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Abstract The paper presents a real-time algorithm that

compensates image distortions due to atmospheric turbu-

lence in video sequences, while keeping the real moving

objects in the video unharmed. The algorithm involves (1)

generation of a ‘‘reference’’ frame, (2) estimation, for each

incoming video frame, of a local image displacement map

with respect to the reference frame, (3) segmentation of the

displacement map into two classes: stationary and moving

objects; (4) turbulence compensation of stationary objects.

Experiments with both simulated and real-life sequences

have shown that the restored videos, generated in real-time

using standard computer hardware, exhibit excellent sta-

bility for stationary objects while retaining real motion.

Keywords LOROS � Turbulence compensation �
Real-time processing � Rank filtering � Optical-flow

1 Introduction

Long range observation systems (LOROS) is a domain,

which carries a lot of interest in many fields such as

astronomy (i.e. planet exploration), geology (i.e. topo-

graphical measurements), ecology, traffic control, remote

sensing, and homeland security (surveillance and military

intelligence). Ideally, image quality in LOROS would be

limited only by the optical setup used, but the major cause

for image distortion in such systems is atmospheric tur-

bulence. Atmospheric turbulence causes spatially and

temporally chaotic fluctuations in the index of refraction of

the atmosphere [1]. In remote sensing applications, light

propagates long paths through the lower atmospheric

regions (Troposphere) and the effect can be very destruc-

tive to the acquired image.

The troposphere layer is in constant motion due to winds

and local temperature variations [2]. These variations cause

formation air pockets, which have a uniform index of

refraction and can be modeled as spherically shaped tur-

bulent cells in a range of sizes and densities (referred to as

‘‘turbulent eddies’’). This causes small neighborhoods in

the image sequences to chaotically move in different

directions in different frames. As a result, videos captured

by optical sensors in the presence of atmospheric turbu-

lence are very unstable and degraded in their resolution and

geometry. One, who observes a turbulent affected scene,

might feel uncomfortable watching the wavering output.

Difficulties to observe real-moving objects when the entire

image contains motion, due to turbulence, are also present.

Therefore it is desirable to mitigate the turbulence distor-

tions making the observation task more comfortable.

Precise image instability compensation algorithm working

in real-time will eventually allow integration of this algo-

rithm into an embedded computer in the field.

In astronomical systems, the observed scene has a nar-

row field of view and the entire frame can be modeled by

the convolution of the object with a single, though random,

point spread function. Adaptive optics methods were sug-

gested for dealing with turbulence in astronomical imaging

systems [3–5], where aberrations induced by the atmo-

sphere were compensated using mechanical means.

Remote sensing in terrestrial observations is affected by

turbulence in a different way than astronomical systems.

Long distant troposphere observations have wider field of

view and are modeled by convolution with space variant

B. Fishbain (&) � L. P. Yaroslavsky � I. A. Ideses

Department of Interdisciplinary Studies, the Iby and Aladar

Fleischman Faculty of Engineering, Tel-Aviv University,

Tel Aviv 69978, Israel

e-mail: barak@eng.tau.ac.il

123

J Real-Time Image Proc (2007) 2:11–22

DOI 10.1007/s11554-007-0037-x



and random point spread functions [6]. This is referred to

as anisoplanatic imaging. For a short exposure of the sen-

sor, the turbulence effect manifests itself mostly in a

geometric distortions and less so in terms of blur. In long

exposures, the images are much more blurred. In aniso-

planatic imaging, light from each of the points in the scene

acquired a slightly different tilt and low order aberration,

causing the images of these points to be randomly dislo-

cated from their correct geometrical positions. Hardware

solutions involving adaptive optics fundamentally cannot

meet the goal of improving the entire image, since even if

we were to assume that a suitable wave front sensor beacon

were present, adaptive optical systems can correct only a

single isoplanatic patch of the image.

Some methods for turbulence distortions compensation

of images acquired through the troposphere layer suggest

finding the modulation transfer function (MTF) of the

observed scene and inverse filtering the output image to

obtain turbulent free images [7–9]. Extracting the MTF

from the video sequences, however, requires some partic-

ular knowledge of the image content beforehand.

