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1. INTRODUCTION

Long-distance terrestrial observation systems have tradition-
ally been high-cost systems used in military and surveillance
applications. Recent advances in sensor technologies (such
as in infrared cameras, millimeter wave radars, and low-light
television cameras) have made it feasible to build low-cost
observation systems. Such systems are increasingly used in
the civilian market for industrial and scientific applications.

In long-distance terrestrial observation systems, infrared
sensors are commonly integrated with visual-range charge-
coupled device (CCD) sensors. Such systems exhibit unique
characteristics—thanks to the simultaneous use of both vis-
ible and infrared wavelength ranges. Most of them are de-
signed to give the viewer the ability to reliably detect ob-
jects in highly detailed scenes. The thermal-range and visual-
range channels have different behaviors and feature different
image distortions. Visual-range long-distance observations
are usually affected by atmospheric turbulence, which causes
spatial and temporal fluctuations to the index of refraction
of the atmosphere [1], resulting in chaotic geometrical dis-
tortions. On the other hand, thermal channels are less vul-
nerable to the turbulent effects [2—7] but usually suffer from
substantial sensor noise and reduced resolution as compared
to their visual-range counterparts [8]. One way to overcome
those problems is to apply data fusion techniques.

In recent years, a great deal of effort has been put into
multisensor fusion and analysis. Available fusion techniques
may be classified into three abstraction levels: pixel, feature,
and semantic levels. At the pixel level, images acquired in
different channels are combined by considering individual
pixel values or small arbitrary regions of pixels in order to
make the fusion decision [9-12]. At the feature-level fusion,
images are initially subjected to feature-driven segmentation
in order to produce a set of regions with various properties
that are used to determine which features from which im-
age are to be included in the fused image [13-16]. Semantic-
driven methods transform all types of input data into a com-
mon variable space, where the data is fused [17]. In devel-
oping new data fusion methods, it is possible to extract dif-
ferent types of features from different channels before fusing
them—a concept that the above-mentioned methods fail to
do since they apply the same fusion criteria to all input chan-
nels. Unlike previous methods, the method in this paper ap-
plies sensor-specific criteria to each channel before fusing the
data.

The development of fusion algorithms using various
kinds of pyramid/wavelet transforms has led to numerous
pixel- and feature-based fusion methods [18-24]. The moti-
vation for the pyramid/wavelet-based methods emerges from
observations that the human visual system is primarily sensi-
tive to local contrast changes, for example, edges and corners.
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FiGURE 1: Fusion algorithm flow diagram: visual-range spatial and
temporal image fusion for image stabilization and super-resolution
(upper branch) and thermal-range spatial and temporal image fu-
sion for image denoising and resolution enhancement (bottom
branch).

However, observation systems are characterized by diversity
in both location and size of the target of interest; therefore,
rigid decomposition, which is characteristic for multiresolu-
tion fusion methods, turns out to be less suitable for long-
range observation tasks [13, 16, 25].

This paper describes a video processing technology de-
signed for fusion of thermal- and visual-range input chan-
nels of long-range observation systems into a unified video
stream intended for visual analysis by a professional human
operator. The suggested technology was verified using syn-
thetic, as well as real-life, thermal and visual sequences from
a dedicated database [26, 27]. The database contained video
sequences acquired in the near vicinity of the camera as well
as sequences of sites located as far as 25 km away.

2. SYSTEM DESCRIPTION

The proposed video processing technology is outlined in a
schematic block diagram in Figure 1. The outlined method
is based on a two-stage process. The first stage consists of
intrachannel-interframe processing methods used to perfect
each input channel independently. Each channel’s process-
ing method is designed according to the sensor’s specific
limitations and degradations. For the visual-range chan-
nel processing, spatial-temporal fusion is implemented for
compensating turbulence-induced image geometrical distor-
tions, as well as super-resolution above the visual sensor’s
sampling rate. For the thermal channel, spatial-temporal fu-
sion is implemented for sensor noise filtering and resolu-
tion enhancement by means of 3D (spatial-temporal) lo-
cal adaptive filtering. These visual- and thermal-range in-
trachannel fusion schemes are thoroughly described in Sec-
tions 3 and 4, respectively. The second stage is interframe-
intrachannel fusion. At this stage, thermal- and visual-range
channel image frames, corrected and enhanced, are fused
frame by frame using a multiple-criteria weighted average
scheme with locally adapted weights. The second stage is de-
tailed in Section 5.

3. VISUAL-CHANNEL IMAGE FUSION FOR IMAGE
STABILIZATION AND SUPER-RESOLUTION

3.1. Channel characterization and
processing principles

In remote sensing applications, light passing long distances
through the troposphere is refracted by atmospheric tur-
bulence, causing distortions throughout the image in the
form of chaotic time-varying local displacements. The ef-
fects of turbulence phenomena on imaging systems were
widely recognized and described in the literature, and nu-
merous methods were proposed to mitigate these effects.
One method for turbulence compensation is adaptive op-
tics [28, 29]. Classical adaptive optics, which uses a single
deformable mirror, provides correction for a limited field
of view (FOV). Larger FOV corrections can be achieved by
several deformable mirrors optically conjugated at various
heights [30-33]. In modeling images with distortion caused
by atmospheric turbulence, light from each point in the ac-
quired scene is assumed to possess a slightly different tilt
and low-order aberration, and it can be modeled by convolv-
ing a raw image with a space-variant pseudorandom point
spread function [34]. Therefore, multiconjugate adaptive op-
tics techniques require complex structure and reconstruction
processes, making them unsuitable for operational systems.

