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Abstract
Yellow rust (YR) wheat disease is one of the major threats to worldwide wheat production, 
and it often spreads rapidly to new and unexpected geographic locations. To cope with this 
threat, integrated pathogen management strategies combine disease-resistant plants, sen-
sors monitoring technologies, and fungicides either preventively or curatively, which come 
with their associated monetary and environmental costs. This work presents a methodology 
for timely detection of YR that cuts down on hardware and computational requirements. 
It enables frequent detailed monitoring of the spread of YR, hence providing the oppor-
tunity to better target mitigation efforts which is critical for successful integrated disease 
management. The method is trained to detect YR symptoms using reflectance spectrum 
(VIS–NIR) and a classification algorithm at different stages of YR development to dis-
tinguish them from typical defense responses occurring in resistant wheat. The classifica-
tion method was trained and tested on four different spectral datasets. The results showed 
that using a full spectral range, a selection of the top 5% significant spectral features, or 
five typical multispectral bands for early detection of YR in infected plants yielded a true 
positive rate of ~ 86%, for infected plants. The same data analysis with digital camera bands 
provided a true positive rate of 77%. These findings lay the groundwork for the develop-
ment of high-throughput YR screening in the field implementing multispectral digital cam-
era sensors that can be mounted on autonomous vehicles or a drone as part of an integrated 
disease management scheme.

Keywords  Wheat yellow rust · Random forest · Early detection · Hyper-spectral · Multi-
spectral · Spectroscopy · Sensing · Detection

Introduction

Wheat is a major source of starch and energy, and provides substantial amounts of essential 
or beneficial components such as proteins, vitamins, and phytochemicals (Shewry and Hey 
2015). It provides over 20% of the total dietary calories and proteins worldwide for more 

 *	 Ran Aharoni 
	 tenzoran@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9013-7179
http://orcid.org/0000-0001-9308-7886
http://orcid.org/0000-0001-9146-1088
http://crossmark.crossref.org/dialog/?doi=10.1007/s11119-020-09742-2&domain=pdf


268	 Precision Agriculture (2021) 22:267–286

1 3

than 4.5 billion people in more than 100 countries (Goutam et  al. 2015; Shiferaw et  al. 
2013). Meeting the economic challenges resulting from worldwide population growth, 
increases in energy consumption, the aging population, and the decline in rural areas 
requires structural changes in agricultural investments and yield economies (FAO 2017). 
Unfortunately, wheat production is threatened by yellow rust (YR), named also stripe rust, 
a disease caused by the fungus Puccinia striiformis f. sp. tritici (Pst) which is one of the 
most devastating fungal diseases globally (Devadas et al. 2009). It is estimated that more 
than five million tons of wheat production, valued at roughly one billion USD, are lost 
annually to YR (Beddow et  al. 2015). No less critically, global warming is expected to 
enable certain plant pests and pathogens to spread into larger areas as they evolve into new, 
more aggressive and adapted strains (Bebber et al. 2013) that are likely to affect crop varie-
ties that are currently resistant or tolerant. One example is the evolution of strains of wheat 
YR that have adapted to higher temperatures and damaged wheat crops in areas where YR 
had not been previously reported (FAO 2017). The current approaches for reducing the 
negative impact of YR on wheat include a combination of breeding for resistance in mod-
ern cultivars (Fu et al. 2009; Huang et al. 2016; Uzogara 2000) and precision agriculture 
technologies that enable disease forecasting and detection (Hodson 2011; Mahlein 2016).

Planting disease-resistant varieties is one of the most efficient wheat YR management 
strategies. However, due to the co-evolution of the host wheat and the fungal pathogen, 
Pst can overcome the mechanism endowed by YR-resistant genes (Hovmøller et al. 2016; 
Wellings 2011). However, detecting cases where wheat resistance is overcome by the path-
ogen can be challenging. For example, resistant wheat varieties may not look green and 
healthy upon Pst inoculation, and will instead have symptom-like yellowing of the leaves 
due to their Hypersensitive Response (HR) resistance mechanism (Pretorius et al. 2017). 
This makes HR hard to distinguish in some cases from yellow fungal sporulation on sus-
ceptible plants. The recently cloned Yr15 gene provides resistance to more than 3000 Pst 
isolates with a high level of immunity and only limited HR (Klymiuk et al. 2018), and is a 
good model for YR spectral studies which can eliminate possible misclassification errors 
of HR as YR. Nevertheless, the inability to predict the emergence of new strains with high 
epidemic potential (Ali et  al. 2017) means that additional monitoring for pathogens is 
critical.

Precision agriculture (PA) is generally defined as farming management strategy that 
involves observing and responding to spatial and temporal variability in the fields, using 
information delivered by different technologies (Fountas et  al. 2015; McBratney et  al. 
2005). A variety of spectral, visual, thermal, and inertial sensor approaches have been pro-
posed, on spatial and temporal scales ranging from contact probes and ground-based (point 
detectors, standoff) detectors to (high and low altitude) airborne and satellite detection as 
reviewed below.