The effects of turbulence on imaging systems were

widely recognized in the 1950s and 1960s. A number of

methods were proposed to mitigate these effects [1, 3–5, 7–

14]. The research that has been carried out until now dealt

with turbulence compensation by optical and physical

terms. Adaptive optics methods, as described earlier, are

not adequate for this task. The mentioned MTF methods,

on the other hand, require some prior knowledge about the

sequence and can not cope with space variant distortions.

An image processing based turbulence compensation

algorithm applying local neighborhood methods without

prior knowledge about the scene observed, was suggested

in [15–18]. The principal idea is using, for reconstructing

distortion-compensated image frames, an adaptive control

grid interpolation controlled by estimations of the spatially

local displacement vectors. The algorithm also manages to

preserve the genuine motion of the object by evaluating its

motion vectors characteristics and making a decision

whether to make the correction (turbulent motion) or not

(real motion). However, the method for distinguishing real

from turbulent motion presented in the published algorithm

has quite high computational complexity and did not allow

real-time implementation.

The present paper suggests, for this class of problems, a

real-time algorithm that consists of three building blocks:

(1) estimation of the stationary scene, (2) real motion

extraction, and (3) generation of stabilized frames. To

preserve real motion in the scene, the moving objects are

located and the compensation for the distortion of the

turbulence is applied only to the stationary areas of images.

Each block is purposely designed for matching real-time

processing requirements.

For real motion extraction, a reference image, which is

an estimate of the stable image of the scene, is computed.

An element-wise rank filtering in a temporal sliding win-

dow is suggested for obtaining the reference stable image

[19]. For matching real-time requirements, the paper pro-

poses using a fast recursive algorithm for calculating a

specific rank order statistics. The reference image compu-

tation is addressed in Sect. 2.

In order to achieve real motion detection, it is necessary,

for each pixel in the processed frame, to decide if it belongs

to a moving or to a stationary object. For the decision-

making, the reference image is used, as it keeps only the

non-moving stationary objects. To speed up the processing,

a two-step hierarchical decision mechanism is suggested:

• The first step is aimed at extracting areas, such as

background, that are most definitely stationary. In most

cases, a great portion of the pixels located in stable

parts of the scene will be extracted at this stage. This

first phase is detailed under Sect. 3.1.

• At the second step, the rest of the pixels are dealt. It

improves the accuracy of detecting real movement at

the expense of higher computational complexity. As it

handles a small portion of the pixels, its higher

computational complexity does not substantially reduce

the total computation speed. This stage uses computing

and processing of optical flow data. Discriminating real

motion from turbulent one is achieved through statis-

tical analysis of the magnitude and angle of the motion

field. This is presented in Sect. 3.2.

Finally, all pixels in the incoming frame that are tagged

as stationary are found by means of a pixel-wise combi-

nation, through fuzzy logic, of the input frame and the

reference one. In this way, turbulence distortions are com-

pensated while keeping the real moving objects in the video

unharmed. In the resulting stabilized scene, intended for

visual analysis, moving objects are left unharmed and are

easily detectable and tracked in a stable background. Sec-

tion 4 describes the generation of the stabilized sequence.

2 Computation of the reference stable image

In the turbulence compensation process, the reference

image is an estimate of the stable scene. Such an image has

to be obtained from the input sequence itself [9, 20, 21]. In

order to achieve optimal results, the reference image

should have the following properties:

• The reference image should contain only the static

background with no moving objects in it.

• It should contain no turbulent induced geometric

distortion.
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In order to generate a reference image, one has to, for

each time window, (1) take the current frame as the ref-

erence; (2) compute motion vectors for each frame in the

time window with respect to this reference frame; (3) find

pixel-wise means for motion vectors; (4) resample pixels of

each frame to the positions defined be the means; this will

generate a stabilized sequence. This process presents high

computational load, and therefore an approximate solution

is suggested.