Other turbulence compensation methods use an estima-
tion of modulation transfer function (MTF) of the turbu-
lence distortions [35-38]. The drawback of those methods is
that they require some prior knowledge about the observed
scene, which is often unavailable.

Methods that require no prior knowledge are suggested
in [3-7, 13, 39-42]. The principal idea is to use, for recon-
structing distortion-compensated image frames, an adap-
tively controlled image resampling method based on the es-
timate of image local displacement vectors. Using those con-
cepts, turbulence compensation algorithms which preserve
genuine motion in the scene are suggested in [43-47].

In this paper, these techniques are further elaborated and
improved upon in order to obtain super-resolution in addi-
tion to turbulence compensation. The new techniques are
used as an interframe-interchannel fusion mechanism for
the visual-range input channel. As shown in the flow dia-
gram, presented in Figure 2, visual-range video processing
consists of three processing stages: (i) estimation of the refer-
ence frames, (ii) determination of the motion vectors for all
pixels in image frames and motion vector analysis for real-
motion extraction, and (iii) generation of stabilized frames
with super-resolution and preservation of the real motion.
Those stages are thoroughly described, respectively, in Sec-
tions 3.2, 3.3, and 3.5.

3.2. Estimation of the reference frames

The reference images, which are the estimation of the stable
scene, are obtained from the input sequence. The reference
images are needed for measuring the motion vectors for each
current video frame. One way to measure the motion vectors
of each image frame is by means of elastic registration with
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F1GURE 2: Flow diagram of video processing in visual-range channel.

the previous frame. However, this method does not allow re-
liable discrimination of real movements in the scene from
those caused by the atmospheric turbulence. For this task,
estimation of the stable scene is required. We adopt the ap-
proach of [48] and suggest using a pixelwise rank gray-level
filtering of video frames in a temporal sliding window for
generating such an estimation intended to serve as the refer-
ence frame. The use of rank smoothing filters such as median
or alpha-trimmed-mean filters is substantiated in two ways.
First, distribution of a light beam propagating through a tur-
bulent atmosphere has a mean of zero. This means that the
center of the deflection is located at the same point that the
light beam would have hit if there was no turbulence present.
Therefore, the statistical expectation of the gray-level values
is relatively close to the mean of the trace of the same pixel’s
values over a long period of time. The reason for using a
rank filter instead of a mean filter is the fact that for mov-
ing objects that accommodate a pixel for a short period of
time, the gray-level distribution for this pixel is found to be
tail-heavy. When applying rank filters, the distribution tails
will be eliminated from evaluation of estimated values. Rank
filtering might result in resolution degradation. This will be
dealt with in subsequent processing stage, which suggests res-
olution enhancement (see Section 3.4). It was found experi-
mentally that the use of a temporal median filter provides an
acceptable solution in terms of both stable scene evaluation
quality and computational efficiency [49, 50].

The length in time of the filter temporal window, N, is
determined by the correlation interval of turbulence effect
over time; that is, the longer the time correlation of the tur-
bulence effect is, the larger the size of the temporal sliding
window becomes. Our experiments have shown that for cor-
relation intervals of atmospheric turbulence of order of sec-
onds, temporal window size should be of the order of 100
frames for frame rate of 25 frames per second.

Temporal pixelwise median filtering for estimating the
stable scene as a reference image is illustrated in Figure 3,
where part (a) presents a sample frame taken from a tur-
bulent distorted sequence acquired with a camera acquir-
ing images in size of 4 times common intermediate format
(4CIF—704 x 576 pixels) in a frame rate of 25 frames per
second (the sequence can be found at [26]). Figure 3(b) de-
picts the estimation of the stable scene calculated by temporal
median over 117 frames. One can notice that the geometri-
cal distortions in Figure 3(a), in particular around the dune’s
rim on the left-hand side of the image, are removed from the
stabilized estimation in Figure 3(b).

(®)

FIGURE 3: Temporal median rank filter as an estimation of the sta-
ble scene: (a) is a frame extracted from a turbulent degraded real-
life video sequence, while (b) is the stable scene estimation using
pixelwise temporal median.

In principle, the median filtering in a moving time win-
dow presents high computational complexity. Utilizing a fast
recursive method for median filtering [48, 49] enables a real-
time implementation at common video rates.

3.3. Motion vector analysis for real-motion
discrimination

In order to avoid distortion of real motion due to the turbu-
lence compensation process, real motion should be detected
in the observed scene. To this end, a real-time two-stage de-
cision mechanism is suggested in [44, 45, 49]. This method
forms, for each pixel in each incoming frame, a real-motion
separation mask (RMSM;), where p is the space-time coor-

dinate vector, 13 = [x, y,t]). At the first step, a straightfor-
ward fast algorithm is utilized for extracting areas, such as
background, that are most easily classified as stable. In most
cases, the majority of the image pixels are extracted at this
stage. Those parts are not further processed. Only the pixels,
which were not tagged as stable at the first phase, are dealt
with at the second phase. The second stage uses a more so-
phisticated though more time-consuming algorithm.

