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Abstract – A two stage fusion image processing system has been 
developed for visual and thermal range video streams. At the 
first stage, an intra-channel-inter-frame fusion is applied to each 
channel images independently, addressing each channel specific 
limitations.  Noise removing processing by means of 3D (spatial-
temporal) local DCT adaptive filtering is applied to the thermal 
channel video sequence. An algorithm that compensates image 
distortion due to the atmospheric turbulence is applied to the 
visual range channel video sequence. The second stage is inter-
frame intra-channel fusion. At this stage, thermal and visual 
range channel image frames are fused frame-by-frame using a 
weighted average scheme with locally adapted weights. 
Experimental results obtained for both simulated and real life 
thermal and visual range image sequences are demonstrated   
 
Keywords: Fusion, 3-D DCT, Elastic Registration Method, 
Sinc-interpolation, Optical Flow, Wiener Filtering, Weighted 
Average, Noise Estimation. 
 

1 Introduction  
The development of new imaging sensors has brought 
with it a need for image processing techniques that can 
effectively exploit data obtained from different sensors or 
for multiple images produced by the same sensor. This 
can be achieved by combining inputs from different 
sources to obtain a single composite frame with extended 
or enhanced information content. The goals of such fusion 
process are to extract all the useful information without 
artifacts while maintaining reliable and robust system with 
temporal stability and consistency. A number of works 
can be found in the literature regarding image fusion [1-
9]. Most of the works treat the fusion problem as an 
“Intra-Frame – Inter-Channel” fusion, hence using single 
pair of frames, usually from two different sensors, for the 
fusion process. This paper addresses the problem of 
temporal and spatial fusion of thermal and video range 
image sequences for terrestrial Long Range Observation 
Systems (LOROS). A two-stage fusion algorithm is 
suggested and implemented. At the first stage, an inter-
frame (temporal) intra-channel fusion for noise reduction 

and atmosphere turbulence distortions compensation is 
carried out. At the second, inter-channel intra-frame 
fusion stage, the two channels are combined to generate a 
final single channel video.  
 Several classes for digital image improvement and 
enhancement methods can be found in the literature. One 
class of methods uses the spatial (intra-frame) redundancy 
in images for image deblurring and denoising. Among 
these methods one can mention Wiener and empirical 
Wiener linear filtering for image denoising and aperture 
correction [10, 11], local adaptive linear filtering in 
transform, specifically, in DCT domain [12, 13], and non-
linear rank filtering [14, 15]. Another group of methods is 
intended for processing video sequences and uses the 
temporal redundancy in an image sequence. In this group 
one can find moving average integration [10, 16], motions 
estimation and AC/DC methods.  
 Observation systems, both thermal and video, 
produce a stream that is affected by imaging system 
(detector and electronics) and environmental noise. While 
combining a signal to a video sequence this noise can be 
described using 3-D noise models [10, 17, 18]. Therefore 
if estimation of noise and signal restoration is made in 2-D 
or 1-D domains, it remains suboptimal and can produce 
substantial artifacts. In particular,  

� Intra-frame (2-D) processing of video sequences 
results in flickering artifacts when observing frame by 
frame processed video.  

� Inter-frame only processing leaves artifacts due to 
image blur and fix pattern noise unprocessed. 
Efficient temporal noise reduction needs a long frame 
averaging [10] which may affect scanning scenes and 
moving objects. 

This motivates development of 3-D spatial/temporal 
processing of video sequences. In this paper, we 
demonstrate two such methods: 3-D local adaptive 
filtering in DCT domain for image denoising and aperture 
correction, and elastic (local) and selective image 



registration for compensating atmosphere turbulence on 
steady scenes. 
 The Thermal Range and the Visual Range Channels 
have different behavior and feature different image 
distortions. Visual Range long distant near-earth 
observations are usually heavily affected by atmospheric 
turbulence. This causes spatially and temporally random 
fluctuations in the index of refraction of the atmosphere 
[19]. Thermal sensors, on the other hand, do not exhibit 
atmosphere fluctuation sensitivity but quite often suffer 
from substantial additive noise due to their working 
conditions and to some other physical characteristics [20]. 
In this paper, we present two different temporal fusion 
techniques applied on each channel according to its 
special characteristics, while both channels are then fused 
to produce improved results. 
 The paper is organized as follows. Section �2 
discusses intra-channel temporal fusion for thermal 
channel using 3D de-noising and aperture correction 
filtering method. Sect. 3 deals with temporal fusion 
technique for compensating image blur due to atmosphere 
turbulence. Inter-channel intra-frame data fusion for visual 
range and thermal images is discussed in Sect. 4. Finally, 
Sect. 5 combines intra-frame and inter-channel processing 
to produce a unified fusion mechanism for visual range 
and thermal video sequences.  
 
