper is organized as follows. Sectign

discusses intra-channel temporal fusion for therma . - :
channel using 3D de-noising and aperture correcti ere ) is a vector of transform coefficients that deserib

fitering method. Sect. 3 deals with temporal fusio!Mage distortions in the imaging system ands a vector

technique for compensating image blur due to atimersp that repre_sent random zero mean signal independent
turbulence. Inter-channel intra-frame data fusimmvisual SYStem noise, Eq. (4) gives

range and thermal images is discussed in Secindllfy 1y, = (L, /7")'(|7“|2AV MZ}J '/(NZAV {a|2}+AV HZ}J

Sect. 5 combines intra-frame and inter-channelgssiog

to produce a unified fusion mechanism for visuaige (6)

and thermal video sequences.

B=rea+v, (5)

In image restoration, noise parameters can be a&tta
from image acquiring system design or can be egtitha
2 The.rmal Range Channel Temporal from observed noisy sequences [14, 21]. Eq. (@essmts
Fusion Method a scalar Wiener filter for signal restoration. lise
Thermal images usually suffer from substantial tdeli requires a priory knowledge of signal and noiséistieal
noise and sensor's aperture distortions. When tiggactra AV{“|2} and AVMZ}. If these spectra are
sequences of thermal images are available, image . : L
temporal redundancy offers an additional option fél//_aluateq frqm the.observed distorted signals, ecapl
denoising and deblurring of images of still scerned11, iener filter is used:
21, 22], a sliding window transform domain 2-Ddiiing n=maX{0,(|ﬁ|2—Thr) /|l’|2} 7)
for still image restoration is described. In [18fplication .
of this method for denoising and enhancement obrcowere Thr is vector of empirical estimation of noise
still images is shown. In this paper, we extend thethod statistical spectral coefficients. This methodeafpirical
for 3-D spatial/temporal denoising of thermal imag@iener filtering is sometimes called “soft thregtiob”.
sequence processing. In Sect. 2.1 we provide & bre simplified version of the Empirical Wiener filteis
outline of the method and in Sect. 2.2 describe kgown as “rejecting” filtering or “hard thresholdjh
application to processing thermal image sequences a
present illustrative examples of processing test aval ISiQ”QNZ —Thr ) n 1J

life images. n= 5 (8)

In image processing, these filters can be applied
globally or locally. In global processing, filterare
Let bbe a vector of samples of distorted image to hiesigned and applied for entire image frames oroset
processedabe a vector of samples of undistorted imageames. Such filtering is justified if images care b
that is the goal of the processing and fetand @ are regarded as stationary spatial-wise and time-wise.

their corresponding spectra in the domain of ahazronal "€2lity this obviously is not the case. Local filkg in a
P gsp oo window of a finite size sliding both in spatial daim and

2.1 Sliding window DCT domain filtering

formT : ) S i . X
transform B=Tb: a=Ta @ time-wise is better suited non-stationary naturénmages
T . and enables efficient edge preserving image derwisi
Introduce a scalar filter described by vectgr of its (20, 11, 13, 21, 22))
spectral coefficients As for the selection of the transform for the filte
a=nep, 2 implementation, Discrete Cosine Transform (DCT)edf

where & is vector of the filtered image Spectrapne of the best choices. It is very efficient biottherms of

coefficients and(O) denotes element-wise (Hadamardé\n‘."‘ge energy compaction capability required for the
) ) ) fficient design of the empirical Wiener filter aimdterms
product of vectors. It is assumed in this formwalatthat



of the computational complexity of image filterigg1,
13, 22]).

3-D space-temporal sliding window filtering in DCT:

domain is used in this work for denoising and nesgton
of thermal image sequences.