3.3.1. Stagel

At the first stage, the gray-level difference between the cur-
rent value of each pixel of the incoming frame and its
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FIGURE 4: Motion extraction and discrimination: (a) is a frame that has been extracted from a real-life turbulent degraded thermal sequence;
(b) depicts the stable scene estimation computed over 117 frames; (c) is the result of real-motion extraction of phase I, while (d) is the result

of real motion extracted after phase II.

temporal median is calculated as “real-motion measure.”
This is referred to as distance-from-median (DFM) measure:

DFMI;=I‘— » (1)

where ¢ is an index of the current processed frame, and Tﬁ is
its median over the temporal window (Q) centered at ﬁ:

If the distance, DFM;), is below a given predefined
threshold, the pixel is considered to be of a stationary object.
The threshold is determined by exploiting the observer’s lim-
itation of distinguishing between close gray-levels. In real-
time applications, the threshold is an adjustable parameter of
the algorithm that can be adjusted by the observer in course
of the scene visual analysis. Background areas, which do not
belong to a moving object nor are located near edges, will be
resolved in this way. All other pixels that are not resolved at
this stage are processed at the next one.

Figure 4(a) presents a frame extracted from a real-life
turbulent degraded video sequence with moving objects (see
[26]). Figure 4(b) is the reference frame computed by apply-
ing elementwise temporal median filtering over 117 frames,
as described in Section 3.2. Figure 4(c) represents darker pix-
els, which were tagged as real-motion at the first stage. As one
can see, while this first stage detects most of the background
pixels as such, it produces some “false alarms” (marked with
arrows). Figure 4(d) represents, in darker tones, pixels that
contain real motion. As one can see, the real-motion de-
tection errors are eliminated at the second processing stage,
which is described in the following section.

3.3.2. Stagell

The second stage improves real-motion detecting accuracy at
the expense of higher computational complexity; however, it
handles a substantially smaller number of pixels. This stage

85UB01 SUOWIWIOD BA1E81D 3 0eot[dde au Aq peusenob a1e seoliie YO ‘8sn JO S9|n. 1o} ARl 8ul|UO A1 O (SUOTPUOD-PUR-SLLIBI WD A8 1M Afe.d|BulUO//SdNL) SUOIPUOD PuUe SWiB | 8u18eS *[1Z0z/ZT/zz] uo AkidiTauluo A&[IM 'JO Uonmisu| jpes|-uoluyde | Aq 80891S/8002/SSTT OT/I0p/L0o" A 1M Atiqijpuljuo//sdny wouy pepeojumod ‘T ‘8002 ‘6T8E



Barak Fishbain et al. 5
I I I I
I I I I
Turbulent | i Real | i Turbulent
— motion | motion 3 Background | | motion
3] z
% - 5 1-- 7
< = /
g 5
g s
3 3
% Z
I

I
Ty Tu
Motion vector’s magnitude

F1GURE 5: Magnitude-driven mask (MDM) certainty level as a func-
tion of the motion vector’s magnitude.

uses, for motion-driven image segmentation, techniques of
optical flow [41, 42, 51-59] and its statistical analysis.

In its simplest form, the optical flow method assumes
that it is sufficient to find only two parameters of the trans-
lation vector for every pixel. The motion vector {AX, Ay} =
{x—X, y— ¥}, for every pixel, is the vector difference between
the pixel’s location in the original image I(, ;) and its loca-

tion in the reference image f(,g,;,). For the subsequent process-
ing stages, the translation vector is presented in polar coordi-
nates as {M;,0;)} through its magnitude {M;)} and an-
gle {9( ) }, which are subjected to cluster analysis for discrim-
inating real movement against that caused by atmospheric
turbulence.

Real-motion discrimination through
motion field magnitude distribution

For cluster analysis of the motion vector magnitude distri-
bution function for all pixels (x, y) in a particular frame,
each pixel in the frame is assigned with a certainty grade, the
magnitude-driven mask (MDM(I;)). The MDM;;) measure
ranges between 0 and 1 and characterizes the magnitude-
based likelihood that particular pixel belongs to objects in
a real motion. Figure 5 presents the certainty as a function
of the motion vector’s magnitudes. It is natural to assume
that minor movements are caused by turbulence, and larger
movements correspond to real motion. The intermediate lev-
els comprise motion vectors’ magnitudes upon which con-
cise decision cannot be made. The magnitudes’ thresholds
Ty and Ty are application-dependent parameters and can be
set by the user. Based on the analysis of our visual database,
in our experiments with real-life videos, T;, and Ty were set
to 2 and 4 pixels, respectively.

Real-motion discrimination through
motion field’s angle distribution

A pixel’s motion discrimination through angle distribution is
achieved by means of statistical analysis of the angle compo-
nent of the motion field. For the neighborhood of each pixel,
the variance of angles is computed. As turbulent motion has

I I
TL TH
Motion vector’s angular variance

FIGURE 6: Angle-driven mask (ADM) certainty level as a function
of the motion vector’s local spatial standard deviation.
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FiGure 7: Flow diagram of the process of generation of stabilized
frames with super-resolution.

fine-scale chaotic structure, motion field vectors in a small
spatial neighborhood distorted by turbulence have consider-
ably large angular variance. Real motion, on the other hand,
has strong regularity in its direction and therefore the vari-
ance of its angles over a local neighborhood will be relatively
small.

The neighborhood size, in which the pixel’s angular stan-
dard deviation is computed, should be large enough to secure
a good statistical estimation of angle variances, and as small
as possible to reliably localize small moving objects. In our
experiments with the dedicated real-life database [26, 27], it
was found that neighborhood’s sizes of 11 X 11 and 15 x 15
present a reasonable compromise.