Huang et al. suggested applying a binary linear regression model to multi-temporal air-
borne hyperspectral (HS) images to identify and map the severity levels of stripe rust infec-
tions (Huang et al. 2012). Since HS and high-resolution satellite/airborne observations are 
relatively rare, Zhang et al. (2011) evaluated a spectral knowledge-based approach using 
simulated data and moderate resolution satellite HS data. Their estimate of YR severity 
(disease index, degrees of disease severity) only provided a satisfactory level of accuracy 
for their simulated data. Another study used remote and standoff sensing to quantify YR 
levels in winter wheat, and found that a photochemical reflectance index could serve as an 
indicator for remote HS detection (Huang et al. 2007). Zheng et al. (2019) employed a HS 
spectrometer to obtain proximity measurements at 1.3 m that could be used for wheat dis-
ease detection and prevention in the early-mid growth stage, and estimates of yield losses 



269Precision Agriculture (2021) 22:267–286	

1 3

in the mid-late growth stage. YR severity was based on a photochemical\anthocyanin 
reflectance index, calculated for several possible three-band combinations.

Another approach for the close proximity range is to use wireless sensor network (WSN) 
based applications. WSNs usually employ simple sensors that measure humidity, pressure, 
and temperature through localization, tracking, micro-radars, and imagery, thereby moni-
toring a wide range of surroundings to obtain precise information from the field (Díaz et al. 
2011; Jawad et al. 2017; Ojha et al. 2015). Since WSNs monitor the surrounding climate 
and soil they can function as preventive (and preservative) monitoring systems for mete-
orological wheat disasters (Du et al. 2017), or for predicting disease probability resulting 
from weather fluctuations (Datir and Wagh 2014). WSNs are useful for expected scenarios 
involving predetermined program management and enable farmers to determine the actual 
requirements of crops. Similarly, field-based platforms can combine heterogeneous sensors 
to collect local information at high spatial and temporal resolutions. Visual, thermal, spec-
tral, and inertial sensors can be harnessed to generate highly informative soil maps based 
on the ground characteristics at a smaller scale than in traditional remote sensing methods 
(Milella et al. 2019).

However, both these approaches have shortcomings. Field based and WSN applications 
need to be positioned and installed in advance, whereas satellite observations have limited 
temporal and geographical coverage, and suffer from poor resolution, restricted temporal 
coverage, and environmental (e.g., atmospheric, cloud cover) interference. Fortunately, 
similar operations can be conducted by Unmanned Aerial Vehicles (UAVs) or drones that 
enable precision agricultural and smart farming applications from mapping and survey-
ing to crop-dusting and spraying (Tsouros et al. 2019). Unlike satellites, which are expen-
sive and restricted by availability logistics, UAVs are affordable, have cm-scale resolution 
(Houborg et al. 2015) and are not limited in time or space, which makes them excellent 
candidates for identifying within-field variations. Another advantage of short range opti-
cal measurements compared to remote sensing is that there is much less atmospheric 
interference.

The studies described above illustrate the potential of spectral reflectance spectroscopy 
measurements to quantify the severity of plant diseases, and the advantages of a multi-
sensor approach to environmental monitoring for prevention and crop management. The 
current study extends this trend by using optical spectroscopy coupled with data processing 
that can provide timely detection of YR for PA and farming management. While many con-
ventional treatments for YR are ineffective once the disease is fully developed, some fungi-
cides are considered to have stronger curative activity and can be applied after the disease 
is first detected (Basandrai et al. 2013); therefore, timely detection of the spatial distribu-
tion provides a time window for focused treatment at the individual farm level. In addition, 
early detection of YR can contribute to decision-making for preventative fungicide applica-
tions in non-affected areas within a field. This in turn means that fewer chemicals can be 
applied without compromising treatment efficacy. One of the key issues in the success of 
this approach is the tradeoff between system complexity (dimensionality reduction and low 
cost hardware) and performance. This involves determining the most crucial spectral fea-
tures for YR detection and the most parsimonious way to classify these features as a func-
tion of the severity of disease spread. To respond to this need, the current study addressed 
the effects of decreasing the dimensionality of the acquired data and the hardware require-
ments. This was done by applying a statistical learning approach to data interpretation at 
several data dimensionalities. The preliminary results show that utilizing spectral data in 
several dimensions is suitable at field scales acquired by UAV or manually, by implement-
ing high level digital camera sensors (available in most smart phones). This approach is 
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perfectly adapted to the near future of IOT when every farmer will be able to load data to 
the cloud and use ML central computing algorithms for early disease detection.

Overview of wheat disease detection methods

Many studies have used spectral reflectance measurements to quantify the severity of YR 
at multiple scales using laboratory, field-based, and satellite technologies. Imaging spec-
troscopy has been widely implemented to provide reflectance data across a continuous 
spectrum (i.e., visible and near infrared), and has been successful in previous YR detection 
approaches. Decreased chlorophyll content and photosynthetic capacity in wheat leaves are 
signs of general plant stress, such as YR infection (Chang et al. 2013), was shown to be 
correlated to YR (He et  al. 2018). Kuckenberg et  al. (2009) suggested that fluorescence 
imaging could be employed for early pathogen detection and visualization during the early 
development of YR 2 to 3 days before the manifestation of visual symptoms. However, this 
requires a pre-darkening adaptation of the leaf that restricts field detection to nighttime. 
Combined monitoring of chlorophyll and HS imaging can serve to identify YR spores on 
the 6th day post-inoculation under laboratory conditions(Yao et  al. 2019). Zhang et  al. 
(2019) combined high resolution spectral and spatial information through HS imagery at 
low altitude (30 m) for automated detection of yellow rust with deep convolutional neural 
networks and RF. They reported 85% accuracy, but used only 3 classes (rust, healthy or 
others) and some of the data were sampled about 4 weeks from infection, when the disease 
was already in the severe stages. Handheld spectrometers, along with machine learning 
algorithms have been employed for the identification and disease index inversion of wheat 
rust at the canopy level (Qin et  al. 2015). The use of UAVs combined with hyperspec-
tral imagers have expanded the capabilities of imaging spectroscopy across larger spatial 
scales. Multi-temporal airborne hyperspectral images and a binary linear regression model 
successfully identified and mapped the severity levels of stripe rust infections (Huang et al. 
2012). While HS imaging generates valuable detailed spectral and spatial data, HS meth-
ods require expensive hardware, suffer from high data dimensionality and low spatial and 
temporal resolution, require large data storage capacities, and often need more complex 
analyses, which makes them less appropriate for rapid disease detection (Franke and Menz 
2007; Mahlein 2016).