2 Thermal Range Channel Temporal 

Fusion Method  
Thermal images usually suffer from substantial additive 
noise and sensor's aperture distortions.  When time 
sequences of thermal images are available, image 
temporal redundancy offers an additional option for 
denoising and deblurring of images of still scenes. In [11, 
21, 22], a sliding window transform domain 2-D filtering 
for still image restoration is described. In [13], application 
of this method for denoising and enhancement of color 
still images is shown. In this paper, we extend this method 
for 3-D spatial/temporal denoising of thermal image 
sequence processing. In Sect. 2.1 we provide a brief 
outline of the method and in Sect. 2.2 describe its 
application to processing thermal image sequences and 
present illustrative examples of processing test and real 
life images. 
 
2.1 Sliding window DCT domain filtering   
Let b be a vector of samples of distorted image to be 
processed, abe a vector of samples of undistorted image 
that is the goal of the processing and let 
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 and ✁  are 

their corresponding spectra in the domain of an orthogonal 
transform T : 

Tb
✂

� ; Ta✄ � . (1) 
Introduce a scalar filter described by vector ☎  of its 

spectral coefficients  ✆✝✞ ��ˆ ,  (2) 

where ✟ ˆ  is vector of the filtered image spectral 

coefficients and ���� ��������  denotes element-wise (Hadamard) 

product of vectors. It is assumed in this formulation that 

the filtered image â  is obtained from its spectrum ✟ ˆ  

through transform 1T ����  inverse to T : ✄Ta ˆˆ 1��    (3) 
Applying the Mean Square Error  (MSE) criterion for 
evaluation of deviation of the processed image â  from the 
target image a  one can obtain that the optimal filter 

coefficients opt
✠  that minimize MSE are defined as: 

� � � �2* ✡AV✡☛AV☞
���opt  (4) 

where ��.AV is the averaging operator used in evaluation 

of MSE. ‘ /. ’ is element-wise division of vector 

components and 
2✌
is element-wise squared module of ✍ . 

For a signal distortion model formulated in the transform 
domain as  ✎✏✡ ��� 	 ,  (5) 
where ✑  is a vector of transform coefficients that describe 
image distortions in the imaging system and ✒  is a vector 
that represent random zero mean signal independent 
system noise, Eq. (4) gives 
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In image restoration, noise parameters can be extracted 
from image acquiring system design or can be estimated 
from observed noisy sequences [14, 21]. Eq. (6) represents 
a scalar Wiener filter for signal restoration. Its use 
requires a priory knowledge of signal and noise statistical 

spectra � �2☛AV  and � �2
AV � . If these spectra are 

evaluated from the observed distorted signals, empirical 
Wiener filter is used: 
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were Thr  is vector of empirical estimation of noise 
statistical spectral coefficients.  This method of empirical 
Wiener filtering is sometimes called “soft thresholding”. 
A simplified version of the Empirical Wiener filter is 
known as “rejecting” filtering or “hard thresholding”. 
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In image processing, these filters can be applied 
globally or locally. In global processing, filters are 
designed and applied for entire image frames or set of 
frames. Such filtering is justified if images can be 
regarded as stationary spatial-wise and time-wise. In 
reality this obviously is not the case. Local filtering in a 
window of a finite size sliding both in spatial domain and 
time-wise is better suited non-stationary nature of images 
and enables efficient edge preserving image denoising 
([10, 11, 13, 21, 22]).  

As for the selection of the transform for the filter 
implementation, Discrete Cosine Transform (DCT) offers 
one of the best choices. It is very efficient both in terms of 
image energy compaction capability required for the 
efficient design of the empirical Wiener filter and in terms 



of the computational complexity of image filtering ([11, 
13, 22]).     