2.2 Intra-Channel temporal fusion by means of
3D SWDCT filtering

Block diagram of the filtering is shown in Fig. Bor each
position of the cubic window, the DCT transformtbé
signal volume within the spatia-temporal cube
recursively computed from that of the previous posiof
the window. The signal spectra coefficients arenthen-
linearly modified according to Egs. (7) or (8). Tingerse
transform need not be computed for all pixels witthie
cube, since only the central sample of the cubetdhde
determined in order to form the output signal.
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i
\
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Fig. 1. Sliding cube 3D transform domain filtering

For testing the method, two sets of artificial tesbvie
were generated of images of bars and text witrewfft
level of additive Gaussian noise. Examples of exgss,
noisy and denoised test images are shown in Figed3.
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denoising. a) - initial test image; b) — noisy ta@sage
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Fig. 3 Image of a text fragment corrupted by asditi
noise (a) and a result of denoising with 3-D slidoube
5x5x5 filtering (b).

Corresponding demonstrative movies can be found on
authors' web-site ([23]).

Numerical results on noise suppressiqabaity of
the filtering obtained for the test images areelisin Table
1. Using these data one can evaluate improvements
achieved using 3-D filtering comparing to 2-D filtey of
individual image frames.

Table 1. Standard deviation of residual filteringoe
(RMSE) for 4-bar and text test image sequences

Block RMSE RMSE
Size (Noise STD=30) (Noise STD = 20)
4-Bar Text 4-Bar Text
3x3x1 19.97 24.90 12.45 18.42
3x3x3 13.90 17.88 8.86 12.4(
5x5x1 17.1 26.27 11.98 19.8¢
5x5x5 12.0 16.84 7.48 11.65

Figs. 4 and 5 illustrate noise suppression capgluifi3-D
sliding window filtering of real life thermal image
sequences.

Fig. 4. 3-D sliding 5x5x5 cube denoising thermaled
sequence: a) — a frame of original movie; b) —

corresponding frame of the processed movie.
Fig. 2. 2-D and 3-D sliding window DCT domain image

with additive zero mean Gaussian noise with stahdar

deviation 30 (in image range 0-255); c) result eb 2
image denoising in the window of 5x5 pixels; d)ulesf
3-D image denoising in the cube of 5x5x5 pixels.



with respect to a “reference” image derived frone th
sequence of image frames. These vectors are theehtos
"inverse-warp" image frames to their “stable” getmne
Using the same method, the areas of real motiabjafcts
in the scene are also detected and the detectoftseare
used for warping back only the static parts ofgesmthat
do not contain moving objects. In this way a scéne
restored where the only moving areas are the realing
objects.

3.1 Local image registration method

Assuming there is no real moving objects in thegedhe
mapping of one turbulent image to a stable “refeeén
image can be obtained by registration of certairalsm
spatial neighborhood, surrounding each pixel initmage,
to the reference image. In this way a field of moti
vectors is received. We refer to this method asotal
registration. A similar elastic registration methisdalso
described [28]. In it's simplest form, the meth@3dlanes
that it is sufficient to find only two translatigrarameters
of the translation vector for every pixel.

Let f(X,Y,t) be aturbulent source image frame,

f(x,y) be a target reference image, aAa and Ay
are translation parameters:

f(x,y,t)= f(x+dx, y+dy) 9)
The translation vecto =[Ax,Ay] is evaluated for a
small spatial neighborhood of every pixel through

minimization of the mean square differences betwtben
registered areas of the two images:

A, =min Z|f (X,y,t)— ff(x+Ax,y+Ay)|2 (10)

X,yeQ
where QQ denotes a small spatial neighborhood of pixel
(x, y). A first-order truncated Taylor series expressbn
Fig. 5. Another example of 3-D sliding 5x5x5 windo Eqg. 10is:
denoising thermal video sequence: a) a frame gfrai E(dx,dy) ~ ZIf (x,y,t)—
movie; b) — corresponding frame of the processedeno Xy

FOyD+ax-£,00y) +Ay- T () -af o] (1)
where f (), f (-) are the spatial derivatives df(.), and