To cut down on these high hardware and data analysis requirements, vegetation indices 
have been widely developed to detect and classify wheat rust by selecting disease-sensitive 
bands. Franke and Menz (2007) investigated whether NDVI data processing of multispec-
tral data could serve for early detection of powdery mildew and leaf rust, and concluded 
that multispectral remote sensing data had low spectral and temporal sensitivity to detect-
ing initial infection stages. Measurements from shorter ranges provided better results, since 
the amount of mixing between the signal arising from the wheat and the background can 
be overcome by improved spatial resolution, and also minimizes other artifacts from the 
atmosphere. For example, a genetic mapping study implemented by a handheld NDVI 
spectral sensor where the data were subjected to non-linear regression analysis to deter-
mine YR disease severity (Pretorius et  al. 2017). Proximity spectrometer measurements 
were collected to calculate three-band spectral indices for wheat disease detection at dif-
ferent wheat growth stages. The authors reported accuracies of 80.6% and 91.9% for the 
early and late growth stages, respectively (Zheng et al. 2019). The Red Edge Disease Stress 
Index was developed using Sentinel-2 multispectral imagery and a random forest classifier. 
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It achieved an overall YR detection accuracy of 84.1% (Zheng et al. 2018). Spectral vegeta-
tion indices (SVIs) have been widely used to reduce data dimensionality and detect differ-
ent plant diseases. Two SVIs were developed from hyperspectral data using an exhaustive 
search of all wavelengths. This yielded overall YR classification accuracies of 89.5% and 
86.5%, but early symptoms of YR were much more difficult to detect (Ashourloo et  al. 
2014a). Their comparison of several SVIs revealed the sensitivity of SVI values to dis-
ease severity, since the collected spectrum became more complex as disease symptoms 
increased; the classification accuracy was inversely related to disease severity (Ashourloo 
et al. 2014b).

It is worth noting that the spectral index approach is dependent on the available bands of 
the sensor and the detection algorithm used. For instance, some studies have suggested that 
the ratio of reflectance in the green to red region is the most efficient indicator of wheat 
rust detection (Devadas et al. 2015), whereas others have recommended using the 705 nm 
and 725 nm bands (Moshou et al. 2004). To further reduce hardware and software require-
ments, Baresel et al. (2017) suggested using an off the shelf camera as a successful alter-
native to both spectral and SPAD chlorophyll measurements using basic image analysis 
procedures such as segmentation and color analysis. Several applications of image analysis 
in the visible spectrum have been developed to assess disease severity, and diagnose plant 
diseases and other disorders (Bock et  al. 2010). Mahlein (2016) presented sensor imag-
ing and data analysis results for the diagnosis and detection of diseases in crop produc-
tion based on RGB (Red–Green–Blue channels) sensors but also multi and HS. Automated 
crop disease pattern recognition systems to identify crop diseases (such as YR) employing 
severity based segmentation, feature analysis and classification have also been explored 
(Han et al. 2016; Xu et al. 2017).

