
ORIGINAL RESEARCH PAPER

Real-time 2D to 3D video conversion

Ianir Ideses Æ Leonid P. Yaroslavsky Æ
Barak Fishbain

Received: 2 April 2007 / Accepted: 1 August 2007 / Published online: 28 August 2007

� Springer-Verlag 2007

Abstract We present a real-time implementation of 2D

to 3D video conversion using compressed video. In our

method, compressed 2D video is analyzed by extracting

motion vectors. Using the motion vector maps, depth maps

are built for each frame and the frames are segmented to

provide object-wise depth ordering. These data are then

used to synthesize stereo pairs. 3D video synthesized in this

fashion can be viewed using any stereoscopic display. In

our implementation, anaglyph projection was selected as

the 3D visualization method, because it is mostly suited to

standard displays.

Keywords Real-time � 3D � Anaglyph � Depth-maps �
MPEG 4

1 Introduction

In recent years we are seeing great advances in the

development of stereoscopic display methods. These

advances include the use of autostereoscopic displays—

displays that enable unaided 3D viewing and multi-view

autostereoscopic displays—displays that show more than

two view points for a given scene [1, 2].

While display technology has greatly advanced, the

problem of content generation still lingers. Acquisition of

stereoscopic content is still problematic, mainly due to the

issues of temporal synchronization, as well as zoom and

focal properties of the stereo setup. In addition, stereo

setups do not enable the use of multi-view displays.

One possible solution to this problem is conversion of

2D to 3D video. One method of conversion relies on simple

time delay between frames and adjustment of left–right

images [3]. In this method, computations are only neces-

sary to align the images [4, 5] (in the case of anaglyph

projection) and to assess which image corresponds to the

left eye and which to the right. However, this method is

mostly suited for videos that contain lateral or rotational

motion, and even in these cases it does not allow to adjust

image parallax with the speed of the movement. The ulti-

mate approach is to use adjacent frames in order to

synthesize depth maps. These depth maps can then be used

to generate synthetic views, either a stereo pair for ste-

reoscopic vision, or multi views for multi-view

autostereoscopic displays. In addition, these depth maps

can also be used for other applications, as they contain

information on the 3D shape of the scene.

There are many methods to compute depth maps from a

stereo pair (or adjacent video frames). Among them are the

works of Lucas and Kanade [6], Horn and Schunck [7],

Periaswamy and Farid [8], Wu et al. [9], Alvarez et al. [10],

Schmidt [11] and Ran and Sochen [12]. This is a greatly

advancing field and a lot of effort is guided in this

direction.

The major drawback of all these methods is that they

require extremely computationally intensive operations.

While these may be feasible to implement in real-time on

modern high-end computers or dedicated hardware [13–

20], they are not suited for conversion of 2D to 3D video

on low-end hardware or thin clients. Moreover, while some

software solutions for depth map estimation (not including

stereo synthesis) for low resolution images (QVGA) and

hardware solutions for VGA resolution exist (http://www.

videredesign.com), with the introduction and gaining

popularity of high resolution HDTV, the amount of

I. Ideses (&) � L. P. Yaroslavsky � B. Fishbain

Department of Interdisciplinary Studies,

Tel Aviv University, 69978 Tel Aviv, Israel

e-mail: ianir@eng.tau.ac.il

123

J Real-Time Image Proc (2007) 2:3–9

DOI 10.1007/s11554-007-0038-9

http://www.videredesign.com
http://www.videredesign.com

computations has grown dramatically. It is obvious that any

additional information that may help to determine optical

flow without increasing the computational complexity or

introducing more computational operations is desirable.

In this paper, we present a method to generate depth

maps for 2D to 3D conversion in real-time utilizing the

properties of modern compression standards. In this

method, depth maps are constructed within the video

decoding stage, requiring very little extra computations for

their synthesis; in fact, depth maps can be created without

decoding the data stream at all. This method assumes three-

stage processing: (1) extraction of inter-frame disparity

maps; (2) converting the inter-frame disparity maps into

depth maps, and (3) generating, using the synthesized

depth maps, artificial stereo (two or multiple view) images.

This method was successfully implemented on standard

hardware with real-time performance [21]. In addition,

these depth maps can be used to complement other shape

estimations and serve as a first estimation (these depth

maps are only approximations of the true 3D geometry,

sufficient for 3D visualization) for accurate iterative depth

map estimation techniques.

2 Depth map calculation

In order to synthesize stereoscopic or multi-view videos,

one must first acquire a depth map. Calculating a dense

depth map is basically the process of finding the corre-

spondence between a pixel location in one frame and its

position in the other frame. This mapping of one image to

the other one can be obtained by registering a spatial

neighborhood, surrounding each pixel in one image, to the

other. In this way a field of disparity vectors is recovered.