As a result of variance analysis, each pixel is assigned
with an angle-driven mask (ADM, 15))’ which presents an an-

gle distribution-based likelihood that this pixel belongs to
an object in a real motion. This is illustrated in Figure 6.
Real moving objects have bounded angular variances, T;
and Ty. Both turbulent and background areas should be re-
garded as stable. This means that pixels with angular vari-
ance smaller than T, or higher than Ty are regarded as sta-
tionary. Those values are set by the observer. In our experi-
ments with real-life video, they were set to (7/ 6)* and (11/3)*,
respectively.
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(c)

(d)

F1GURE 8: Super-resolution through turbulent motion—rvisual-range sequence. (a) shows a raw video frame; (b) shows a super-resolved
frame generated from a visual-range turbulent degraded real-life video; (c)-(d) are the magnified fragments marked on (b)—the left-hand
side shows the fragment with simple interpolation of the initial resolution and the right-hand side shows the fragment with super-resolution.

Real-motion separation mask

Having both MDM, ) and ADM, 5 combined real-motion
separation mask (RMSM ﬁ)) is formed as follows:

1
MDMz) -

>
2

>

1
ADM¢;) =3

ADM, 5

ik

MDM, i) otherwise.
(3)

Equation (3) implies that the ADM measure is more ac-
curate than the MDM when the term IADMQ;) — 1/2| has
a higher value than IMDM(I;) — 1/2]. In this case, the ADM
measure will be used; otherwise the MDM value will be ap-
plied. Figure 4(d) presents the RMSM|;, where real moving
objects are represented in darker pixels.

3.4. Generation of super-resolved stabilized
output frames

In turbulence-corrupted videos, consequent frames of a sta-
ble scene differ only due to small atmospheric-turbulence-
induced movements between images. As a result, the image
sampling grid defined by the video camera sensor may be
considered to be chaotically moving over a stationary image
scene. This phenomenon allows for the generation of images
with larger number of samples than those provided by the
camera if image frames are combined with appropriate re-
sampling [2, 60-63].

Generally, such a super-resolution process consists of two
main stages [2, 64—68]. The first is determination, with sub-

pixel accuracy, of pixel movements. The second is combina-
tion of data observed in several frames in order to generate a
single combined image with higher spatial resolution. A flow
diagram of this stage of processing is shown in Figure 7.

For each current frame of the turbulent video, inputs of
the process are a corresponding reference frame, obtained as
a temporal median over a time window centered on the cur-
rent frame, and the current frame displacement map. The
latter serves for placing pixels of the current frame, accord-
ing to their positions determined by the displacement map,
into the reference frame, which is correspondingly upsam-
pled to match the subpixel accuracy of the displacement map.
For upsampling, different image interpolation methods can
be used. Among them, discrete sinc-interpolation is the most
appropriate as the one with the least interpolation error and
may also be computed efficiently [69]. As a result, output sta-
bilized and enhanced in its resolution frame is accumulated.
In this accumulation process, it may happen that several pix-
els of different frames are to be placed in the same location in
the output-enhanced frame. In order to make the best use of
all of them, these pixels must be averaged. For this averaging,
the median of those pixels is computed in order to avoid the
influence of outliers that may appear due to possible errors
in the displacement map.

After all available input frames are used in this way, the
enhanced and upsampled output frame contains, in posi-
tions where there were substitutions from input frames, ac-
cumulated pixels of the input frames and, in positions where
there were no substitutions, interpolated pixels of the refer-
ence frame. Substituted pixels introduce to the output frame
high frequencies outside the baseband defined by the original
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sampling rate of the input frames. Those frequencies were
lost in the input frames due to the sampling aliasing effects.
Interpolated pixels that were not substituted do not contain
frequencies outside the baseband. In order to finalize the pro-
cessing and take full advantage of the super-resolution pro-
vided by the substituted pixels, the following iterative rein-
terpolation algorithm was used. This algorithm assumes that
all substituted pixels accumulated, as described above, are
stored in an auxiliary replacement map containing pixel val-
ues and coordinates. At each iteration of the algorithm, the
discrete Fourier transform (DFT) spectrum of the image ob-
tained at the previous iteration is computed and then zeroed
in all of its components outside the selected enhanced band-
width, say, double of the original one. After this, inverse DFT
is performed on the modified spectrum, and corresponding
pixels in the resulting image are replaced with pixels from the
replacement map, thus producing an image for the next iter-
ation. In this process, the energy of the zeroed outside spec-
trum components can be used as an indicator when the iter-
ations can be stopped.

Once iterations are stopped, the output-stabilized and
resolution-enhanced image obtained in the previous step is
subsampled to the sampling rate determined by selected en-
hanced bandwidth and then subjected to additional process-
ing aimed at camera aperture correction and, if necessary,
denoising.

Figure 8 illustrates the feasibility of the method.
Figure 8(a) is a frame extracted from turbulent degraded
real-life sequence, while Figure 8(b) is its super-resolved sta-
ble one. Figures 8(c) and 8(d) are magnified fragments from
Figure 8(b). The fragments are marked with black boxes on
Figure 8(a). In both Figures 8(c) and 8(d), the original frag-
ments are shown on the left-hand side, while the super-
resolved fragments are shown on the right-hand side.

Atmospheric turbulence also affects thermal-range
videos. Figure 9 demonstrates application of the method to
intermediate infrared wavelengths (3-8 ym), turbulent video
sequence. Figure 9(a) shows an example of a super-resolved
frame generated from the thermal sequence (whose stable
reference corresponding frame is presented in Figure 4(b)).
The marked fragments of Figure 9(a) are presented in Fig-
ures 9(b) and 9(c), in which fragments with initial resolu-
tion are given on the left-hand side, while the super-resolved
fragments, extracted from Figure 9(a), are given on the right-
hand side.