3-D space-temporal sliding window filtering in DCT 
domain is used in this work for denoising and restoration 
of thermal image sequences.  

                                                                                                                                                                                                            
2.2 Intra-Channel temporal fusion by means of 
3D SWDCT filtering 
 
Block diagram of the filtering is shown in Fig. 1. For each 
position of the cubic window, the DCT transform of the 
signal volume within the spatia-temporal cube is 
recursively computed from that of the previous position of 
the window. The signal spectra coefficients are then non-
linearly modified according to Eqs. (7) or (8). The inverse 
transform need not be computed for all pixels within the 
cube, since only the central sample of the cube has to be 
determined in order to form the output signal.  

 

  
 

Fig. 1. Sliding cube 3D transform domain filtering 
 
For testing the method, two sets of artificial test movie 
were generated of images of bars and text with different 
level of additive Gaussian noise.  Examples of noise-less, 
noisy and denoised test images are shown in Figs. 2 and 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. 2-D and 3-D sliding window DCT domain image 
denoising. a) - initial test image; b) – noisy test image 
with additive zero mean Gaussian noise with standard 
deviation 30 (in image range 0-255); c) result of 2-D 
image denoising in the window of 5x5 pixels; d) result of 
3-D image denoising in the cube of 5x5x5 pixels.  
 

 
a)                                       b) 

 
Fig. 3 Image of a text fragment corrupted by additive 
noise (a) and a result of denoising with 3-D sliding cube 
5x5x5 filtering (b).  
 
Corresponding demonstrative movies can be found on 
authors' web-site ([23]). 
          Numerical results on noise suppression capability of 
the filtering obtained for the test images are listed in Table 
1. Using these data one can evaluate improvements 
achieved using 3-D filtering comparing to 2-D filtering of 
individual image frames. 
 
Table 1. Standard deviation of residual filtering error 
(RMSE) for 4-bar and text test image sequences 
 

Block 
Size 

RMSE 
(Noise STD=30) 

RMSE 
(Noise STD = 20) 

 4-Bar Text 4-Bar Text 
3x3x1 19.97 24.90 12.45 18.42 
3x3x3 13.90 17.88 8.86 12.40 
5x5x1 17.1 26.27 11.98 19.89 
5x5x5 12.0 16.84 7.48 11.65 

 
Figs. 4 and 5 illustrate noise suppression capability of 3-D 
sliding window filtering of real life thermal image 
sequences.  
 

 
a)                                          b)  

Fig. 4. 3-D sliding 5x5x5 cube denoising thermal video 
sequence: a) – a frame of original movie; b) – 
corresponding frame of the processed movie.  
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b)  

Fig. 5.  Another example of 3-D sliding 5x5x5 window 
denoising thermal video sequence: a) a frame of original 
movie; b) – corresponding frame of the processed movie 
 
3. Visual range temporal image fusion for 

compensating atmospheric turbulent 
Interferences 

 
Atmospheric turbulence causes a random blur in images 
due to random fluctuations of the refraction index of the 
air through which the light propagates. These fluctuations 
in the optical path length of the propagating light result in 
phase and amplitude variations of the light's wave front. 
Unlike astronomical systems, where the entire frame can 
be modeled by the convolution of the object with a single, 
though random, point spread function, the long distant 
near-earth observation have wider field of view and are 
modeled by convolution with space variant and random 
point spread functions [24]. This causes small 
neighborhoods in the image to randomly move in different 
directions in different frames.  

There is a variety of methods for perfecting of 
turbulent captured images [25-27]. In this work, a local 
image registration method is used to find the translation 
vector for each pixel in each frame of the video sequence 

with respect to a “reference” image derived from the 
sequence of image frames. These vectors are then used to 
"inverse-warp" image frames to their “stable” geometry. 
Using the same method, the areas of real motion of objects 
in the scene are also detected and the detection results are 
used for warping back only the static  parts of images that 
do not contain moving objects. In this way a scene is 
restored where the only moving areas are the real moving 
objects. 

 
3.1   Local image registration method 
 
Assuming there is no real moving objects in the image, the 
mapping of one turbulent image to a stable “reference” 
image can be obtained by registration of certain small 
spatial neighborhood, surrounding each pixel in the image, 
to the reference image. In this way a field of motion 
vectors is received. We refer to this method as to local 
registration. A similar elastic registration method is also 
described [28]. In it's simplest form, the method assumes 
that it is sufficient to find only two translation parameters 
of the translation vector for every pixel.  