The suggested solution generates the reference image

using a pixel-wise rank filtering in a temporal sliding

window. Specifically, temporal adaptive median filter is

used for estimation of the stable scene, although other rank

filters such as alpha-trimmed mean [15, 22] can also be

considered. The size of the window, or the number of

frames N, over which the temporal rank filtering is carried

out, is determined by the atmospheric turbulence correla-

tion over the time domain, meaning that the longer the time

correlation of the turbulence effect, the larger the temporal

sliding window. In addition, it is important that the number

of the images be sufficient enough to efficiently eliminate

the moving objects. Figure 1 illustrates such an estimation

of a stable scene from a real life turbulent video. Figure 1a

presents a single frame taken from a turbulent distorted

sequence (the entire sequence can be downloaded from

[23]), while Fig. 1b presents the estimation of the stable

scene calculated by temporal median over 117 frames. One

can clearly see that chaotic geometrical distortions in (a)

are removed in the stable estimation (b).

Generally, the rank filtering and, specifically, median

filtering has high computational complexity since a sorting

operation is carried out for each median computation.

Exploiting the fact that the median computation is held

over a sliding time window allows utilizing a fast recursive

method for median filtering. The fast median recursive

computation method used is a variation of the method

described in [24]. First it holds an initialization process, in

which odd number of N frames comprising the temporal

window are read and the temporal histograms are com-

puted for each pixel. Having completed the initialization

process, for each pixel the following data is maintained: (a)

the temporal window gray-level histogram; (b) the actual

gray-level median value (b-parameter); (c) the number of

pixels in the window having the same intensity level as the

median (c-parameter); (d) the number of pixels in the

temporal window, which have lower gray-level values than

the median (d-parameter).

Upon new frame acquisition, for each pixel, these data

are updated according to the new and departing values of

the moving window. If the departing or new values equal to

the median then the c-parameter for that pixel is decreased

or, respectively, increased by one; if the departing or new

values have lower value than the current median then d -

parameter is decreased or increased in the same manner.

Upon completion of the update process, one can be

determined if the conditions described by Eqs. (1) and (2)

are fulfilled.

d\
N þ 1

2
ð1Þ

cþ d½ � � N þ 1

2
ð2Þ

If this is the case, then the pixel has preserved its median

value (b). If this is not the case, for a given pixel, the

median is calculated using the temporal histogram (a) and

the pixel’s corresponding b-, c- and d- parameters are

updated. Typically, the median values do not change sig-

nificantly over time. Therefore the need for calculating the

histogram for every pixel in every incoming frame will be

notably smaller, thus decreasing the load derived due to the

median computation.

Figure 2 contains three different frames (a), (c) and (e),

taken in different times, from a real-life turbulent sequence

(see [23] for the entire sequence). The same location is

marked with a cross on each of those images. Images (a),

(c) and (e) are taken before, throughout and after the bird

passes through the marked pixel. The temporal histogram

(over 117 frames) of this location is given in (b), (d) and

(f). The gray-level histogram is computed in a temporal

window centered at the corresponding frame. The gray-

level of the median value is marked with a dashed line.

The median gray-level’s standard deviation throughout

the entire sequences was 3.05 gray-levels, which, for the

human observer, is an insignificant difference. The median

value itself rarely changes throughout the sequence. In this

specific example, the median was recalculated for less than

1% of the pixels.

Fig. 1 Temporal median rank filtering for estimation of the stable

scene: a a sample frame taken from a turbulent distorted video; b the

corresponding stable scene estimation
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3 Real motion extraction

In order to avoid, in course of the turbulence compensation

process, compensation of real motion, pixels that represent

real moving objects must be extracted from the observed

frames. A following two-stage decision-making algorithm

for moving object extraction meets requirements of efficient

real-time computation. The first step is aimed at extracting

areas, such as background, that are most definitely station-

ary and can be extracted in a very simple and fast way. In

most cases, a great portion of the stable parts in the scene

will be extracted at this stage. The rest of the pixels are dealt

with at the second step. The second step improves extrac-

tion accuracy at the expense of higher computational

complexity, but it handles a substantially smaller portion of

the pixels. This stage uses computing and statistical analysis

of optical flow for motion segmentation [15–18].