The VIS–NIR (800–2500  nm) range provides rapid nondestructive measurements for 
agriculture, ecology, geology, the food industry and others that can be processed by various 
analytical techniques (Manley 2014; Sendin et al. 2018). Classification trees; i.e., binary 
tree structured classifiers, which are a fundamental building block of random forest (RF) 
classification (Breiman 1996), are useful in predicting the class association of an obser-
vation using a large set of covariates (Breiman et  al. 1984). Classification, or predicting 
a class response, is a statistical process that can be realized through statistical modeling 
approaches such as machine learning (ML). While each algorithm has some advantages, 
there is no obvious solitary solution to a specific problem. Random Forest provides a 
measure of predictor importance (Archer and Kimes 2008), and can be used as an effec-
tive predictor importance measure in addition to classification by determining the spectral 
wavelengths that need to be measured. A comparison of RF, probabilistic neural network 
(PNN), back-propagation neural networks (BPNN), and SVM for the early detection of dis-
eases in grapes in an uncontrolled environment showed that RF outperformed the other 
methods in terms of classification accuracy (Sandika et  al. 2017). Knauer et  al. (2017) 
reported improved classification accuracy when using inherent RF attributes (predeter-
mined ensemble size, picking the required predictors), as well as increased efficiency (by 
parallel computation) of powdery mildew infection levels in wine grapes. Multispectral, 
high-resolution satellite data have been used to map the presence of rust in wheat fields in 
China, using both support vector machines (SVM) and RF classifiers to achieve accura-
cies of 91.45% and 94.8%, respectively; however, this approach only used binary classi-
fiers and did not distinguish between levels of disease severity (Chen et al. 2018). Another 
RF-based method was applied to multispectral data collected from a UAV to classify 
imagery into healthy, moderately diseased, and severely diseased plant material with 89% 
accuracy 45 days after inoculation (Su et al. 2018).Beyond the performance superiority of 
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RF, the present study used RF to furnish predictor (i.e. spectral predictor, measured wave-
length) selection by harnessing its discriminative ability to provide insights into the most 
important covariates with respect to the classifier. The RF technique described below is an 
ensemble classifier; i.e., a predictive model based on individual or multiple classifiers with 
weighted combinations. This approach can overcome shortcomings such as over-fitting or 
train-set noise, by combining the results of individual supervised classifiers or a number of 
different classifiers. RF, as a specific case of bootstrap aggregation (i.e. bagging) can avoid 
finite size effects of the data, and has been proven to be an accurate supervised learning 
classification method (Breiman 2001a, b; Svetnik et al. 2003). Bagging makes it possible to 
use weak and unstable learners such as classification trees, to produce a predictive model 
by averaging or other voting procedures. As detailed below, the overall aim of this study 
was to investigate the impact on accuracy of decreasing the dimensionality of acquired 
spectral data through the applications of a statistical learning approach for data interpreta-
tion at several data dimensionalities.

Materials and methods

Biological sample preparation and labeling

The samples were composed of two near isogenic lines (NILs) of bread wheat (Triticum 
aestivum), one with the stripe rust resistance gene Yr15 (Avocet + Yr15) that confers 
resistance to YR, and one without (Avocet S), which is therefore susceptible to YR. Avo-
cet + Yr15 carries a 1BS chromosome segment introgressed from wild emmer wheat (T. 
turgidum ssp. dicoccoides) that harbors Yr15 (Klymiuk et  al. 2018). To obtain infected 
leaves, the plants were inoculated at the two-leaf stage with fresh urediniospores of YR 
isolate #5006 (race 38E134) suspended in Soltrol® 170 light oil (Chevron Phillips Chemi-
cal Company, The Woodlands, TX, USA) and dispersed using an airbrush spray gun (Rev-
ell, Bunde, Germany). Inoculated plants were kept in a dew chamber (100% humidity) at 
10 °C for 16 h in the dark followed by 8 h of light. The plants were then transferred to a 
growth chamber (70% humidity) at 15 °C with a light intensity of 150 µmol m−2 s−1 for 
16 h followed by 8 h at 10 °C in darkness for the remainder of the experiment.

A total of 955 samples of susceptible and resistant plants at different stages of YR infec-
tion were measured. Representative samples are depicted in Fig. 1, showing healthy wheat 
leaves and leaves at different stages of the YR and HR development. The figure presents 
all of the main categories of measured leaves, (from top to bottom): healthy, early HR, 
developed HR, onset of sporulation and sporulation. The fully developed YR symptoms 
appear in the bottom leaf (E), which was sampled 14 days post inoculation. In contrast, the 
healthy (non-infected) leaf (A), is distinguishable by its fresh green appearance. The other 
leaves are rather similar (B–D), making the application of a unique label challenging for 
non-pathologists. Thus, two different labelling systems were analyzed here: the biological 
condition of the leaf, and visual inspection. The 4 biological labels were: Susceptible Non-
Infected (SNI), Resistant Non-Infected (RNI), Susceptible Infected (SI), Resistant Infected 
(RI). The 6 visual labels were: (1) Green looking healthy leaf, (2) HR, early stages, (3) HR, 
fully developed, (4) Onset of sporulation, (5) Sporulation early stages, and (6) Sporulation 
final stages.

Note that the visual label system was diagnostic and ignored the biological iden-
tity of the sample. It merged leaf stages that would have been identified differently by a 
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pathologist. The leaf in panel ‘E’; i.e. stage, ‘5’ represents the worst case (within this label) 
corresponding to day 14 post inoculation (however most leaves with this label were from 
day 12). Stage 6 (not included in the figure) defined leaves at day 30 post inoculation, and 
was used as a control to avoid classifying these leaves as an earlier stage. Clearly the differ-
ences between the two labeling systems are pronounced. For example, a sample labeled ‘1’ 
could be applied to any of the biological categories, as long as it did not exhibit any appar-
ent symptoms. Visual labels ‘4’-‘6’ could be assigned to leaves at different stages of the 
biological SI label. This is depicted in Fig. 1, where each leaf is assigned its appropriate 
label and all visual labels can apply to panel ‘A’. The two labeling systems; i.e., the ‘theo-
retical label’ and ‘visual label’ are compared in the Results section.

Each leaf was measured manually at several random sites on its surface. The samples 
were not preprocessed with extraction techniques or by physically modifying the sample to 
fit the optical setup, resulting in a certain amount of noise.