Each pixel is then assigned its disparity. This can be per-

formed in several methods, among them are correlational

methods, optical-flow methods and hybrid methods as

described in the previous section. These methods are usu-

ally very computationally expensive and not suited for

computing high-resolution depth maps for video in real

time. An alternative to direct computation of these depth

maps is the extraction of motion vectors that exist in

compressed video files. For this work, MPEG 4 (H.264)

was selected because of its ability to compute motion

vectors with ¼ pixel accuracy for blocks as small as

4 · 4 pixels [22, 23].

2.1 Motion vector extraction

MPEG 4 (H.264) is a modern compression standard that

uses both temporal and spatial compression. While spatial

compression is basically a form of JPEG compression, it is

temporal compression that enables the high compression

rates of MPEG 4.

In temporal compression, each frame is divided into

blocks and block search is performed between adjacent

frames for the location of the blocks. In this fashion, it is

necessary to store the movement of the block from one

frame to the other, thus reducing the amount of information

to store.

MPEG 4 enables computation of motion vectors in

blocks as small as 4 · 4 pixels with quarter pixel accuracy

[22, 23]. These data are very useful for depth estimation. In

its simplest form, the horizontal, X-axis, motion vectors can

be used as depth data. This holds for cases where there is

only lateral motion on the X-axis and no scene motion is

present (a canonical stereo setup). For other motion types it

is necessary to make a transformation from motion vector

maps to depth maps. In our implementation, motion vector

maps were extracted as a part of the MPEG 4 encoder

schema. The encoder was instructed to extract motion

vectors for every frame (regardless of the ultimate frame

type) with the minimal block size.

2.2 Transformation of motion vector maps

to depth maps

In some cases, motion vector maps can be directly treated

as depth maps. This approximation holds when the two

images/frames are taken in parallel viewing or when they

are acquired in small ranges of disparity in the case of

epipolar acquisition. This is usually the case in computa-

tion of depth maps of 2D video. However, there are many

cases where this approximation does not hold. This hap-

pens when the motion is either too rapid in terms of camera

rotation or in the case of camera zoom. Such cases can be

detected by analysis of the motion vector maps and dealt

with.

In the case of zoom, it is necessary to change the

dynamic range of the depth values (while cropping out

border pixels), the amount of dynamic range scaling has to

be congruent with the zoom factor, for the purpose of

visualization this has to be visually comfortable rather than

true-to-life accurate. In the case of rotation around a spe-

cific object, one needs to invert the disparity values, so that

the close object receives high disparity values although it

appears to be static. Other depth values should remain the

same. This is a non-trivial case and indeed is error prone.

In our implementation, we treated motion as a sole depth

cue, namely, we calculated the depth solely on the values

of the X and Y motion vector values. The depth was esti-

mated by

D i; jð Þ ¼ c
ffi

MVði; jÞ2x þMVði; jÞ2y
q

ð1Þ

4 J Real-Time Image Proc (2007) 2:3–9

123

where D(i,j) is the depth value for pixel (i,j) and MV(i,j)x,

MV(i,j)y are the X and Y motion vectors values for that

pixel, respectively, and c is a custom defined scale

parameter.

The scaling parameter c can be utilized in two ways,

either automatically, or set as a user-selected factor. In our

implementation, both methods are supported. One may opt

to scale the parameter to fit the maximal disparity over all

frames—simply adding a constant gain to the depth map

values, or perform automatic scaling unto some predefined

parallax, keeping maximal parallax constant in all frames.

In essence this operation stretches the dynamic range of all

depth maps to this level (a nominal parallax value for

comfortable viewing is of the order of 20 pixels). In order

to have motion vectors for every pixel (the MPEG standard

assigns motion vectors to blocks) nearest neighbor inter-

polation was used. Using this simple interpolation does not

significantly reduce the quality of the resulting 3D video as

was shown by Yaroslavsky et al. [24, 25] and does not

require any extra computation. Although more accurate and

still computationally simple interpolation methods such as

linear interpolation are also feasible, we opted not to use

them in order to keep extra computations to minimum.

3 Video synthesis

It is known that using a depth map and one of the images of

the stereo pair, it is possible to reconstruct the stereo pair

for autostereoscopic display or an anaglyph. In order to

generate these synthetic 3D images, methods that rely on

image resampling are used. In our implementation, the

image is oversampled four times in the X-axis to enable the

use of the quarter pixel accuracy and then resampled by a

grid that is controlled by the depth map.

