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A B S T R A C T

Synthetic datasets are widely used in applications like missing data imputation, simulations, training data-
driven models, and system robustness analysis. Typically based on historical data, these datasets need to
represent specific system behaviors while being diverse enough to challenge the system with a broad range of
inputs. This paper introduces a method using discrete Fourier transform to generate synthetic time series with
similar statistical moments to any given signal. The method allows control over the similarity level between
the original and synthetic signals. Analytical proof shows that this method preserves the first two statistical
moments and the autocorrelation function of the input signal. It is compared to ARMA, GAN, and CoSMoS
methods using various environmental datasets with different temporal resolutions and domains, demonstrating
its generality and flexibility. A Python library implementing this method is available as open-source software.
1. Introduction

The development of computational models to analyze complex en-
vironmental and infrastructure systems depends to a great extent on
the availability of datasets with sufficient size and quality. In many
cases, these kinds of datasets are not available, so that synthetic data
generators that can accurately mimic the properties of the real data
are crucially needed. This is true for a wide range of environmental
problems such as studies of air quality (Moshenberg et al., 2015), wind
speed (Negra et al., 2008), temporal and spatial analysis of fires (Hill
et al., 2006), and weather characterization (Kilsby et al., 2007). Syn-
thetic data are called for in cases of data unavailability, such as poorly
recorded water demands time series, or too short historical datasets,
that are not sufficient for computational methods (Nowak et al., 2010).
Synthetic data are also commonly used for gap-filling, where only
partial measurements are available (Kofinas et al., 2018). Another use
of synthetic data is for examination of non-stationary scenarios which
extend beyond the range of the historical records (Herman et al., 2016).
Even when data is available and stationary, a synthetic data generator
is very useful for the analysis and optimization of models, since it can
be harnessed to evaluate system behavior and robustness in response
to different and broad ranges of scenarios.
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To give a more concrete example, robustness of water resource
systems has recently attracted a great deal of attention. Although there
are many definitions of robustness in the literature, most concur that
it reflects system performance over a set of future scenarios (McPhail
et al., 2021). Thus, in order to quantify robustness, a wide range of
scenarios need to be examined. These scenarios should cover the range
of values that have been observed in the past as well as future scenarios
that include extreme values.

Generally speaking, synthetic data should comply with two require-
ments: the data should reflect the nature of the known parameters
of historical records (time series) and at the same time allow for the
manipulation of certain features to model non-stationary, less expected
scenarios (Kang and Lansey, 2014). In physical systems, the first re-
quirement is especially crucial, as the simulated system is bounded by
the laws of physics. To illustrate, one can think of a water distribution
system, where the standard deviation (STD) of water demands affects
the hourly distribution of the demands. Synthetic scenarios with differ-
ent STDs might not reflect a reasonable behavior such as peak flows
appearing in the middle of the night. Another example is the creation
of water hammers due to abrupt changes in the synthetic flows that
might effect the system dramatically. In ambient simulations, drastic
changes in humidity or temperature are simply not feasible.
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data mining, AI training, and similar technologies. 
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Many studies have tackled the challenge of developing a general-
zed synthetic data generator. Early approaches included parametric

methods such as Auto Regressive (AR) models and the Auto Regressive
Moving Average (ARMA and ARIMA) models (Box and Jenkins, 1990),
which are still common today. For example, Papamichail and Georgiou
(2001) generated a synthetic monthly reservoir inflow series using the
Seasonal ARIMA (SARIMA) model. Talbot et al. (2020) coupled ARMA
with a Fourier series to generate electricity grid demands.