In the evaluation of the results obtained for real-life
video, one should take into account that substantial reso-
lution enhancement can be expected only if the camera fill-
factor is small enough. The camera fill-factor determines the
degree of lowpass filtering introduced by the optics of the
camera. Due to this low-pass filtering, image high frequen-
cies in the baseband and aliasing high-frequency compo-
nents that come into the baseband due to image sampling
are suppressed. Those aliasing components can be recovered
and returned back to their true frequencies outside the base-
band in the described super-resolution process, but only if
they have not been lost due to the camera low-pass filtering.
The larger the fill-factor is, the heavier the unrecoverable res-
olution losses will be.

(c)

FIGURE 9: Super-resolution through turbulent motion. (a) presents
a super-resolved frame generated from a thermal-range turbu-
lent degraded real-life video; (b)-(c) are the magnified fragments
marked on (a)—the left-hand side shows the fragment with simple
interpolation of the initial resolution and the right-hand side shows
the fragment with super-resolution.

For quantitative evaluation of the image resolution en-
hancement achieved by the proposed super-resolution tech-
nique, we use a degradation measure method described in
[70]. The method compares the variations between neigh-
boring pixels of the image before and after lowpass filter-
ing. High variation between the original and blurred images
means that the original image was sharp, whereas a slight
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TaBLE 1: Quantitative evaluation of the super-resolved images. The
degradation grade is ranging from 0 to 1, which are, respectively,
the lowest and the highest degradations.

Original Super-resolved

Visual-range video (see Figure 8)

Entire original image (see Figure 8(a))

versus entire super-resolved 0.627 0.3987
image (see Figure 8(b))

Fragment (b) 0.8287 0.5926
Fragment (c) 0.8474 0.5493

Thermal-range video (see Figure 9)

Entire original image (see Figure 4(b))

versus entire super-resolved image 0.7323 0.5452
(see Figure 9(a))

Fragment (b) 0.8213 0.6802
Fragment (c) 0.6630 0.5058

variation between the original and blurred images means
that the original image was already blurred. The compari-
son result presented in a certain normalized scale as in the
image degradation measure ranged from 0 to 1 is shown in
[70] to very well correlate with subjective evaluation of im-
age sharpness degradation with 0 corresponding to the low-
est sharpness degradation and 1 to the highest degradation.
The described method might be biased at the presence of
substantial noise. To eliminate this, in this example, both
visual- and thermal-range sequences were acquired in light-
ing and sensor conditions to minimize the noise level. Table 1
shows the results of the comparison, using this measure, be-
tween images presented in Figures 8 and 9 and their individ-
ual fragments before and after applying the described super-
resolution process. It is clearly seen from the table that the
super-resolved images present better quality in terms of this
quantitative quality measure.

3.5. Generation of output frames with
preservation of real motion

The algorithm of generating the stabilized output frame F;,
is defined by

Fig =Tige {1~ [RMSMz (1 - DEMz)) | @
+15)*[RMSM )+ (1 - DEM5)) |,
where “s” denotes elementwise matrix multiplication, I, ) is

the estimation of the stable scene as described in Section 3.2
or the super-resolved stable scene as described in Section 3.4,
L) is the current processed frame (¢), DFM is the “distance-
from-median” mask described in Section 3.3.1, and RMSM
is the real-motion separation mask detailed in Section 3.3.2.

Figure 10 illustrates results of the described turbulence
compensation process. Figure 10(a) is a frame extracted
from a real-life turbulent degraded image (see [26]), and
Figure 10(b) shows the stabilized frame. As one can no-
tice, the motion of the flying bird located near the upper-
left corner of the plaque on the right-hand side of the

(®)

FiGgure 10: Turbulence compensation: (a) is a frame extracted from
a turbulent degraded sequence, while (b) is the corresponding tur-
bulent compensated frame.

frame (marked with a white arrow) is retained, while the
turbulence-induced distortion of the still rim situated on the
frame’s left-hand side (marked with striped arrows) is re-
moved.

4. THERMAL-RANGE IMAGE FUSION FOR DENOISING
AND RESOLUTION ENHANCEMENT

As detailed in Section 2, the first stage of the fusion algorithm
consists of intrachannel-interframe processing. The visual-
range channel processing was described in Section 3. The
thermal channel processing for sensor noise filtering and res-
olution enhancement by means of 3D (spatial-temporal) lo-
cal adaptive filtering is depicted in this section.

4.1. Channel characterization and filtering principle

Thermal sensors suffer from substantial additive noise and
low image resolution. The thermal sensor noise can be de-
scribed in terms of the spatial (x, y) and temporal (¢) axes
using 3D noise models [71, 72]. Resolution degradation is as-
sociated with the finite aperture of the sensor sensitive cells.

Video frames usually exhibit high spatial and temporal
redundancy that can be exploited for substantial noise sup-
pression and resolution enhancement. In [48, 73], a slid-
ing window transform domain two-dimensional (2D) fil-
tering for still image restoration is described. In this paper,
an extension of this method to three-dimensional (3D) spa-
tial/temporal denoising is suggested for thermal image se-
quence processing [13].
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FiGure 11: Sliding cube 3D transform domain filtering.