3. Visual range temporal image fusion for
compensating  atmospheric  turbulent

Interferences Af (X, y) is temporal differer]ce given by
Atmospheric turbulence causes a random blur in imagl_ AT (X, y)_= f_(x, yO-fx, .y)' (12)
due to random fluctuations of the refraction ind#xhe 'h€ errorﬂfunctlon is than approximated as
air through which the light propagates. These €latibns E(A) Z|Aft —[f.f] -[Ax,Ay]| )? (13)
in the optical path length of the propagating ligigult in X,yeQ

phase and amplitude variations of the light's wawat. The minimum of the error function corresponds te th
Unlike astronomical systems, where the entire fraae gjyes ofA :

be modeled by the convolution of the object witsiragle, -

though random, point spread function, the longadist 3=[z[ foo 10 fy]TJ .[Z[fx, f,l- ftJ (14)
near-earth observation have wider field of view amd X.yeq X.yeQ

modeled by convolution with space variant and ramdoobtained by solving the equation:

point spread functions [24]. This causes smalg,)
neighborhoods in the image to randomly move iredéffit — = = Z_z'ﬁx’fy]'(ft fy fy1 7 [dx, dY]):0
directions in different frames. xyea

There is a variety of methods for perfecting of (15)

turbulent captured images [25-27]. In this workloeal
image registration method is used to find the tetion
vector for each pixel in each frame of the videquemce



3.2 Generating “reference” image and
turbulence compensation

For generating “reference” image for local regittra
pixel-wise rank filtering is used [15]. The use mink
smoothing filters such as median and alpha-trimmedn
empirically have shown substantiated in two wayisstfF
light beam propagating through a turbulent atmosphe
will deflect to any point within a certain radiusnd the
distribution of the deflection has a zero mean Whic
means that the center of this area will be in thmes
location where the light beam would hit if thererevano
turbulence present. Therefore, statistically, aebireal
value (if there were no turbulence) would be vdoge to
the mean of the array of the same pixel's valueslong
period of time. For the other side, for moving altgethat
accommodate a pixel for a short period of time, hkie
of those pixels will be pushed to the tails of gray level
distribution in a long sequence. Therefore rankeffil
instead of mean filter is required to eliminate nfro
averaging the distribution tales. It is importahatt the
number of the images will be high enough to elirtérthe
moving objects.

Using a “stationary” scene, and having found the
translation vector field, it is now possible to wagach
pixel of the turbulent image to its "true" locatiamere it
would have been if there had not been any turbelenc
This, in general, requires image re-sampling witiln-s
pixel shifts. We used a warp technique with diseshc-
interpolation in a moving window in the DCT domam
obtain the value of the intermediate pixels withstemean
square error [11, 29]. The resulting image is caosepoof
the interpolated pixels of the turbulent image telifinto
their true locations as if there was no turbulence.

For a better compensation, the result of the tedtul
compensation can be computed iteratively. For every
iteration, it is required to compute translatiorctee field . ¥ ki
using, as the source, the set of compensated infaged Fig. 7. The
in the previous iteration and the same referen@geras
the target. Then images obtained in the previcrsiibn
are warped again by discrete sinc-interpolatiomgishe
new calculated vector field. It has been found ur o
experiments, that this process converges very lsagiol
only two iterations are sufficient to obtain a neatimal
result.

In the presence, in the scene, of moving objeid it
necessary to distinguish between real motion ariitent
motion in the image sequence. To this goal, after
alignment of turbulent frames to the reference imabe
error function is computed again for every pixelewery
frame. Obtained arrays of errors contain two typés
errors: small errors due to the turbulence mis-
compensations and large errors typical for areathén
image where real moving objects appear. Areas dedup
by large errors can be easy detected and markinoa
mask for segmentation and extraction of moving acisje
from initial video sequence.

The proposed algorithm was tested on an artifieid0 iy g, The error function when the translationtoeds
sequence prepared by simulation and on real capture substituted

turbulent videos. Seqqe_nces co_nsiste_d of 128 imafesyp, example of an image frame from a real video sege
turbulent scenes containing moving objects. captured through turbulent atmosphere is showrign:

resulting image of the non-turbulent
background and unaffected vehicles (compare wigt6lyi