Non-parametric approaches for synthetic data generation are based
on resampling and reshuffling historical data values. One of the most
common non-parametric approaches is bootstrapping (Efron, 1992).
This includes the Moving Block Bootstrap (MBB), the Circular Block
Bootstrap (CBB), and the Stationary Bootstrap (SB). To take into ac-
count the original signal’s autocorrelation, the bootstrap resampling is
carried out in blocks of consecutively sampled values (Hirsch et al.,
2015); (Selle and Hannah, 2010). However, block bootstrapping can-
not handle the correlation between blocks. Another type of bootstrap
method is the K Nearest Neighbor bootstrap (K-NN) which does main-
tain the block correlation (Nowak et al., 2010). However, all bootstrap

ethods are based on resampling the input data records. This ensures
lmost exactly the same statistical properties as the input, but causes
he synthetic dataset to consist only of values found in the historical

signals, and hence the generated time series has no new values.
A more recent approach for generating synthetic time series is based

on data-driven models, such as Neural Networks (NNs). To this end,
NN based approaches have been presented for water demand Odan
and Reis (2012) and water quality forecasting (Chen et al., 2020). A
ecent data-driven approach for synthetic data generation is the Gen-
rative Adversarial Network (GAN). GAN models were first introduced
y Goodfellow et al. (2014) as a tool to generate synthetic data for
ynthetic images. This concept was extended to a time-series synthetic

generator by Yoon et al. (2019) who demonstrated its performance on
stock price data, energy consumption, and health related acute lung
emergencies.

Stochastic models can also be a powerful tool for synthetic data
generation. For example, in generating climate data (Wilks and Wilby,
1999; Srikanthan and McMahon, 2001; Efstratiadis et al., 2014). Such
models can be difficult to generalize, if they are tailored for a specific
type of data. For example, precipitation might have a very differ-
ent probability distribution than temperature measurements. To at-
tempt to resolve this issue, Papalexiou (2018) presents a framework
or stochastic generation of univariate and multivariate hydroclimatic

data, while (Papalexiou and Serinaldi, 2020) has a similar goal with
patiotemporal random fields.

A bottom-up approach, where the analysis starts at the end node,
and then is aggregated to a whole system level, has been introduced
for the simulation of demand pulse distributions in water distribution
ystems (Buchberger and Wu, 1995). Improvements to the pulse-based
pproach were presented by Blokker et al. (2010) and Creaco et al.

(2016). Another bottom-up approach was presented by Alvisi et al.
(2014), where high-resolution data (every 1 min) per consumer were
synthesized, and then aggregated over temporal and spatial axes. This
pproach preserved the mean, the variance, and the temporal covari-
nce of the historical records but required detailed knowledge about

the consumers to enable the high-resolution data synthesis.
When solving optimization problems related to the design and

operation of complex environmental systems, the aggregated behavior
is more important than the single user or end-node. For this reason,
studies have also suggested top-down methods for the generation of
synthetic time series. One example of a top-down approach presented
by Brentan et al. (2018) used a Random-Forest algorithm for generating
 random data series based on historical data combined with climatic
eatures. Kossieris et al. (2019) suggested a stochastic approach com-

bined with Nataf’s joint distribution model to simulate water demands
t different time scales. Santopietro et al. (2020) used Hermite inter-
olating polynomials coupled with a mixed distribution approach to
enerate a random data series that met known values of the daily trend.
2 
Clearly, there are many existing methods for synthetic signal gener-
ation. However, these methods do not necessarily preserve the mean,
tandard deviation, and autocorrelation of the original series. Often
hey are domain specific, especially when data characteristics such as

stationarity, seasonality, sampling scale, or series length need to be
accounted for. Additionally, in many of the above methods a significant
amount of data is required as input.

Here, we present a simple, easy to implement, Fourier based syn-
thetic time series generator, that preserves the signal’s first two sta-
istical moments and the autocorrelation function. It can take any
ignal as input, from any domain, and it allows the user to select the
evel of similarity, in terms of dynamic time wrapping or Wasserstein
istance (Serrà and Arcos, 2014), between the original time series and

the synthesized signals. The discrete Fourier transform is a widely
used mathematical tool, and efficient algorithms to execute it exist
in widespread programming languages. This makes the generation
method presented here quicker than many of the alternatives, which
can be especially meaningful when working with large datasets, or
producing a large batch of samples.