3.1 Real motion extraction—stage I

At this phase, the gray-level difference between running

value of each pixel of the incoming frame and its temporal

median (Distance From Median, MDMx,y,t), is calculated as

‘‘real-motion measure’’ (Eq. 3).

DFMx;y;t ¼ Ix;y;t � �Ix;y;t ð3Þ

where t is index of the current processed frame and �Ix;y;t is

its median over the temporal window (X) centered at t

�Ix;y;X ¼ MEDx;y Ix;y;X
� �

ð4Þ

If the distance DFMx,y,t is below a given pre-defined

threshold, the pixel is considered to be of a stationary

object. The threshold is determined by exploiting the

observer’s limitation of distinguishing between close gray-

levels. Background areas, which do not belong to a moving

object nor are located near edges, will be resolved in this

way, since these areas suffer less from turbulent distortion.

All other pixels that are not resolved at this stage are

processed at the next phase.

Figure 5 illustrates real-motion extraction using the

above distance measure from the reference frame. Figure 5a

is a single frame taken from a turbulent degraded sequence.

The frame presented in Fig. 5b is the stable scene median

estimation. Applying a difference threshold of 10 gray-

levels, on the pixel-wise absolute difference between figure

(a) and (b), results in (c) (higher difference values are

printed in white); 10 gray-levels is insignificant difference

to the observer, while it filters most stationary areas effec-

tively. One can see that the car is detected as real moving

object, and 75% of the pixels in the frame are tagged as

stationary and will not, therefore, be further processed.

Along with that, some areas on the background that contain

no motion are also tagged as real moving objects, though;

this movement is due to the turbulent motion. Those areas

will be dealt with at the following stage.

3.2 Real motion extraction—stage II

The second motion extraction stage uses more sophisti-

cated optical flow analysis methods in order to achieve

Fig. 2 Temporal median. a, c
and e are images taken from a

turbulent degraded real-life

sequence. b, d and f are the

corresponding temporal

histograms for the pixel marked

by a cross and pointed by an

arrow. The dashed line on the

histogram represents the

temporal median gray-level

value
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better discrimination accuracy. The mapping of one tur-

bulent image to a stable one can be obtained by registering

a spatial neighborhood surrounding each pixel in the image

in the reference image. Such a registration can be imple-

mented using different optical flow methods [25–34]. In its

simplest form, the optical flow method assumes that it is

sufficient to find only two parameters of the translation

vector for every pixel.

Let I(x,y,t) be a turbulent source image frame and �Ix;y;t̂2X
be a reference image, the vectorial difference between

the pixel’s location in the original image and its location

in the reference image be the motion vector

Dx; Dy½ � ¼ x� �x; y� �y½ �: For the subsequent processing

stages, the translation vector is presented in polar coordi-

nates, hence magnitude and angle {M(x,y,t),h(x,y,t)} of the

motion vector. Having the motion field, one can discrimi-

nate real motion from turbulent one through a statistical

analysis of the Magnitude {M(x,y,t)} and Angle {h(x,y,t)}

components of the motion field.

3.2.1 Real motion versus turbulence caused motion

discrimination through magnitude’s distribution

cluster analysis

Cluster analysis of the Magnitude distribution function for

all (x, y), in a particular frame t, allows separating two

types of motion amplitudes: small and irregular and large

and regular. The first is associated with small movements

caused by turbulence. The latter corresponds to movements

caused by real motion. At the result, each pixel in the frame

is assigned with a certainty grade between 0 and 1. This

‘‘Magnitude Driven Mask’’ (MDM(x,y,t)) characterizes

magnitude based likelihood that particular pixels belong to

objects in a real motion. Figure 3 presents a graph of the

certainty as a function of the Motion vectors’ magnitudes.