A block diagram of the filtering is shown in Figure 11.
For each position of the window, the DFT or the discrete co-
sine transform (DCT) of the signal volume within the spa-
tial/temporal window is recursively computed from that of
the previous position of the window. Recursive computation
substantially reduces the filter’s computational complexity
[73, 74]. The signal’s spectral coefficients are then subjected
to soft or hard thresholding according to

B max {0, (Iﬂl@2 — Thr)}
AP (5)

ﬂ[sign(lm2 — Thr) + 1]
21 ’

B=

=

where 8 and 3 represent input and modified transform co-
efficients, correspondingly, and A represents the set of coef-
ficients of the frequency response of the camera (spatial and
temporal indices are omitted for the sake of brevity). The di-
vision of image spectra by frequency response of the cam-
era is the implementation of camera aperture correction by
means of pseudoinverse filtering [48].

The window spectra which are modified in this way are
then used to generate the current image sample of the out-
put, by means of the inverse transform of the modified spec-
trum. Note that, in this process, the inverse transform need
not be computed for all pixels within the window, but only
for the central sample, since only the central sample has to be
determined in order to form the output signal.

4.2. Tests andresults

For the purpose of testing, two sets of artificial movies were
generated, having various levels of additive Gaussian noise.
The first artificial test movie contains bars with different spa-
tial frequencies and contrasts, and the second is of a fragment
of a text. Figure 12 shows results of applying a 3D filtering for
image denoising. The images in Figures 12(a) and 12(b) cor-
respond to the original frames. Figures 12(c) and 12(d) show
the corresponding frames originating from a sequence pos-
sessing temporal and spatial random additive noise. Figures
12(e) and 12(f) show corresponding frames obtained using
3D filtering. Numerical results on noise suppression capabil-
ity of the filtering obtained for the test images, in terms of

residual filtering error, are provided in Table 2. These images
and the table data clearly demonstrate the high noise sup-
pression capability of the filtering stage. Full videos can be
found in [27].

The results of 3D filtering of real-life video sequences are
illustrated in Figure 13. Figures 13(a) and 13(c) are frames
taken from real-life thermal sequences; Figures 13(b) and
13(d) are the corresponding frames from the filtered se-
quences. As one can see, while noise is substantially sup-
pressed, object edges in the scene are not only well preserved
but even sharpened—thanks to aperture correction imple-
mented in the filtering in addition to noise suppression.

5. INTERCHANNEL INTRAFRAME FUSION
5.1. Fusion principles

In accordance with the linear theory of data fusion for im-
age restoration [75], the interchannel fusion process is imple-
mented as a linear combination of thermal- and visual-range
channel frames:

(EompositeOutput _ I};ghermal . W;:hermal + II\;/isuaI .W;Zisual’ (6)

and

where Ighermal

I;fisual are pixel intensities in thermal and

Thermal

visual channels, correspondingly, and w; Visual 5y

and w' e
p

the related channel weights.

Several methods for assigning weight coefficients for data
acquired from dissimilar sensors’ modalities are known [16—
19, 25]. Those methods suggest applying a single metric for
each channel. This means that the weights are extracted using
only one feature of the acquired images. As the aim of the
fusion process in the visual observation systems is presenting
a superior output (in human observation terms), typically
the visual output quality of observation systems is defined
by several criteria, such as edge preservation, noise presence,
and how active are different areas of the scene. This implies
that a composite assignment of weight coefficients, based on
those criteria, has to be formulated. To this end, we compose
both w}hermal and w;fisual of three sets of weights as

1 S .
W= — (W\_/I + yNoise | WI\_/Iotlon). (7)
3 P P P

The first set of weights w'! is associated with user-defined
“visual importance” (“VI”) in the thermal and visual chan-
nels. The second set of weights wN°i*¢ suggests using noise es-
timation techniques in the fusion process for noise reduction
in the fused output. Many observation system applications
are intended to evaluate activity of a scene, for example, a
car entering a driveway or people in motion. Therefore, the
third set of weights wMetion is designed to represent the activ-

ity level of the scene. Methods for computation of w;fl, wg"ise,

and wf;/“’ti"“ are described in Sections 5.2.1, 5.2.2, and 5.2.3,

respectively.
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TaBLE 2: Standard deviation of residual filtering error (RMSE, in gray levels for the image gray-level range of 0-255) for 4-bar test image
sequences.

. . Output RMSE (standard deviation of input Output RMSE (standard deviation of input
3D window size ) )
noise, 30 gray levels of 255) noise, 20 gray levels of 255)
3X3x%3 13.9 8.86
5X5X5 12 7.48

Abstract - Two Fusion &
a fusion spstem for Mideo
fechmgue 15 @ hira-C
which performs Video s
local IXCT .The second n
fechmigue which is basec
fochmiguas presented are
found in the hterature.

Avmiuime hafh fashmisna
(b)

Absiraci - Two Flusion #
@ firsion spatem for Fdeo
fehmgue iz @ fra-C
which pepforms Video 51
{oeal DICT  The second m
dachmigua which 15 Base
lochnmigras prosented Qra
Jound in the Pieyature
Avpliine bofh tecknigua:
(e) ()

FI1GURE 12: Local adaptive 3D sliding window DCT domain filtering for denoising video sequences. Figures (a) and (b) show noise-free test
image frames. Figures (c) and (d) are corresponding images with additive white Gaussian noise. Figures (e) and (f) are corresponding filtered
frames.