Interpolation is based on the same scheme that MPEG 4

employs; namely, the image is interpolated to double size

using a six-tap filter and then bilinear interpolation to

achieve four times interpolation. This interpolation was

chosen because this type of interpolation is efficiently

implemented within the MPEG CODEC.

In this manner we are able to simulate the disparity that

can be observed in the stereo pair. It should be noted that

this method does not guarantee the resulting stereo pair to

be identical to the original stereo pair, due to the depth map

inaccuracies and the cases of occlusion. Furthermore,

because of the different views, the right image contains

pixels that cannot be seen in the left image and vice

versa—this due to the limited field of view. These details

cannot be recreated using a resampling process, be it as

accurate as possible. However, for 3D visualization, syn-

thetic views are sufficient for 3D perception.

A flow chart of this process is shown in Fig. 1.

4 Visualization

3D video can be visualized in many ways, among them are

autostereoscopic displays, shutter glasses, polarizing glas-

ses, and anaglyphs. Anaglyphs are the most economical

and easily attainable method for 3D visualization and most

suited for viewing using standard hardware. This method,

as opposed to other techniques such as polarized glasses, or

shutter glasses, requires no special display hardware and

the glasses can be made from simple materials found in the

hobby shops.

Anaglyphs produce a visual effect of 3D images when

viewed using color-filtering spectacles. Synthesis of ana-

glyphs is a simple process in which the red channel in one

image is replaced by the red channel of the second image

of the stereo pair. Because conventional anaglyphs usually

suffer from ghosting effects, in our implementation we

used several techniques to improve the visual quality of

these images [4]. Specifically, defocusing of the red

channel and depth map compression were used.

5 Data

In our experiments, video sequences were acquired using

standard digital cameras and saved as motion JPEG

(MJPEG) sequences. These were then separated to JPEG

image frames, so that adjacent frames could be dealt with

as stereo pairs. For testing different motion types, the

camera was moved along the X- and Y-axes. Rotation

around an object was also tested. In addition, we tested our

method on public broadcast video.

Our implementation accepts as input a series of frames

to be encoded, however, it can also be used to calculate

depth maps for stereo pairs by simple interleaving of the

still images. Our tests were performed, both on video

frames and on stereo pairs. Examples of video frames and a

stereo pair can be seen in Figs. 2 and 3, respectively.

6 Results

The images were fed to the video encoder and disparity

maps were computed for every frame/stereo pair. The

encoder’s output included a standard MPEG 4 stream, as

well as X and Y disparity maps. These disparity maps

were then used to synthesize depth maps and 3D video

from the compressed video stream in real-time (25 fps)

for QVGA sized videos on a standard P4 2.8 GHz PC.

This performance relates both to video decoding and

conversion. Analysis of the computational complexity

shows that most of the computations are spent in the

standard video decoding stage, the extra computation

J Real-Time Image Proc (2007) 2:3–9 5

123

required to sample the image prior to resampling (effi-

ciently coded within the MPEG decoder) and the

operation performed on the X and Y motion fields (in

Eq. 1) are far lower than that of the MPEG decompressor.

In principle, between these two operations, the most

computationally expensive is the motion field

Fig. 1 Flow diagram of 2D to

3D conversion for anaglyph

display. The incoming image is

split to its RGB components.

For anaglyphs display it is

sufficient to synthesize only the

left channel of the artificial

stereo pair. This is performed by

resampling the red channel

according to the depth map.

Finally the channels are merged

together to form the anaglyph

Fig. 2 Frames taken from a

video sequence

Fig. 3 A stereo pair

6 J Real-Time Image Proc (2007) 2:3–9

123

computation—one square root operation, one addition

operation and two operation of raising to the power of

two per image pixel.

An example of a depth map generated from video

frames is shown in Figs. 4 and 5 which show a comparison

of the depth maps to those attained by other optical flow

methods. An example of a stereo pair and a resulting depth

map is shown in Fig. 6, resulting depth maps can be

compared to other optical flow methods in Fig. 7.

By performing the processing described in previous

sections, we were able to reconstruct the stereo pair and

generate anaglyphs, shown in Figs. 8 and 9.

Fig. 4 Video frames (left and

right images) and the

corresponding depth map

(center image). Although the

resulting depth map does not

show the exact metrics of the

stereo pair, it is sufficient for the

purpose of visualization

Fig. 5 Comparison of the MPEG based depth map to other

commonly used optical flow method. It can be seen that the MPEG

depth map contains the important motion elements. The Lucas &

Kanade implementation and elastic registration in this case were able

to produce a similar depth map (although with some missing details).