Small Motion Vectors’ magnitudes correspond to turbulent

motion, while large magnitudes correspond to real-motion.

The intermediate levels comprise motion vectors’ magni-

tude upon which concise decision can not be made. The

magnitudes’ thresholds presented as TL and TH are appli-

cation dependent and can be set by the user. In some

applications, where the conditions are maintained, the

system can set those thresholds automatically. Figure 5d

presents the MDM extracted from the frame presented in

Fig. 5a. Pixels where real-motion was detected are marked

in white. In this example TL and TH were set empirically

and are 2 and 4 pixels, respectively.

3.2.2 Real motion versus turbulence caused motion

discrimination through motion field’s angle

distribution

Pixel’s motion discrimination through angle distribution is

achieved by means of statistical filtering of the angle

component motion field. For each pixel, its neighborhood’s

angle’s standard deviation is computed. Turbulent motion

has chaotic directions. Therefore, a motion field, in a small

spatial neighborhood, distorted by turbulence, has consid-

erably large angular standard deviation. Real motion, on

the other hand, has strong regularity in its direction and

therefore its angles’ standard deviation value over a local

neighborhood will be relatively small. Homogeneous

background areas contain no motion. Therefore the stan-

dard deviation of the zero motion vectors will be zero as

well. The neighborhood size, in which the pixel’s angular

standard deviation is computed, should be large enough to

make angle based discrimination of turbulent from real

motion possible, and as small as possible to meet the terms

of real-time computing. In experiments with real database

it was found that neighborhood’s size of 11 · 11–15 · 15

present a reasonable compromise.

As it is illustrated in the graph presented in Fig. 4, each

pixel is assigned with ‘‘Angle Driven Mask’’ (ADM(x,y,t)),

which presents an angle distribution based likelihood that

this pixel belongs to an object in a real motion. Both tur-

bulent and background areas should be regarded as stable.

This means that real moving objects have a bounded

angular standard deviation. TL and TH are the decision

Fig. 3 Magnitude Driven Mask (MDM). MDM certainty level as a

function of the motion vector’s magnitude

Fig. 4 Angle Driven Mask (ADM). ADM certainty level as a

function of the motion vector’s local spatial standard deviation

J Real-Time Image Proc (2007) 2:11–22 15
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boundaries. Pixels with angular standard deviation smaller

than TL or higher than TH are regarded as stationary. Those

values are set by the observer.

Figure 5e presents the ADM extracted from the frame

shown in (a), with low standard deviation values displayed

with brighter pixels. One can see that background areas are

tagged in white, hence contain low standard deviation. The

signs on the road, which suffer most from turbulent in the

acquired scene, have darker values, hence, high angular

standard deviations. TL and TH were empirically assigned

with p
3

and p
6
; respectively.

3.2.3 Real motion separation mask

Having both the MDM(x,y,t) and ADM(x,y,t), a combined

Real Motion Separation Mask (RMSM(x,y,t)) is formed as

following:

RMSMðx;y;tÞ

¼
ADMðx;y;tÞ; ADMðx;y;tÞ � 1

2

�� ��[ MDMðx;y;tÞ � 1
2

�� ��

MDMðx;y;tÞ; otherwise

(

ð5Þ

The MDM and ADM are certainty measures ranging from

0 (turbulent motion) to 1 (real motion). Equation (7)

implies that the ADM measure is more concise than the

MDM when the term ADMðx;y;tÞ � 1
2

�� �� has a higher value

than MDMðx;y;tÞ � 1
2

�� ��: In this case the ADM measure will

be used; otherwise the MDM value will be applied.