Let ),,( tyxf  be a turbulent source image frame,  

),( yxf  be a target reference image, and x����  and y����  

are translation parameters: 
),(),,( dyydxxftyxf ������������        (9)  

 The translation vector ],[ yx ����������������
�

 is evaluated for a 

small spatial neighborhood of every pixel through 
minimization of the mean square differences between the 
registered areas of the two images:  

����
��������

���� ����������������������������
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,

2
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where ����  denotes a small spatial neighborhood of pixel 
���� ����yx, . A first-order truncated Taylor series expression of 

Eq. 10 is: 
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where )(    xf , )(    yf  are the spatial derivatives of )(    f , and  

),( yxf t����  is temporal difference given by  

),(),,(),( yxftyxfyxf t ������������ .           (12) 

The error function is than approximated as 
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The minimum of the error function corresponds to the 

values of ����
�
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obtained by solving the equation: 
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3.2  Generating “reference” image and 
turbulence compensation 

 
For generating “reference” image for local registration, 
pixel-wise rank filtering is used [15]. The use of rank 
smoothing filters such as median and alpha-trimmed mean 
empirically have shown substantiated in two ways. First, 
light beam propagating through a turbulent atmosphere 
will deflect to any point within a certain radius, and the 
distribution of the deflection has a zero mean which 
means that the center of this area will be in the same 
location where the light beam would hit if there were no 
turbulence present. Therefore, statistically, a pixel real 
value (if there were no turbulence) would be very close to 
the mean of the array of the same pixel's values in a long 
period of time. For the other side, for moving objects that 
accommodate a pixel for a short period of time, the value 
of those pixels will be pushed to the tails of the gray level 
distribution in a long sequence. Therefore rank filter 
instead of mean filter is required to eliminate from 
averaging the distribution tales. It is important that the 
number of the images will be high enough to eliminate the 
moving objects.  

Using a “stationary” scene, and having found the 
translation vector field, it is now possible to warp each 
pixel of the turbulent image to its "true" location where it 
would have been if there had not been any turbulence. 
This, in general, requires image re-sampling with sub-
pixel shifts. We used a warp technique with discrete sinc-
interpolation in a moving window in the DCT domain to 
obtain the value of the intermediate pixels with least mean 
square error [11, 29]. The resulting image is composed of 
the interpolated pixels of the turbulent image shifted into 
their true locations as if there was no turbulence. 

For a better compensation, the result of the turbulent 
compensation can be computed iteratively. For every 
iteration, it is required to compute translation vector field 
using, as the source, the set of compensated images found 
in the previous iteration and the same reference image as 
the target. Then images obtained in the previous iteration 
are warped again by discrete sinc-interpolation using the 
new calculated vector field. It has been found in our 
experiments, that this process converges very rapidly so 
only two iterations are sufficient to obtain a near-optimal 
result.  

In the presence, in the scene, of moving object it is 
necessary to distinguish between real motion and turbulent 
motion in the image sequence. To this goal, after 
alignment of turbulent frames to the reference image, the 
error function is computed again for every pixel in every 
frame. Obtained arrays of errors contain two types of 
errors: small errors due to the turbulence mis-
compensations and large errors typical for areas in the 
image where real moving objects appear. Areas occupied 
by large errors can be easy detected and marked to form a 
mask for segmentation and extraction of moving objects 
from initial video sequence.  
The proposed algorithm was tested on an artificial video 
sequence prepared by simulation and on real captured 
turbulent videos. Sequences consisted of 128 images of 
turbulent scenes containing moving objects. 

  
Fig. 6. The turbulent captured image 

 

  
Fig. 7. The resulting image of the non-turbulent 
background and unaffected vehicles (compare with Fig.6). 

 

  
Fig. 8. The error function when the translation vector is 

substituted 
An example of an image frame from a real video sequence 
captured through turbulent atmosphere is shown in Fig. 6.  