Spectral measurements

Spectral measurements in the VIS–NIR wavelengths were conducted with a spectrometer 
(ASD FieldSpec® 4 Hi-Res) at 350–2500 nm, producing 2151 data points for each meas-
urement. The spectral resolution was 3 nm @ 700 nm/8 nm @ 1400/2100 nm, at a spectral 
sampling (bandwidth) of 1.4 nm @ 350–1000 nm/1.1 nm @ 1001–2500 nm. The leaves 
were sampled indoors, fresh from the pot, using a custom accessory sampling contact 
probe consisting of a Halogen lamp and a collecting fiber as input. In addition to the spec-
tral measurements, leaves at different stages of disease development were photographed 
using a digital camera (Nikon D810) with a 105 mm macro lens.

Classification

The YR development stages were estimated by assigning the wheat leaves to different 
classes of disease severity from healthy, through the early stages, to advanced sporulation 

Fig. 1   Representative wheat leaf 
samples, and labels (for both 
labeling systems). The examples 
range from a green fresh healthy 
leaf to different stages of YR 
and HR. From top to bottom: a 
healthy (SNI) or resistant non 
infected (RNI), b early stages 
of HR (resistant infected (RI)), 
c HR fully developed (RI), d 
infected leaf (SI), e infected leaf, 
sporulation (SI)

Vis-

Label

Bio-

Label

1 RNI/SNI

2 RI

3 RI

4 SI

5 SI
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(see Fig. 1) before implementing RF. Most models, whether they are a ML (such as NN, 
KNN, SVM) or discriminant analysis tools, are very useful for classification tasks, but do 
not provide straightforward insights into the estimator’s importance and may demand data 
dimensionality reduction prior to inferring the classifier. RF is a robust classifier that ena-
bles these insights, and can able deal with high dimensional data, complex interactions and 
correlations between variables, which enables estimator selection for data reduction (Hap-
felmeier et al. 2014; Kursa 2014).

RF procedure

Before the bagging procedure, the data were divided randomly into a train set (70% of the 
data), and a test set (30% of the data). Since the classification process is affected by the 
selection of the training set (Grabmeier and Lambe 2007; Rokach and Maimon 2005), the 
validation process was carried out in an iterative fashion, where in each iteration a new 
training set from the entire dataset was randomly chosen, to mitigate possible training set 
selection effects. The remaining samples, at each iteration, were used for validation. The 
bagging procedure used a random subset of the training set for training the classifier (each 
of these subsets contained about two-thirds of the train set) and the remaining third were 
used as a cross-validation for error estimation (termed “out-of-bag error” OOBerr), where 
the final classification is obtained by averaging or majority votes of each tree’s decision 
from all sub-sets (Breiman 2001a, b).

First, the OOBerr, or the misclassification probability, was computed to estimate the 
number of trees required in the RF. Obviously, increasing the number of trees decreases the 
OOBerr until it stabilizes at a minimal value. Moreover, since in each tree node the predic-
tors are selected randomly, the correlation between the trees in the forest decreases, as does 
the total error rate. Based on the OOBerr, the importance of the OOB was computed as 
the difference of a tree’s OOBerr before and after random permutation of a predictor vari-
able: if the predictor and the response are not associated, permutation will not influence 
the error, and the error difference is low (low importance), whereas if the predictor and the 
response are associated, the error difference will increase as a result of permutation (high 
importance). The relative OOB importance was used to calculate each predictor’s contribu-
tion to the learning process. A high importance score indicates that this predictor contrib-
utes highly to the learning process. Negative values indicate that this predictor is noisy. 
Hence, a predictor can impede the learning process.

Predictor selection

The RF classification procedure was applied in four spectral domains: (1) the full spectrum 
containing 2151 predictors (wavelengths), (2) a reduced predictor space (108 wavelengths) 
derived by predictor importance, (3) five spectral bands, and (4) three spectral bands, RGB, 
which are available in off the shelf digital cameras. This fundamental ability of RF to rank 
the importance of predictors by classifying them as a function of their weight can improve 
the classification process (Archer and Kimes 2008). Another benefit of RF predictor selec-
tion is that it enables dimensionality reduction by selecting the most important features. To 
simulate these multispectral measurements, a RF classification was applied to five spectral 
bands, resampled according to Altum™ by MicaSense (https​://www.micas​ense.com), as 
detailed in Table 1.

https://www.micasense.com


275Precision Agriculture (2021) 22:267–286	

1 3

Next standard consumer digital cameras were examined. RGB camera channels were 
simulated by using the corresponding RGB bands. Table 2 details the RGB spectral bands 
in typical RGB cameras.

The database, composed of 955 spectral measurements, was analyzed using both labe-
ling systems, in all four domains. The results are presented as a confusion matrix com-
paring the true class (y-axis) to the class predicted by the classifier (x-axis), as shown in 
Figs. 4, 6, and 7. The diagonal terms represent successful classification and the off-diago-
nal represents incorrect classification. All quantitative terms are also represented by color. 
The correctly classified measurements, (termed ‘accuracy’), are defined as the ratio of the 
true terms (diagonal terms) to the total number of true and false terms (the whole matrix). 
Each chart is accompanied by a row-normalized summary and a column-normalized sum-
mary. The vertical row-normalized summary represents the true positive and false positive 
rates (which represents the class-wise recalls; i.e., the percentages of correctly/incorrectly 
classified observations for each true class). The horizontal column-normalized summary 
represents the positive predictive values (which represents the class-wise precisions; i.e., 
the percentages of correctly and incorrectly classified observations for each predicted 
class).