4 Generation of stable frames

Based on the notations derived in the previous sections, the

output frame F(x,y,t) is given by

Fig. 5 Magnitude Driven Mask

(MDM) and Angle Driven Mask

(ADM). a presents a single

frame extracted from real-life

turbulent degraded sequence. b
is the estimated stable scene. c,

d and e present real-motion

extraction by applying DFM,

MDM and ADM, respectively
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Fðx;y;tÞ ¼ �Ix;y;t � 1� RMSMðx;y;tÞ � 1� DFMx;y;t

� �� �� �

þ I x;y;tð Þ � RMSMðx;y;tÞ � 1� DFMx;y;t

� �� �

ð6Þ

where ‘‘�’’ denotes element-wise matrix multiplication,
�Iðx;y;tÞ is an estimate of the stable component of the frame,

DFM is the mask derived from the distance from the

temporal median measure, as described in Sect. 3.1 and

RMSM is the Real Motion Separation Mask detailed in

Sect. 3.2.3.

5 Simulation and results

For evaluating the suggested method, a testing visual

database has been composed that is freely accessible at [23].

The database contains several typical thermal and visual

real-life video sequences as well as synthetic ones. The

synthetic sequences are generated from real-life sequences

containing real-movement with no turbulent motion. Tur-

bulent-like degradations are induced using computer

software. The process of generating images with turbu-

lence-like distortions is outlined in Sect. 5.1 and the image

stabilization algorithm results are detailed in Sect. 5.2.

Throughout this section, the dense-map was computed

using the Horn and Schunck optical flow method [27].

5.1 Turbulence simulation software

According the theory outlined in Sect. 1, the turbulence

results in spatially and temporally correlated random geo-

metrical distortions of the acquired image. In order to

generate local correlated shifts for each pixel in the input

image, a band limited correlated distortions field is gen-

erated. Figure 6 illustrates the process. For each direction,

X and Y, a 3D random white noise ‘cube’ is first created.

Then, a 3D Low-Pass filter is applied to the generated noise

to produce spatial–temporal band-limited noise that defines

a displacement field for each spatial coordinate. For shift-

ing each pixel according to the displacement field, sliding

window discrete sinc-interpolation algorithm [35] is

applied.

Figure 7 shows simulation results. Figure 7a is a frame

extracted from a sequence containing real motion, with no

turbulent degradation distortions present, while Fig. 7b is

the corresponding frame from the sequence after applying

turbulence-like degradation.

5.2 Results

5.2.1 Turbulence compensation—quantitative evaluation

As described earlier, the synthesized test sequence is a tur-

bulent free video stream with real motion in which a

turbulent like degradation is induced. The compensation

process aims at removing the turbulent motion while

retaining real moving objects. Figure 7 illustrates the com-

pensation results achieved on the test sequence. Figure 7a

shows a frame of the initial non-distorted sequence.

Figure 7c shows a compensated corresponding frame of

synthetic Fig. 7b. Comparing Fig. 7a, b and c, one can see

that while the vehicle, as a real moving object, is retained,

the turbulence distortions visible, for instance, on road

markings in Fig. 7b of the background are compensated.

Fig. 6 Flow chart of the

algorithm for generation of

spatially and temporally

correlated motion fields
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Quantitatively, the turbulence compensation quality can

be evaluated using mean squared (MSE) compensation

error defined by Eq. 7, and by the peak signal to com-

pensation error ratio (PSNR), as defined by Eq. 8.

MSE ¼ 1

NxNy

X

x;y

IO x; yð Þ � IC x; yð Þk k2 ð7Þ

PSNR ¼ 10 log10

max If gð Þ2

MSE

 !

ð8Þ

where IO(x,y) is the original image and IC(x,y) is the image

after inducing and compensating turbulence degradations,

Nx and Ny are dimensions of images in pixels and max {I}

is the maximum value can be assigned to a pixel, hence

255.

In the given example, the PSNR gives a high grade of

34.9 dB. Typical values for the PSNR in images are

between 30 and 40 dB, where higher values than 34 are

consider as good quality [36].

Yet another measure of the turbulence compensation

quality is the ratio of compensation error energy to the

original image energy.

The error image’s energy to the original image’s energy

ratio is given by

P
x;y IO x; yð Þ � IC x; yð Þ½ �2
P

x;y I2
O x; yð Þ ð9Þ

For the given example, this ratio is 0.04.

