
3038 OPTICS LETTERS / Vol. 32, No. 20 / October 15, 2007
Superresolution in turbulent videos: making profit
from damage
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It is shown that one can make use of local instabilities in turbulent video frames to enhance image resolu-
tion beyond the limit defined by the image sampling rate. We outline the processing algorithm, present its
experimental verification on simulated and real-life videos, and discuss its potentials and limitations.
© 2007 Optical Society of America
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In long distance observation systems, images and
video are frequently damaged by atmospheric turbu-
lence, which causes spatially and temporally chaotic
fluctuations in the index of refraction of the atmo-
sphere [1] and results in chaotic spatial, and tempo-
ral geometrical distortions in the neighborhood of all
pixels. This geometrical instability of image frames
heavily worsens the quality of videos and hampers
their visual analysis. To make visual analysis pos-
sible, first of all it is required to stabilize images of
stable scenes while preserving the real motion of
moving objects that might be present in the scene.
Methods of generating stabilized videos from turbu-
lent ones were reported in [2–5] with emphasis on
the real-time implementation and reliable discrimi-
nation of atmospheric turbulence-induced pixel dis-
placements from those caused by moving objects
present in the scene. Along with this, in [5,6] the idea
of making a profit from atmospheric turbulence-
induced image geometrical spatial–temporal degra-
dations to compensate for image sampling artifacts
and generate stabilized images of the stable scene
with higher resolution than that defined by the cam-
era sampling grid was advanced. The idea was sup-
ported by the demonstration of proof-of-concept re-
sults of perfecting real-life videos. A similar idea was
also advanced in [7].

In this Letter, we elaborate on this idea, describe a
practical method for producing good quality higher-
resolution videos from low-resolution turbulent video
streams that implement this idea, and illustrate its
performance experimentally using simulated and
real-time atmosphere distorted videos. The core of
the method of image stabilization with superresolu-
tion is elastic registration, with subpixel accuracy, of
available video frames of stable scenes followed by re-
sampling of the frames according to the registration
results.

The first step in the processing of each current
frame is updating a reference frame used for elastic
registration. For generating and updating the refer-
ence frame, a temporal pixelwise median over a block
of frames preceding and following the current frame

is used as described in [2–6].
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The next step is computing, with subpixel accuracy,
a map of pixel displacements in the current frame
with respect to the reference frame. It is carried out
by means of elastic registration of the current frame
and the reference frame. For elastic image registra-
tion, several options exist: (i) optical flow methods
[8,9]; (ii) correlation methods [10], and (iii) using mo-
tion vector data available in MPEG encoded videos
[11]. In the reported experiments, optical flow meth-
ods were used.

The pixel displacement map is then analyzed and
segmented to separate pixels of the real moving ob-
jects from those that belong to the stable scene and
are displaced solely due to the atmospheric turbu-
lence. Toward this end, the absolute difference from
the reference as well as statistical analysis of dis-
placement magnitudes and angles is used [3–6].

The displacement map found for pixels of the
stable scene serves, at the next processing step, to
place pixels for each current frame, according to their
positions determined by the displacement map, into
the reference frame, which is correspondingly up-
sampled to match the subpixel accuracy of the dis-
placement map. For upsampling, different image in-
terpolation methods can be used. Among them,
discrete sinc interpolation is the most appropriate as
the one with the least interpolation error [10]. As a
result, output stabilized and enhanced in its resolu-
tion frame is accumulated. In this accumulation pro-
cess it may happen that several pixels of different
frames are to be placed in the same position in the
output enhanced frame. To make best use of all of
them, these pixels must be averaged. For this aver-
aging, we suggest computing the median of those pix-
els to avoid the influence of outliers that may appear
due to possible anomalous errors in the displacement
map.

After all the available input frames of the stable
scene are used in this way, the enhanced and up-
sampled output frame contains accumulated pixels of
input frames in positions where there were substitu-
tions from input frames and interpolated pixels of the
reference frame in positions where there were no

substitutions. Substituted pixels introduce to the out-
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put frame high frequencies outside the baseband de-
fined by the original sampling rate of the input
frames. Those frequencies were lost in the input
frames due to the sampling aliasing effects. Interpo-
lated pixels that were not replaced do not contain fre-
quencies outside the baseband. To finalize the pro-
cessing and take full advantage of the
superresolution provided by the replaced pixels, we
suggest the following iterative reinterpolation algo-
rithm that implements discrete sinc interpolation of
nonuniformly sampled data. The algorithm assumes
that all accumulated replaced pixels are stored in an
auxiliary replacement map that contains pixels val-
ues and coordinates. At each iteration of the algo-
rithm, discrete Fourier transform (DFT) [or discrete
cosine transform (DCT), which is less vulnerable to
boundary effects [10]] a spectrum of the image ob-
tained at the previous iteration is computed and then
zeroed in all its components outside the selected en-
hanced bandwidth, say, double the original baseband
one. After this, inverse DFT (DCT) is performed on
such a modified spectrum, and the corresponding pix-
els in the resulting image are replaced by pixels from
the replacement map, thus producing an image for
the next iteration. In this process, the energy of the
zeroed outside spectrum components can be used as
an indicator as to when the iterations can be stopped.