85UB01 SUOWIWIOD BA1E81D 3 0eot[dde au Aq peusenob a1e seoliie YO ‘8sn JO S9|n. 1o} ARl 8ul|UO A1 O (SUOTPUOD-PUR-SLLIBI WD A8 1M Afe.d|BulUO//SdNL) SUOIPUOD PuUe SWiB | 8u18eS *[1Z0z/ZT/zz] uo AkidiTauluo A&[IM 'JO Uonmisu| jpes|-uoluyde | Aq 80891S/8002/SSTT OT/I0p/L0o" A 1M Atiqijpuljuo//sdny wouy pepeojumod ‘T ‘8002 ‘6T8E



Barak Fishbain et al.

11

(®)

(d)

FiGure 13: Sliding 5x5x5 3D window denoising and aperture correction of thermal real-life video sequence. (a) and (c) are frames taken
from real-life thermal sequences; (b) and (d) are the corresponding frames from the filtered sequences.

5.2. Weights specification
5.2.1.  Visual importance weights
(1) Visual channel

Weighing fused images with local weights determined by
visual importance of sequences was suggested in [13, 25].
The local spatial/time variances were suggested as the visual-
range weights. However, local-variance weighing has some
limitations associated with it. First, neighborhoods with only
moderate changes in the visual images are assigned with zero
weights and are omitted from the fused output even if they
may be important visually. Other limitations are due to fre-
quent changes of the same sample’s neighborhood variance
in sequential frames. This may cause flickering in the out-
put fused sequence and make the observation task more dif-
ficult. This is most common in background areas and in areas
which are highly affected by noise. As the presence of noise
manifests itself in higher local variances, using this criterion
will boost noise presence in the output fused image.

The flickering effect can be significantly reduced by us-
ing temporal smoothing of the weights. The noise boost
presented by the visual-channel VI-weights is dealt with in
Section 5.2.2. In order to cope with the omission of visual
data, we propose to compute visual VI-weights as follows:

W}isual _ g;/isual + g;/isual_ 0;{, (8)
where w;fisual are the computed weights in location, (p ) and

a;; are local intensity standard deviations computed in a spa-

tial running window centered in p, and g\** and g)** are

user-defined scalars that secure nonzero contribution of the
channel in uniform areas, where the local standard deviation
is small.

Scalars gV and g%l are set by the user and are
application-dependent. For instance, if the user would like
to emphasize edges and changes in higher frequencies, he
would choose large gy*" with relation to g\**, However,
this might result in flickering output and omission of visual
information of uniform areas from the composite output.
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FIGURE 14: Fusing visual- and thermal-range channel images using two described methods for computing the VI-weights. Figure (c) is the
fused image using variance and distance from the local average as weights for the visual- and thermal-range channels, respectively. Figure
(d) presents the same input images (a) and (b) fused using VI-weights as defined by (8) and (10) for the visual and thermal channels.

Based on the test videos used, g*"! and g)*"¥! were selected

to be 1 and 10, respectively.

(2) Thermal channel

The thermal channel VI-weights are specified under the as-
sumption that importance of pixels in the thermal image
is determined by their contrast with respect to their back-
ground and they are defined as [13, 25]

<IR

IR _ 7
II; fIP

) )

IR
wa =
p

where I}I;R is the input frame from the thermal channel and

Tg{ is its local average estimates.

As images are usually highly inhomogeneous, the weight
for each pixel should be controlled by its spatial neigh-
borhood. The selection of the size of the neighborhood is
application-driven. In our implementation, it is user-selected
and is defined as twice the size of the details of objects of
interest. Different techniques can be used for estimating the
average over the pixel neighborhood, such as local-mean and

median [76]. Both methods have shown good results in ex-
periments without undesired artifacts.

As for background or smooth areas, a similarity can
be drawn between the visual and thermal weights. In both
weighing mechanisms, those areas are assigned to have
weights equal to zero and are omitted from the output im-
age. Therefore, it is suggested to use the user-defined scalars,

gi®and gi}, in the same manner. This brings (9) into the fol-
lowing format:

‘ ;| (10)

IR IR R IR 7
Wik = gl 4 gIR R T
P &1 & P P

The considerations for setting the values of g'*"! and

g;/ isual are similar to the ones, described under Section
5.2.1(1), used to set g'*"! and gyisual,

We illustrate the described VI-controlled interchannel
image fusion in Figure 14. Figure 14(c) shows a fused image
of Figure 14(a) (thermal channel) and Figure 14(b) (visual-

range channel), using pixel’s neighborhood variance o, for

the computation of the visual weighing matrix and differ-
<R .

ence from local mean IIE} —I;.,|@ as the thermal one, while
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FiGurke 15: Fusion applying noise-defined weights. Figure (¢) is the fused output of Figures (a) and (b) using VI-weights. Figure (d) represents
the same input images fused using VI-weights and noise-defined weights.

Figure 14(d) shows the same input frames fused applying g
and g on each channel.

The brick wall in the image is built from bricks with poles
of cement holding them together. The location of the poles
might become crucial for military and civil-engineering ap-
plications. While it is quite difficult to see the poles in
Figure 14(c), they are clearly noticeable in Figure 14(d). This
is also true for the hot spots that appear in the field in the
lower-left part of the image. Those spots are seen in more
detail in Figure 14(d).