5.2.2 Turbulence compensation—qualitative evaluation

In order to verify the method’s real-life applicability, tur-

bulent degraded sequences which were acquired by

operational long range observation systems were processed

by the system.

Figures 8 and 9 illustrate the results obtained with real-

life video sequences. Figures 8a and 9a are both frames

extracted from real life turbulent degraded sequences (see

[23]). Corresponding figures (b) show the stable scene

estimation computed by element-wise temporal median over

of 117 frames. Figure (c) display the Distance From Median

masks (DFM) and (d) display the Real Motion Separation

Masks (RMSM). Comparing them, one can notice how the

real motion extraction process is refined. Background areas

which were tagged as real-motion by the DFM in (c) are

removed from the RMSM in (d). The stable output of the

non-turbulent background and unaffected vehicles with real

moving objects are given in, Figs. 8e and 9e.

5.3 Real-time applicability

Since the number of operations, needed to complete the

task is platform independent, while execution time is

resources and platform dependent, the real-time applica-

bility is evaluated through the number of operations. A

tool, which helps examining if the number of operations for

an algorithm complies with real-time constrains on a spe-

cific machine, can be downloaded from the author’s site

[23]. The analysis of the number of calculations in the

following sections is given in terms of operations per pixel.

5.3.1 Stable scene estimation computation

The stable scene estimation is computed by applying pixel-

wise, temporal median filtering. For computing the median

over N samples, a sorting operation is needed. Optimized

sorting operation requires O(Nlog (N)) operations per pixel,

where N, following the notations in Sect. 2, is the win-

dow’s size along the temporal axis. For each window

position, a recursive median algorithm requires, neglecting

the initialization process, two operations per pixel for

updating the temporal histogram (a-), and three operations

modifying b-, c- and d- parameters. Additional two oper-

ations per pixel are needed for computing Eqs. (1) and (2).

This will allow determining if the median value has

changed. If Eq. (1) is not fulfilled, than the new median

value is lower than the older one. The algorithm slides

leftward on the temporal histogram to the adjacent bin,

when the number of pixels in the new pointed bin is

Fig. 7 Turbulence simulation

and compensation. a Original

sequence with real-motion and

no turbulent motion; b the same

frame with turbulence-like

distortions induced; c the same

frame after the turbulence

compensation process
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subtracted from the d-parameter. The sliding process is

held till Eq. (1) is met. If Eq. (2) condition is not satisfied,

the same process is held till its condition is met. In the

latter case the sliding is rightward and for each shift the

number of pixels in the bin is added to d- parameter. In

the most probable case, when the median does not change

the number of computation needed is 7. When the median

does change, for each shift, three additional operations are

required. When the change in the median value is small this

will not introduce significant additional computational

load. When the change is large, hence substantial number

of shifts, the process will introduce a major computational

complexity which will be resulted in the lower processing

throughput. The maximum number of shifts is 255.

5.3.2 Real motion extraction

5.3.2.1 Phase I This phase consists of a simple subtrac-

tion of the median from the input frame and applying

threshold on the result. The number of operations per pixel

is 2.

5.3.2.2 Phase II Optical Flow methods require the min-

imization of an energy functional [25–34]. In order to solve

these large sparse systems numerically, classical iterative

methods such as the Gauss–Seidel algorithm are commonly

used [27]. While they are simple to implement, their

convergence is not very fast, and often thousands of iter-

ations may be necessary to get sufficiently close to the

minimum of the energy functional. This is the reason why

optical flow methods are too slow for time-critical

applications.

As derived from the theory, the turbulence distortions

are modeled by spatial, and temporal, random local shifts.

This means that the motion of a pixel should be derived

from its local neighborhood in the acquired and reference

frames, rather than the entire image. While the general

purpose of optical flow methods is computing the entire

dense-map, the paper suggests, for the sake of reducing the

computation load, to apply the optical flow computations to

only certain pixels rather than to the entire image. As pixels

tagged as stationary by phase I are not processed by phase

II, the number of pixels processed by this phase will be

small enough to allow real-time applicability. If the num-

ber of pixels processed in this phase is too big so the

computational complexity exceeds the processing machine

capabilities, the estimation of phase I is used solely. The

magnitude and angles computation and thresholding are

regarded as part of the computations needed for optical

flow.