Results

Data exploration

Typical infected and non-infected wheat leaves are shown in Fig. 2a, where the leaves 
on the right are green and healthy, and the leaves on the left manifest fully developed 
symptoms with abundant sporulation on the susceptible Avocet S plants (label ‘6’). Fig-
ure 2b presents a typical spectrum from fully developed YR, obtained by dividing the 
trace from a leaf with a fully developed YR by the trace of a healthy leaf. This ideal 
clean spectrum of YR spores does not reflect the expected spectrum of infected leaves 
at any stage; however, it presents the main absorption peaks of YR. These peaks are 

Table 1   Spectral bands for 
the five multispectral bands, 
Altum™ by MicaSense

Band Center (nm) Band-
width 
(nm)

Blue 475 20
Green 560 20
Red 668 10
Red edge 717 10
Near infra-red 840 40

Table 2   Typical spectral bands 
for RGB commercial digital 
cameras

Band Center (nm) Bandwidth (nm)

Blue 440 120
Green 525 150
Red 630 140
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located around 668 nm, 1450 nm, and 1935 nm. Two additional peaks, often truncated, 
are located at the edges of the spectrum at 380 nm and 2470 nm. As indicated in Fig. 2b 
(and Fig. 5b) a considerable number of significant predictors were found in the visual 
and near IR spectrum (VIS–NIR). Figure 2c presents the data from the RGB photo of 
Fig. 2a after processing, in which the data in the green channel were subtracted from the 
red channel. It shows that even with a minimal dataset of a few channels, fully devel-
oped YR can be detected.

The results above suggest that fully developed YR can be detected using relatively 
simple means. The next sections describe how a RF classification of wheat plants can 
enable timely detection of infected crops for the cases shown in Fig. 1, in which the dif-
ference between leaves at different stages are difficult to differentiate.

One of the key parameters when using a RF classifier is the size of the forest; namely, 
how many decision trees are included in the classification process. Figure  3 shows 
the OOBerr (Breiman 2001a, b) as a function of the number of trees, for the dataset 
described above and utilizing the entire spectrum of each measurement. The graph 
shows that the error decreases with the number of trees up to about 100 trees, where 
it reaches its minimum value of 25%. The following RF calculation used 150 trees to 
verify that the OOBerr was at its minimal value.

In order to account for possible variations in the results due to the random selection 
of training set and out-of-bag samples, the classification was repeated 10 000 times. The 
resulting standard deviation was < 1% which is negligible in this case.

Fig. 2   Visual appearance and spectral response of infected and healthy leaves. a Leaves with developed YR 
infection in the final stages (left), compared to healthy leaves (right). b VIS–NIR spectrum of the infected 
leaves of figure (a). c Enhancement of figure (a) by subtracting the green from the red channel
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Classification of hyper‑spectral data

The RF classification was applied to the dataset. Figure 4 shows the classification into 
biological labels (a) (i.e. SNI, RNI, SI, RI) and visual labels (b). The classification accu-
racy was 81.5% and 74.2% for the biological and visual classifications, respectively. For 
the biological labels, the true positive rates (TPR) for the infected SI and RI labels were 
86.5% and 83.8%, respectively. For the visual labels, the TPR was 87.5% for final stages 
of sporulation (label 6). The TPR for labels 4 (onset of sporulation) and 5 (sporulation 
early stages) were 53.3%, and 92.2%, respectively. Note that the green healthy areas of 
the leaf spatially dominated the sampled area in all measurements. This is indicated by 
the higher misclassification of label 2 (HR, early stages) as 1 (green looking healthy 
leaf). This was expected because the spectral (and visual) differences between samples 
labeled as 1 or 2 were minor.

Fig. 3   An example of the Out-
Of-Bag error rate vs. number of 
grown trees used for classifica-
tion. The error rate decreases to a 
constant value of ~ 25–28% when 
the number of trees exceeds 60

Fig. 4   Confusion matrix for the RF classification with the full spectrum. The numbers located on the diago-
nal of the matrices indicate the number of accurate classifications for each class; the off-axis are the false 
identifications. a Using the biological set of labels. b Using the visual set of labels
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Classification using reduced predictor space

The properties of all predictors were examined prior to reduction, by calculating the per 
sample error rate; namely, the relative misclassification for each sample. This error rate 
was obtained as follows: 400 train sets were selected randomly, and each train set was 
processed 100 times using RF, which yielded 40 000 forests. Due to the noisy nature 
of the measurements, some of the samples were more prone to misclassification than 
others. However, there were no chronically defective samples that could not be clas-
sified correctly; i.e., no outliers. The error rate ranged from negligible to as much as 
6.9%, with a mean of 0.2%, a standard deviation of 0.22, and a median of 0.1%. Figure 5 
depicts the predictor importance for all 2151 spectral channels. It is noteworthy that 
there are numerous negative values, indicating insignificant spectral channels across the 
spectrum. The top 5% significant channels are located around 500–700 nm, 1400 nm, 
and 1900 nm, which is consistent with the reflectance spectrum presented in Fig. 2b.

Based on Fig. 5, the data were classified with an identical RF procedure using the 
selected predictor space (Fig. 6). The results were very similar to those obtained using 
the full spectrum, with a slight decrease of about 1.5% from 81.5 to 79.9% (biological 

Fig. 5   Predictor importance 
(OOB importance), indicating 
the contribution of each predictor 
to the RF. The top 5% are marked 
in black

Fig. 6   Confusion matrices showing the classification using the selected predictors (top 5%): a biological 
labels; b visual labels. The classification accuracy was comparable to the one obtained using the entire 
spectrum
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labels), and from 74.2 to 73.1% (visual labels). The performance for the significant 
labels; i.e., RI and SI (biological labels), and 5 (visual labels) were also similar.