5.2.2. Noise-defined weights

We assume that sensor noise acting in each channel can
be modeled as additive white signal-independent Gaussian
noise [8, 77, 78]. It follows from the linear theory of data
fusion for image restoration [79] that noise-defined weights

assigned to each sample of the input channels should be pro-
portional to the signal-to-noise ratio (SNR):

. a’/NY
WY,Nmse _ p P
P d"/NY + oR/NR’
p P p P
(11)
o) /NIR
IR,Noise _ P P
p d"/NY + oR/NR’
p P p P

where 0}‘; and ag are the image local standard deviations
in visual- and thermal-range channels, and NY and N} are
the corresponding channel noise standard deviations for the
sample neighborhood centered at position p.

Two methods for evaluating the noise level of every pixel
over its neighborhood may be considered: (i) estimation
of the additive noise variance through local autocorrelation
function in a running window; (ii) estimation of the additive
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Fused images according to their local signal-to-noise ratio
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FIGURE 16: Rowwise mean power spectra of image fused with (solid)
and without (dotted) SNR weighing.

noise variance through evaluation of noise floor in image lo-
cal spectra in a running window [76, 79].

The estimation of the noise level yields a quantity mea-
sure for each sample. The lower the pixel’s noise level esti-
mate is, the heavier the weight assigned to it will be:

Noise 1
P

Figure 15 illustrates weighing fused images according to
their local SNR estimates.Figure 15(c) presents the output
when fusing Figures 15(a) and 15(b), applying only VI-
weights. Figure 15(d) shows the same two input frames fused
while applying VI-weights along with noise-defined weights.
The evaluation of the additive noise variance was performed
through analysis of image local correlation function. Local
SNRs were evaluated in a moving window of 11 x 11 pixels.

In evaluating images of Figure 15, observation profes-
sionals have pointed out what follows.

(1) Background noise reduction (see areas pointed by
blank arrows =>): on video sequences, this type of
noise tends to flicker and annoy the user observing the
video for several hours.

(2) Edges preservation (see areas indicated by striped ar-
rows 55%): one can easily notice how the building
edges are better presented in Figure 15(d).

(3) Details are better presented. The target of interest
might not be the power plant itself, but its surround-
ing. Observing Figure 15(d) reveals more details and
allows the observer to make better decisions (dotted
arrows ). Additionally, more details can be ex-
tracted from the buildings themselves. The chessboard
arrows (%) point to the building floors which are
spotted in Figure 15(d) and not in Figure 15(c).

Quantitative assessment of the noise levels in Figures
15(c) and 15(d) is presented in Figure 16 that shows the row-
wise average power spectra of Figures 15(c) and 15(d) which
were fused with (solid) and without (dotted) noise-defined
weights. One can see from this figure that noise floor in the
fused image generated with noise-defined weights is substan-
tially lower.

5.2.3.  Motion-defined weights

Observation system applications frequently require evalu-
ation of activity of a scene in time. This section suggests
a fusion mechanism, which assigns moving objects in the
scene with heavier weights. To accomplish that, a quantitative
real-motion certainty-level measurement denoting the con-
fidence level of whether this sample is a part of a real mov-
ing object, as described in Section 3.3, is used to assign input
samples with a weight proportional to their motion level.

Figure 17 presents a typical road scene where a car
(marked with striped arrows) is followed by a bus or a truck
(marked with blank arrows). The car happens to be very hot,
and therefore it exhibits itself as a bright spot in the thermal
channel (see Figure 17(a)). The truck is bigger and cooler
than the car, and it manifests itself in the visual channel.
Both the car and the truck are assigned with higher motion
weights in the corresponding channels. The motion-vector-
defined weight matrices of the thermal and visual images are
shown in Figures 17(a) and 17(b), respectively, where heavier
weights are shown in darker pixels.

Figure 18(a) shows an image that was fused using noise-
defined and VI-weights, as described in Sections 5.2.1 and
5.2.2, with no motion taken into consideration. It might be
difficult to track the vehicles in these images. Modification
of the fusion scheme to include motion-defined weights re-
sulted in the output fused image presented in Figure 18(b) in
which both car and truck can be spotted much easier than in
Figure 18(a)) (see marked arrow).

6. CONCLUSIONS

A new multichannel video fusion algorithm, for long-
distance terrestrial observation systems, has been proposed.
It utilizes spatial and temporal intrachannel-interframe and
intrachannel fusion. In intrachannel-interframe fusion, new
methods are suggested for

(1) compensation for visual-range atmospheric turbu-
lence distortions,

(2) achieving super-resolution in turbulence-compen-
sated videos,

(3) image denoising and resolution enhancement in ther-
mal videos.

The former two methods are based on local (elastic) image
registration and resampling. The third method implements
real-time 3D spatial-temporal sliding window filtering in the
DCT domain.

The final interchannel fusion is achieved through a tech-
nique based on the local weighted average method with
weights controlled by the pixel’s local neighborhood visual
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FIGURE 17: Motion weights extracted from real-life sequences. (a) is a sample frame from the thermal channel; (b) is the corresponding
frame from the visual-range one. (c)-(d) are the matching motion-defined weights.

e ki ¥ v
(b)

FIGUrE 18: Corresponding frames fused using (a) only noise-defined and VI-weights with no motion and using (b) noise-defined and

VI-weights along with motion-defined weights.

importance, local SNR level, and local motion activity. While
each of the described methods can stand on its own and has
shown good results, the full visual- and thermal-range im-
age fusion system presented here makes use of them all si-
multaneously to yield a better system in terms of visual qual-
ity. Experiments with synthetic test sequences, as well as with
real-life image sequences, have shown that the output of this
system is a substantial improvement over the sensor inputs.
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