5.3.3 Generation of the output frames

According to Eq. 6, the generation of the stable frames

requires eight operations per pixel.

Fig. 8 Real-time turbulence compensation—trucks sequence. a Real-life atmospheric turbulence degraded image; b the stable scene estimation;

c DFM; d RMSM; e the output image
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5.3.4 Total computational complexity

Table 1 shows the number of operations per pixel for each

task of the algorithm’s tasks. As the number of pixels

processed by phase II of the real motion extraction is

content dependant, the maximum and minimum number of

operations is indicated.

The acquisition system, acquires interlaced 4CIF format

images of 704 · 576 pixels [37]. The method disclosed

here eliminates the need for computing the entire dense-

map, applying a hierarchical motion segmentation tech-

nique. If the number of pixels processed on the second

stage of the real-motion extraction is less than 10% of the

total number of pixels in the frame then the performance is

equivalent to processing 25 frames per second on a stan-

dard 3.0 GHz PC. Further improvement to processing time

can be achieved by utilizing the interlaced property of the

incoming video. This is achieved by processing the odd and

even fields individually on multi-processor/multi-core

architectures.

6 Conclusion

The paper presents an algorithm for real-time compensat-

ing atmospheric turbulence distortions in video sequences

using standard hardware, while keeping the real moving

objects in the video unharmed. The algorithm is based on

three building blocks: (1) estimation of the stable scene, (2)

real motion extraction, and (3) generation of stabilized

frames. To preserve real motion in the scene, moving

objects are located and the compensation for the distortion

of the turbulence is applied only to the static areas of

images. To this goal, for each pixel in the incoming frame

it is decided whether it is of a moving or a stationary

object. A hierarchical two-stage decision making mecha-

nism is suggested to this goal.

At the first stage, the absolute difference of the pixel’s

gray-level value and the temporal median is used to gen-

erate the motion extraction mask. This stage is

computationally light and it allows to extracts most of

stationary areas. The second stage improves accuracy of

separating moving objects by more computationally com-

plex algorithms. At this stage, optical flow computation is

used for motion segmentation. Discriminating real motion

is achieved through statistical analysis of the magnitude

and angle of the motion field elements, which result in the

Magnitude driven (MDM) and angle driven (ADM) motion

separation masks that are combined using fuzzy logic

operations to form the RMSM. The second stage exploits

the turbulence motion characteristics, which are modeled

by spatial and temporal random shifts and compute pixels’

shifts in local neighborhoods. This allows computing pix-

els’ shifts without the need to extract the entire scene

motion field.

Finally, all areas in the incoming frame, which were

tagged as stationary by the DFM and RMSM, are replaced

Fig. 9 Real-time turbulence compensation—bird sequence. a real-

life atmospheric turbulence degraded image; b the stable scene

estimation; c DFM; d RMSM; e the output image

Table 1 Number of Operations per Task

Task Maximum Minimum

Median *770 7

Real motion extraction—phase I 2 2

Real motion extraction—phase II *170 0

Generation of the output frames 8 8

Total *950 17
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with an estimation of the stationary scene. Note that real

motion extraction, used in this paper for turbulence dis-

tortions compensation, can be used for obtaining any

physical measure derived from the motion, such as speed

and trajectory analysis.

The method was tested on several turbulent degraded

synthetic as well as real-life videos. The restored videos

exhibit excellent stability for stationary objects and yet

retain the moving objects unharmed and easier to visually

detect and track in a stable background. Those video are

freely accessible on line [23].

The described algorithm was implemented on a standard

desktop PC with 3 GHz processor and 1 GB of RAM on

which it was running in real-time with the speed of 25

frames per second on 4CIF format images of 704 · 576

pixels.
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