In the experiments, a median filter calculated ow®er through evaluation of noise floor in image logaéstra in
sequence of 128 images along the temporal axisusad a running window and estimation of impulse noise
to generate an un-distorted stationary “referenoege. probability through the histogram of the predictiemor
Error function found for this video sequence igstrated [21]. Experiments revealed that no impulse noises wa
in form of a weight error function in Fig. 8. Thamse presentin the images and that evaluation of additdise
frame generated by warping only the staticariance through analysis of image local corretatio
objects/background back to their true geometrioedtion function in running window of 13x13 pixels provid#ue
in the scene is shown in Fig. 7. In comparing viitage best results in both visual range and thermal oblann
of Fig. 6, the restored image background contdirssght One frame of the visual image sequence acquired
lines with no visible geometric distortions whildet from an observation system is shown in Fig. 9. &ufe of
moving vehicles also appear without any visibl&aats. the thermal video sequence was shown in Fig. 4a).
10 illustrates the importance of weighing fused ges

4. Inter-Channel Intra-Frame Fusion according to their local signal-to-noise ratio. @ra on

) the figure show row wise average power spectranafjes
The Inter-Channel Intra-Frame method is an exteneio fused without (solid line) and with the weighingottéd
the method presented by Farooq at el. [1]. Theofusij o) one can see from this figure that noise fisothe

technique consists in weighted pixel-wise averagiig ¢ qaq image generated with the weighing is subisignt
corresponding denoised thermal ;and turbulence- |gwer.

compensated visual randg, ,, images:

IR IR IR,N Visual Visual Visual ,N
| Fused Ly (Wep + W, L (W + W) )
Kl

)+
T WG W W W)
(16)
IR Visual

where (k,1) are pixels’ indices,(w,;,w,) are user
defined weights that specify “importance” of the
corresponding channel an«ﬁwl'(ff“,w‘(f?’a’“) are local

signal-to-noise ratios in the channels. The usdatdr
assumes that the higher the signal-to-noise ratiohée
channel the heavier is the pixel’'s weight.

For the visual range image weights® , the

local spatial/time variances of the intensity oé tiisual
range images were suggested in [1]. In our apprdaely
are computed as:

Visual Visual v
wisal 9 t+0, oy, 17) _ ) _ .
k| max{gllisuaj + gy 'Gzlk l)}’ Fig. 9. Visual range image captured from the video
(k1) ’ sequence
where g/ and g;* are user defined scalars awx}, ,,
are local image variances Computed ina runningjwj\n Fused images according to their local signal-to-hoise ratio

2000 T T T T T T T T
The thermal weight{w,") are determined in the e

i) S— (NN NN S ——
assumption that “importance” of pixels is determdirsy ' | ' '

-------- No SNR weighing

their contrast with respect to their backgroundraef as a [ - oo T e weighing. |
module of difference from an estimate of the “agefa ] S ‘ ' ' : : : :
neighborhood: i
IR IR IR 1 IR 1208
O +9; [l =)
w? | | (18) 1000

gl e i)

where g, and g;" are user defined scalars anti; are ol

the “average” neighborhood estimates. In ol

. . 400
experiments, two methods for the neighborhoc

“average”, Local Mean and Local Median [15, 21]vda 200 f-o-eee b MM ;
shown good resullts. o I T S S S A S
For determination of local signal-to-noise ratio i 0 20 M0 20 200 300 30 M0 0 380

visual range and thermal images, three methods
evaluating noise level in every pixel over pixel
neighborhood were tested: estimation of additivésao
variance through local autocorrelation function &
running window, estimation of additive noise vadan

‘T—'ig. 10 - Mean Power spectra of fused images withou
SNR weighing (dashed line) and with SNR weighing
(solid line)



Fig. 11. The Fused Image

Fig. 12 — Fused Image with 3D DCT noise reductiod a

Turbulence Reduction

Fig. 11 illustrates one frame of the fused imaggeferences

sequence generated using Eq. (17) and Eq. (18)nweite

weights evaluated using local correlation functiemsd [1] E. Lallier and M. Farooq, A Real Time Pixel-lev

with no denoising in the thermal channel. A franfiehe
final fused image sequence with 3-D SWDCT denoising
shown in Fig. 12. The video sequences can beaedmne
authors’ web-site ([30]).

(2]
5. Conclusion
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