It should be noted that the MPEG based depth map does include noise

artifacts and should be smoothed prior to being used for visualization

Fig. 6 Stereo images (left and right images) and the corresponding depth map (center image)

Fig. 7 Comparison of the MPEG based depth map to other

commonly used optical flow method. It can be seen that the MPEG

depth map contains the important motion elements that are missing in

the Elastic Registration implementation. The Lucas & Kanade

algorithm in this case was able to produce a similar depth map. It

should be noted that the MPEG based depth map does include noise

artifacts and should be smoothed prior to being used for visualization

J Real-Time Image Proc (2007) 2:3–9 7

123

7 Future work

The depicted algorithm has been shown to produce quite

good depth maps and 3D visualization for several motion

types—horizontal and vertical translation and camera

rotation and zoom.

Like all shape from motion algorithms, this algorithm

fails to extract shape when no motion is apparent. Given a

static scene (static camera and no object motion), no depth

can be recovered and 3D perception would be impossible.

One method to retain 3D information in videos in this case

is by identifying this scenario and repeating the depth maps

that were computed until then. If no depth maps were

computed, no depth can be visualized.

Another inherent drawback to this method is that a

remote object that moves with great velocity can be

interpreted as closer than a closer slow moving object.

In these cases, other shape extraction algorithm such as

shape from focus, shape from occlusion and shape from

perspective are in order.

8 Conclusions

In this paper we have described a method to generate high

quality anaglyphs from compressed video sequences. Our

method relies on computation of depth maps from adjacent

video frames. For this purpose we extracted the motion

vectors found in the MPEG 4 standard and transformed

them into depth maps. We demonstrate this ability for

stereo pairs, either as a set of images acquired using a still

camera and interleaved for MPEG compression, or adja-

cent frames extracted from a video stream.

Video motion, as opposed to stereo pairs usually pre-

sents a greater challenge than still images, due to the nature

of motion that may vary from frame to frame. In order to

tackle this we used a temporal distance that was small

enough to allow stereo pair approximation.

Visualization of the 3D videos can be achieved using

any 3D display device available. In our implementation we

used anaglyphs because of their suitability to standard

display hardware.

Examples of video streams converted to 3D are avail-

able on the web (http://www.eng.tau.ac.il/*ianir/

3DVideo.html). Limitations of this algorithm such as

cases of no motion are acknowledged and left for future

research.

References

1. Blundell, B., Schwarz, A.: Volumetric Three Dimensional Dis-

play Systems. Wiley, New York (2000)

2. Halle, M.: Autoestereoscopic displays and computer graphics.

Comput. Graph. (ACM) 31, 58–62 (1997)

3. Ideses, I., Yaroslavsky, L.: A method for generating 3D video

from a single video stream. VMV 2002 435–438 (2002)

4. Ideses I., Yaroslavsky L.: 3 methods to improve quality of colour

anaglyphs. J. Optics. A: Pure, Applied Optics 7(12), 755–762 (8)

(2005)

5. Ideses, I., Yaroslavsky, L.: New methods to produce high quality

color anaglyphs for 3-D visualization. In: Image Analysis and

Recognition: International Conference ICIAR 2004, Lecture

Notes in Computer Science. pp. 273–280. Springer, Heidelberg

(2004)

6. Lucas, B., Kanade, T.: An iterative image registration technique

with an application to stereo vision. In: Proceedings of 7th

International Joint Conference on Artificial Intelligence (IJCAI),

pp. 674–679 (1981)

7. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17,

185–203 (1981)

8. Periaswamy, S. Farid, H: Elastic registration in the presence of

intensity variations. IEEE. Trans. Med. Imaging. 22(7) (2003)

9. Wu, Y.T., Kanade, T., Li, C.C., Cohn, J.: Image registration using

wavelet-based motion model. Int. J. Comput. Vis. (2000)

10. Alvarez, L., Deriche, R., Sanchez, J., Weickert, J.: Dense dis-

parity map estimation respecting image discontinuities: a PDE

and scalespace based approach. Technical Report RR-3874, IN-

RIA (2000)

11. Schmidt, J., Niemann, H., Vogt, S.: Dense disparity maps in real-

time with an application to augmented reality. In: IEEE

Fig. 8 Color anaglyph with P-law (P = 0.5) compressed depth map

Fig. 9 Color anaglyph with P-law (P = 0.5) compressed depth map

8 J Real-Time Image Proc (2007) 2:3–9

123

Workshop on Applications of Computer Vision (WACV 2002),

3–4 December 2002. IEEE Computer Society, Orlando

12. Ran, A., Sochen, N.A.: Differential Geometry Techniques in

Stereo Vision Proceedings of EWCG, pp. 98–103 (2000)