The RF classification results using five bands (centered at 475, 560, 668, 717, and 
840 nm; see Table 1) are shown in the confusion matrix in Fig. 7a, b. It shows that mini-
mizing the spectral data for these five bands degraded classifier performance slightly, 
yielding an accuracy of 78.5% and 65.1% for the biological and visual label classifications, 
respectively. The TPR for SI and label ‘5’ were 85.8% and 88%, respectively.

Further reduction of the feature space to three wave lengths (‘R’, G’, and ‘B’ see 
Table 2), reduced the overall classifier performance, as shown in Fig. 7c, d. The accuracy 
for the biological and visual labels was 54.8% for the former and 65.8% for the latter. How-
ever, the TPR for the infected plants remained high at 77.7% for SI and 78.4% for visual 
label ‘5’, making this easy setup suitable for simple tasks such as the detection of fully 
sporulated YR.

Comparison: levels of predictor spaces and labeling systems

Figure 8 summarizes the results for the total classification accuracy (dashed line) and the 
specific accuracy; i.e., TPR (solid line), for both the biological labeling system (red) and 

Fig. 7   Classification using 5 and 3 spectral bands for both labeling systems. a and b confusion matrices 
obtained using 5 spectral bands that are available in a commercial agricultural drone sensor (a biological 
labels, b visual labels). Similarly c and d present the confusion matrices using three spectral bands available 
in digital cameras (c biological labels, d visual labels)
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the visual labeling system (black). The TPR depicts the key SI and ‘5’ (early stages of 
sporulation) labels. It shows that in all cases the overall accuracy; i.e., the correct classifi-
cation of the disease stages was lower than the TPR. An accuracy of 77.7% was obtained 
with a multispectral camera. At further simplification of the sensor with an RGB sensor, 
the level of accuracy is unacceptable, but the TPR was higher than 80% and may be useful 
in some scenarios. It also shows that while the biological labeling system exhibits better 
performance for accuracy, the visual labeling approach outperforms for the TPR.

For timely detection of YR, accuracy is less informative, and the ‘specific accuracy’, 
or TPR, of the relevant SI and label ‘5’ leaves should be taken into account. In this case, 
applying the biological labeling means that all stages of the disease are subsumed under 
a single label. This pools leaves at different stages of YR from fully developed symptoms 
to leaves with no apparent spectral signature of YR. This results in a lower TPR for the 
biological labeling system, as a result of possible misclassifications of green leaves in the 
early non-symptomatic stages. Likewise, in the confusion matrices for visual labeling, the 
TPR improves as YR and HR symptoms are more severe. This is probably due to the pres-
ence of green areas in all the samples, which decreases as YR/HR symptoms appear.

Discussion and conclusion

Timely YR detection is crucial for economic decisions about disease management, in par-
ticular fungicide applications. While many fungicides are sprayed as a preventative meas-
ure, some products can reduce the severity of symptoms after the disease has manifested 
(De Wolf 2010). For example, the triazole class of fungicides is generally considered to 
have stronger curative activity and can be applied after the disease is detected in the field 
(Basandrai et  al. 2013). Therefore, if YR is observed early enough, and the appropriate 
treatment is applied at the right time, further sporulation and spreading of YR within the 
field and to neighboring fields can be reduced or completely prevented, thus reducing dis-
ease severity and preserving yield. The detection of YR at early stages can also help ena-
ble site-specific disease management based on disease symptoms, rather than relying on 
unnecessary fungicide applications. This can reduce costs and the environmental impact 

Fig. 8   Accuracy, and true posi-
tive rates (TPR), obtained using 
four levels of the predictors 
set: hyperspectral (all 2151 
wavelengths), predictor-selection 
(top 5% important); multi-
spectral (5-bands), and RGB. The 
accuracy is defined as the total 
accuracy of the classification, 
and TPR is the true positive rate 
for visual label ‘5’ and biological 
label SI
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associated with their application (Jørgensen et al. 2014). Timely detection combined with 
a simple accessible means can contribute to eradicating escalating YR epidemics (www.
wheat​rust.org), and responds to warnings issued by the food and agriculture organization 
of the United Nations concerning the rapid unexpected spread of rust diseases in wheat. 
As mentioned above, using resistant varieties is a common ecological way to defeat crop 
diseases. However, the Pst pathogen can mutate and become virulent on currently resist-
ant wheat varieties. Thus, the ability to distinguish YR from HR is important. As seen in 
Figs. 4, 6, and 7, the misclassifications of YR early stages (label 5) and HR stages (labels 
2, 3) are negligible. In all the confusion matrices, the values of the intersection of row 5 
and columns [2, 3] are low. This suggests that YR can be detected in fields where resistant 
wheat varieties expressing HR in response to Pst inoculation are planted.