2. Methodology

2.1. Synthetic signal generator

Let 𝑆 = {𝑆𝑘}𝑁−1
𝑘=0 be a discrete time-series signal with length 𝑁 ,

ean 𝜇𝑆 , and standard deviation 𝜎𝑆 . The Discrete Fourier Transform
DFT) of 𝑆, denoted 𝜁𝜔 for 𝜔 = 0,… , 𝑁 − 1 is given by:

𝜁𝜔 = {𝑆}𝜔 ∶=
𝑁−1
∑

𝑘=0
𝑆𝑘𝑒

−𝑖 2𝜋 𝑘𝑁 𝜔 (1)

Since 𝜁𝜔 is a complex signal, we can use a polar representation:

𝜁𝜔 = 𝜌𝜔𝑒
𝑖𝜃𝜔 (2)

Where 0 ≤ 𝜌𝜔 ∈ R is the amplitude and 𝜃𝜔 ∈ R is the phase.
The generation of a synthetic signal 𝜁𝜔 with statistical properties of a

given base signal involves the manipulation of the polar representation.
Specifically, it consists of replacing the phase terms 𝜃𝜔 with random
phase values 𝜃̂𝜔. This makes it possible to get a new random time
series and keep the original signal energy because the amplitudes of the
decomposed signals remain unchanged. To guarantee the conservation
of the mean, the zero phase is kept unchanged, 𝜃0 = 𝜃0. In addition
to this phase, one may choose to keep 0 < 𝑚 ≤ 𝑁 of the original
phases, meaning 𝜃𝑗 = 𝜃𝑗 for any 0 < 𝑗 ≤ 𝑚. This parameter allows
for adjusting the synthetic signal’s similarity to the original signal, as
is detailed below.

After randomizing the phase components, a synthetic signal, 𝑆̂𝑘, is
enerated by applying the inverse DFT:

𝑆𝑘 = −1{𝜁}𝑘 ∶= 1
𝑁

𝑁−1
∑

𝜔=0
𝜁𝜔𝑒

𝑖 2𝜋 𝜔𝑁 𝑘 (3)

This gives us a synthetic time series 𝑆̂ of the same length, sampling
rate, and the first two statistical moments as the original time series.

One issue with this method is that the inverse transform is not
uaranteed to consist only of real values. To rectify this we exploit the
athematical properties of the DFT of a real signal, so we can ensure

hat the synthetic signal is also real. To this end, let us consider a real
ignal {𝑆𝑘} ⊂ R. Its DFT holds the following conjugate symmetry:

𝜁𝜔 = 𝜁𝑁−𝜔, 1 ≤ 𝜔 ≤ 𝑁 − 1 (4)

This is equivalent to the following choices of 𝜃̂, providing that we
identify −𝜋 with 𝜋:
̂ ̂
𝜃𝑁−𝜔 = −𝜃𝜔, 1 ≤ 𝜔 ≤ 𝑁 − 1 (5)
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Note that if 𝑁 is even, the conjugate symmetry has a special
implication for 𝜁𝑁∕2:

𝜁𝑁∕2 = 𝜁𝑁−𝑁∕2 = 𝜁𝑁∕2 (6)

And it is it’s own conjugate, meaning 𝜁𝑁∕2 ∈ R. Thus, in order to ensure
hat 𝑆̂ is real, after the randomization process in the Fourier domain,
̂𝑁∕2 must fulfill:
̂𝑁∕2 = ±𝜁𝑁∕2 (7)

Practically speaking, the suggested methodology is easy to implement,
s many libraries implement DFT and its inverse. The constraints above

on the phase randomization process ensures that the inverse transform
will produce a real series. The only element that requires special
consideration, in the case of a time series with an even number of
elements, is 𝜁𝑁∕2.

Thus, for a given number of phases 0 < 𝑚 ≤ 𝑁
2 the formulation for

phase randomization is as follows. For the even 𝑁 case:
⎧

⎪

⎨

⎪

⎩

𝜃̂𝜔 = 𝜃𝜔, 𝜔 = 0,… , 𝑚
𝜃̂𝜔 = 𝑟𝑎𝑛𝑑(−𝜋 , 𝜋], 𝜔 = 𝑚 + 1,… , 𝑁2 − 1
𝜃̂𝑁∕2 = 0 or 𝜋

(8)

And for the odd case:
{

𝜃̂𝜔 = 𝜃𝜔, 𝜔 = 0,… , 𝑚
𝜃̂𝜔 = 𝑟𝑎𝑛𝑑(−𝜋 , 𝜋], 𝜔 = 𝑚 + 1,… , 𝑁−1

2

(9)

The parameter 𝑚 defines how many of the first components will
preserve their phase, allowing to control the similarity between the
original signal 𝑆 and the synthetic signal 𝑆̂. As we increase the number
of phases that are not randomized, we increase the similarity of the
decomposed periodic components until we reach the point where the
two signals are identical in the case of 𝑚 = 𝑁

2 . This capability of
controlling the similarity level of the synthetic signal and the original
one, while preserving the signal’s statistical moments, is unique to this
method.