13. Corke, P., Dunn, P.: Real-Time Stereopsis Using FPGAs, IEEE

TENCON—Speech and Image Technologies for Computing and

Telecommunications, pp. 235–238 (1997)

14. Faugeras, O. et al.: Real time correlation based stereo: algorithm,

implementations and applications. INRIA Technical Report 2013

(1993)

15. Kimura, S., Kanade, T., Kano, H., Yoshida, A., Kawamura, E.,

Oda, K.: CMU video-rate stereo machine. Proceedings of Mobile

Mapping Symposium (1995)

16. Konolige, K.: Small vision systems: hardware and implementa-

tion. In: Eighth International Symposium on Robotics Research,

Hayama, Japan (1997)

17. Kimura, S., Shinbo, T., Yamaguchi, H., Kawamura, E., Naka, K.:

A convolver-based real-time stereo machine (SAZAN). CVPR,

pp. 457–463 (1999)

18. Matthies, L.: Stereo vision for planetary rovers: stochastic mod-

eling to near realtime implementation. Int. J. Comput. Vis. 8, 71–

91 (1992)

19. Mulligan, J., Daniilidis, K.: Real-time trinocular stereo for tele-

immersion. ICIP (2001)

20. Woodfill, J., Von Herzen, B.: Real-time stereo vision on the

PARTS reconfigurable computer. In: Proceedings of IEEE

Workshop FPGAs for Custom Computing Machines, pp. 242–

250 (1997)

21. Ideses, I.P., Yaroslavsky, L.P., Vistuch, R., Fishbain, B.: 3D

video from compressed 2D video. In: Proceedings of Stereo-

scopic Displays and Applications XVIII. SPIE and IS&T, San

Jose, CA (2007)

22. Ohm, J.R.: Stereo/multiview video encoding using the MPEG

family of standards. In: Merritt, O.J., Bolas, M.T., Fisher,S.S.,

(eds.) The Engineering Reality of Virtual Reality, vol. 3639, pp.

242–253. SPIE, San Jose (1999)

23. Wiegand, T., Sullivan, G.J., Bjøntegaard, G., Luthra, A.: Over-

view of the H.264/AVC video coding standard. IEEE. Trans.

Circ. Syst. Video Technol. 13(7), 560–576 (2003)

24. Yaroslavsky, L.P., Campos, J., Espı́nola, M., Ideses, I.: Redun-

dancy of stereoscopic images: experimental evaluation. Opt.

Express. 13, 10895–10907 (2005)

25. Yaroslavsky, L.P.: On redundancy of stereoscopic pictures. In:

Proceedings of Image Science ‘85, Helsinki, Finland, 11–14 June

1985, vol. 1, pp. 82–85. Acta Polytechnica Scandinavica, no. 149

(1985)

Author Biographies

Ianir A. Ideses is a Ph.D. stu-

dent in the School of Electrical

Engineering in Tel Aviv Uni-

versity, researching 3D

visualization, synthesis and

compression. Ianir holds an

M.Sc. degree in Electrical

Engineering from Tel Aviv

University (Magna cum laude,

2004) and a B.Sc. degree in

Electrical Engineering from the

Technion, Israel’s Institute of

Technology (1998).

Leonid P. Yaroslavsky MS

(Summa cum laude, 1961),

Ph.D. (1968), Dr. Sc.-Phys.

Math. (1982). Till 1995, he had

headed a Laboratory of Digital

Optics at the Institute for Infor-

mation Transmission Problems,

Russian Academy of Sciences.

From beginning of 1995, he is a

Professor at Department of

Interdisciplinary Studies, Fac-

ulty of Engineering, Tel Aviv

University. He has authored

several books and more than

100 papers on digital image

processing and digital holography. He is also a Fellow of Optical

Society of America.

Barak Fishbain is a Ph.D. stu-

dent in the school of Electrical

Engineering in Tel Aviv Uni-

versity, researching video

enhancement through super

resolution and motion estima-

tion algorithms for traffic

monitoring and remote sensing

applications videos. Barak holds

an M.Sc. degree in Electrical

Engineering from Tel Aviv

University (2004) and a B.Sc.

degree in Electrical Engineering

from the Technion, Israel’s

institute of Technology (1998).

J Real-Time Image Proc (2007) 2:3–9 9

123

	Real-time 2D to 3D video conversion
	Abstract
	Introduction
	Depth map calculation
	Motion vector extraction
	Transformation of motion vector maps �to depth maps

	Video synthesis
	Visualization
	Data
	Results
	Future work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