In the experiments, a median filter calculated over a 
sequence of 128 images along the temporal axis was used 
to generate an un-distorted stationary “reference” image. 
Error function found for this video sequence is illustrated 
in form of a weight error function in Fig. 8. The same 
frame generated by warping only the static 
objects/background back to their true geometrical location 
in the scene is shown in Fig. 7. In comparing with image 
of Fig. 6, the restored image background contains straight 
lines with no visible geometric distortions while the 
moving vehicles also appear without any visible artifacts. 

 
4. Inter-Channel Intra-Frame Fusion 
 
The Inter-Channel Intra-Frame method is an extension of 
the method presented by Farooq at el. [1]. The fusion 
technique consists in weighted pixel-wise averaging of 
corresponding denoised thermal IRI and turbulence-

compensated visual range visualI  images: 
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where  ���� ����lk,  are pixels’ indices, ),( ,,
Visual

lk
IR

lk ww  are user 

defined weights that specify “importance” of the 

corresponding channel and ���� ����NVisual
lk

NIR
lk ww ,

,
,

, ,  are local 

signal-to-noise ratios in the channels. The use of later 
assumes that the higher the signal-to-noise ratio in the 
channel the heavier is the pixel’s weight. 

 For the visual range image weights Visual
lkw , , the 

local spatial/time variances of the intensity of the visual 
range images were suggested in [1]. In our approach, they 
are computed as:  
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where Visualg1 and Visualg2 are user defined scalars and V
lk ),(!!!!  

are local image variances computed in a running window.  

 The thermal weights )( ,
IR

lkw  are determined in the 

assumption that “importance” of pixels is determined by 
their contrast with respect to their background defined as a 
module of difference from an estimate of the “average” 
neighborhood: 
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where IRg1 and IRg2 are user defined scalars and  IR
lkI , are 

the “average” neighborhood estimates. In our 
experiments, two methods for the neighborhood 
“average”, Local Mean and Local Median [15, 21], have 
shown good results. 

For determination of local signal-to-noise ratio in 
visual range and thermal images, three methods for 
evaluating noise level in every pixel over pixel’s 
neighborhood were tested: estimation of additive noise 
variance through local autocorrelation function in a 
running window, estimation of additive noise variance 

through evaluation of noise floor in  image local spectra in 
a running window and estimation of impulse noise 
probability through the histogram of the prediction error  
[21]. Experiments revealed that no impulse noise was 
present in the images and that evaluation of additive noise 
variance through analysis of image local correlation 
function in running window of 13x13 pixels provided the 
best results in both visual range and thermal channels. 

One frame of the visual image sequence acquired 
from an observation system is shown in Fig. 9. A frame of 
the thermal video sequence was shown in Fig. 4(a). Fig. 
10 illustrates the importance of weighing fused images 
according to their local signal-to-noise ratio. Graphs on 
the figure show row wise average power spectra of images 
fused without (solid line) and with the weighing (dotted 
line). One can see from this figure that noise floor in the 
fused image generated with the weighing is substantially 
lower. 
 

  
Fig. 9. Visual range image captured from the video 

sequence 
 

  
Fig. 10 - Mean Power spectra of fused images without 
SNR weighing (dashed line) and with SNR weighing 
(solid line) 



  
Fig. 11. The Fused Image 

 
 
Fig. 11 illustrates one frame of the fused image 

sequence generated using Eq. (17) and Eq. (18) with noise 
weights evaluated using local correlation functions and 
with no denoising in the thermal channel. A frame of the 
final fused image sequence with 3-D SWDCT denoising is 
shown in Fig. 12.  The video sequences can be seen on the 
authors’ web-site ([30]). 
 
5. Conclusion  
The paper describes a two-phase fusion system for video 
and thermal streams, which utilizes temporal and spatial 
fusion techniques (Fig. 13). In Intra-Channel Inter-Frame 
fusion, compensating atmospheric turbulence in visual 
range images using local image registration method and 
image denoising in thermal images using 3-D sliding 
window filtering in DCT domain are performed. The final 
fusion is achieved through an Inter-Frame Intra-Channel 
technique based on the local weighted average method. 
While each method can stand for itself and has proven 
good results, the visual and thermal range image fusion 
system presented here is making use of them all to yield a 
better system in terms of robustness and visual quality.  
 

  
Fig. 13. The image fusion system 

  
Fig. 12 – Fused Image with 3D DCT noise reduction and 
Turbulence Reduction 
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