Stabilized and resolution-enhanced images, ob-
tained in this way can be finally downsampled to the
sampling rate determined by the desired enhanced
bandwidth and then subjected to additional process-
ing aimed at camera aperture correction and, when
necessary, denoising.

The potential efficiency of the entire processing is
illustrated in Fig. 1 with the results of computer
simulations. As one can see from Fig. 1, even from as
small a number of frames as 15, a substantial reso-
lution enhancement is possible especially when a suf-
ficiently large number of reinterpolation iterations
are carried out.

The method was also tested on real-life turbulent
degraded visual-light range and thermal videos.
Visual-light range videos (wavelengths of 0.3–1 �m)
were acquired with 4CIF (Common Intermediate
Format) 704�576 pixels cameras. Thermal videos
were acquired with QCIF near infrared �2–5 �m�
cameras. The typical distance from the camera to the
observed scene ranged from 5 to 15 km. The typical

Fig. 1. Illustrative simulation results of the resolution en-
hancement of turbulent video frames: (a) initial high reso-
lution frame, (b) example of a low-resolution frame ob-
tained by a camera with a fill factor 0.05, (c) resolution-
enhanced frame obtained by the described fusion process
with 50 iterations of the reinterpolation from 15 low reso-
lution frames distorted by simulated random local displace-

ments with a standard deviation of 0.5 interpixel distance.
environmental temperature, in which the sequences
were acquired was above 30°C. In our data, standard
deviation of the motion field magnitude, in interpixel
distance, was 0.3–0.4 for the thermal range and 0.7–
1.2 for the visual range.

Figure 2 illustrates the efficiency of the method
with real-life turbulence degraded video. Figure 2(a)
and 2(b) shows a 256�256 pixel fragment of a stabi-
lized real-life frame obtained as a temporal median
over 117 frames, and the same fragment obtained af-
ter replacing its pixels, as it is described here, by pix-
els of those 117 frames according to their displace-
ment maps. As a visually improved resolution can be
appreciated only on a high quality display, image (c)
presents the difference between these two images
that clearly shows edges enhanced in image (b) com-
pared with image (a). Figure 2(d) presents the final
result of the processing after reinterpolation and ap-
erture correction is implemented with the assump-
tion that the camera sensor has a fill factor close to 1.

For the quantitative evaluation of the resolution
improvement we used a method for the numerical
evaluation of image visual quality degradation due to
blur suggested in [12]. The method is based on the
discrimination between different levels of blur per-
ceptible on the same picture. The image degradation
measure ranges from 0 to 1, which are, respectively,
the lowest and the highest degradations. Degrada-
tion factors for images shown in Fig. 2 are 0.43 for
the stabilized image, before resolution enhancement,
0.4 for the resolution-enhanced image, and 0.28 for
the final reinterpolated and aperture corrected
image.

In the evaluation of the results obtained for real-
life video, one should take into account that substan-
tial resolution enhancement in the described super-
resolution fusion process can be expected only if the
camera fill factor is small enough. The camera fill fac-
tor determines the degree of low-pass filtering intro-
duced by the camera. Due to this low-pass filtering,
image high frequencies in the base band and aliasing
high frequency components that come into the base
band due to image sampling are suppressed. Those
aliasing components can be recovered and returned
back to their true frequencies outside the base band
in the described superresolution process, but only if
they have not been lost due to the camera low-pass
filtering. The larger the fill factor, the heavier the un-
recoverable resolution losses. In the described simu-
lation experiment, the camera fill factor is 0.05,
whereas in reality fill factors of monochrome cameras
are usually close to 1.

In conclusion, one can state that the presented re-
sults show that the described technique allows, in ad-
dition to compensating for the atmospheric turbu-
lence in video sequences, to improve image resolution
thanks to proper elastic local registration and resam-
pling of degraded video frames. The degree of the
achievable resolution improvement depends on the
number of frames that contain a stable scene, the
spread of turbulence-induced local image displace-
ments, and on the camera fill factor. Certain resolu-

tion enhancement can be achieved even for conven-
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tional cameras with a large fill factor. For cameras
with a small fill factor, such as, for instance, color
cameras, the potential resolution enhancement
might be, as simulation experiments show, very sub-
stantial.
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