The visual labeling system makes it possible to describe the critical stages of disease 
development, instead of using a single label, and outperforms biological labeling, as seen 
in Fig. 8. It is likely to be enhanced when labeling the leaves with majority voting by mul-
tiple individuals, due to the inconsistent nature of human labeling. More disease stages 
(labels) could also to be considered. Clearly, the RF predictor selection based on impor-
tance only had a slight effect on performance. The RF predictor space reduction was based 
on the ability of the RF classifier predictor, to rank in terms of importance, which predicted 
the significance of these specific wavelengths. The, the multi-spectral sensor was chosen 
for agricultural needs since the red edge band (712–723 nm) is indicative of various stress 
symptoms in chlorophyll-containing vegetation (Filella and Peñuelas 1994; Guo et  al. 
2018). The other bands also contained the spectral features of YR, as seen in Figs. 2b and 
5. This explains why the decrease in TPR when using multi-spectral approach was negligi-
ble, and justifies its use, as described above. Although commercial digital camera channels 
were not designed for agricultural considerations, RGB imagers have been suggested for 
agricultural applications as a complement to other spectral devices in developing SVI for 
disease severity estimation (Ashourloo et al. 2014a, b), phenotyping (Maimaitijiang et al. 
2017), and also as spatial information for YR diagnosis and grape diseases classification 
with image processing (Sandika et al. 2017; Xu et al. 2017). Franke and Menz (2007) also 
suggested controlling for the success of fungicide treatments, using the classification of 
multispectral and multi-temporal remote sensing of wheat diseases. However, their method 
is only effective at advanced growth stages, because of low spatial and temporal issues. 
This led them to argue that short-range detection systems and remote sensing data should 
be considered as complementary strategies for precision agriculture applications. In the 
current study, the green appearance of healthy leaves, as well as stress in general and YR 
in particular all have visible effects, most of which are in the ‘G’ and ‘R’ channels of com-
mercial RGB bands. By expanding the data by using spatial information and image pro-
cessing, the noticeable decrease when using only the RGB presented bands can be signifi-
cantly overcome.

The method of YR detection presented here was based on the inoculation of wheat 
seedlings in a highly controlled laboratory environment. However, the reactions of seed-
lings and adult wheat plants, as well as their expression in laboratory and field condi-
tions may differ. Thus, this method should be evaluated under field conditions for adult 
wheat plants prior to wider application. At this stage, it is hard to compare the results, 
which are based on seedling reactions in controlled conditions, to other methods of YR 
detection in the field. Nevertheless, it has potential advantages for applications in small 
farms that cannot afford satellite imaging or other expensive and sophisticated equip-
ment. Another point to be considered is that a realistic scenario might involve large 
sample variations and interference from background materials. Here, in the preliminary 

http://www.wheatrust.org
http://www.wheatrust.org
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analyses, the spectral response of red loam soil collected in Ness-Ziona (Israel) was also 
measured and added to the dataset, which resulted in 100% accurate labeling of the soil 
with negligible to no effect on the classification accuracy of the wheat leaves.

In scenarios when YR appears unexpectedly on varieties known to be resistant in the 
past, a rapid response and real-time actions are required to prevent the further spread of 
the disease. Due to the random nature of these situations, simple hardware and machine 
learning techniques can be used for geographic locations that are not under constant 
monitoring to detect early stage YR. This study thus constitutes a first step towards 
developing robust disease detection models that can be deployed in the field for scout-
ing by characterizing and classifying rust in a controlled environment. In terms of the 
tradeoff between system simplicity and efficiency hyperspectral sensors provided a more 
accurate classification of YR and may be able to detect other diseases. However, the 
vast deployment of hyperspectral sensors is likely to be expensive compared to simpler 
multispectral sensors. Hence, the combination of multispectral sensors and hyperspec-
tral sensors can provide good coverage and performance. Future work will concentrate 
on the extension of this study to other diseases, the validation of the results in field 
experiments and the investigation of combinations of several sensors to find the right 
balance between system complexity and efficiency.

Summary

This work examined the utilization of spectral data at several levels of dimensionality 
reduction to enable the use of low-cost multispectral or RGB systems, and presented pre-
liminary results. The RF classifier, a robust algorithm, yielded reliable and high detection 
rates of early stages of YR with a multi-spectral sensor, 12 days post Pst infection. Plants 
expressing HR resistance, which appear similar to some early stages of YR susceptible 
plants were successfully differentiated from actual YR development in susceptible wheat 
genotypes. These results lay the foundation for high-throughput YR screening in the field 
using autonomous vehicles and commercially available multispectral sensors as part of an 
integrated pathogen management scheme that utilizes both resistant varieties and precision 
agriculture technologies for YR detection and monitoring.

Selecting the top 5% most important predictors for RF classification had little effect 
on classifier performance. This can be attributed to the fact that the RF identified the 
absorption bands of YR based on its contrast with the green background, which is com-
mon to all measurements. Reducing the number of predictors further is advantageous 
for the application of simple robust system. Thus, the performance of an agricultural 
multi-spectral sensor with only five bands was simulated and showed that accurate 
detection of YR using this simplified setup is possible. Preliminary results when using 
a digital camera was also reported, and generated reasonable results that can be used to 
supplement imaged spatial data in future research.

Further work is required to devise a system capable of sensing in a rapidly changing 
environment, and determining its optimal analysis procedure. The utilization of autono-
mous vehicles is likely to develop in the near future given the advantages of short range 
monitoring by satellite observations. Both autonomous vehicles and manual photogra-
phy can benefit from information and communication technologies and the IOT revolu-
tion, when every farmer will be able to load data to the cloud with affordable hardware.
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