A special case to consider is a synthetic series that is inherently
non-negative, but with typical values that are close to zero. Using the
randomization process described above is likely to generate synthetic
series with negative values, which might not be acceptable for certain
cases. As a way to amend this issue, the following optional procedure
is offered. Taking the synthetic series 𝑆̂ as our original series, a new
synthetic series ̂̂𝑆 is generated using the same method. Any negative
values of 𝑆̂ are replaced with the corresponding values of ̂̂𝑆 (that are
ot guaranteed to be non-negative). If any negative values remain in 𝑆̂,
his process is repeated and a new ̂̂𝑆 is generated. This is iterated until
ll values in 𝑆̂ are non-negative. It is important to note that this process
lters the statistical properties of 𝑆̂, and while using it the mean and
TD are not conserved.

2.2. Proofs of conservation of mean, standard deviation, and auto-
correlation

Lemma 1. The mean of 𝑆 is equal to the mean of 𝑆̂, 𝜇𝑆 = 𝜇𝑆̂ .

Proof. From the definition of 𝑆̂:

̂𝑘 = −1{𝜁𝜔} = 1
𝑁

𝑁−1
∑

𝜔=0
𝜁𝜔𝑒

−𝑖 2𝜋𝑁 𝑘𝜔

Plugging it into the definition of the mean:

𝜇𝑆̂ = 1
𝑁

𝑁−1
∑

𝑘=0
𝑆̂𝑘 = 1

𝑁2

𝑁−1
∑

𝑘=0

𝑁−1
∑

𝜔=0
𝜁𝜔𝑒

−𝑖 2𝜋𝑁 𝑘𝜔 = 1
𝑁2

(𝑁 ⋅ 𝜁0 +
𝑁−1
∑

𝑘=0

𝑁−1
∑

𝜔=1
𝜁𝜔𝑒

−𝑖 2𝜋𝑁 𝑘𝜔)

We shall now show that the sum ∑𝑁−1
𝑘=0

∑𝑁−1
𝜔=1 𝜁𝜔𝑒

−𝑖 2𝜋𝑁 𝑘𝜔 vanishes. Since
his is a finite sum, we can flip the order of summation, and then use
 f

3 
the formula for a sum of a geometric series:

𝑁−1
∑

𝑘=0

𝑁−1
∑

𝜔=1
𝜁𝜔𝑒

−𝑖 2𝜋𝑁 𝑘𝜔 =
𝑁−1
∑

𝜔=1
𝜁𝜔

𝑁−1
∑

𝑘=0
𝑒−𝑖

2𝜋
𝑁 𝑘𝜔 =

𝑁−1
∑

𝜔=1
𝜁𝜔 ⋅

1 −

=1
⏞⏞⏞⏞⏞

𝑒−𝑖
2𝜋
𝑁 ⋅𝑁 𝜔

1 − 𝑒−𝑖
2𝜋
𝑁 𝜔

= 0

Since the first transform coefficient is retained, 𝜁0 = 𝜁0, we get:

𝜁0 = 𝜁0 =
𝑁−1
∑

𝑘=0
𝑆𝑘 𝑒

−𝑖 2𝜋𝑁 𝑘⋅0
⏟⏟⏟

=1

=
𝑁−1
∑

𝑘=0
𝑆𝑘

And so:

𝜇𝑆̂ = 1
𝑁

⋅ 𝜁0 =
1
𝑁

𝑁−1
∑

𝑘=0
𝑆𝑘 = 𝜇𝑆 □

Lemma 2. The standard deviation of 𝑆 is equal to the standard deviation
of 𝑆̂, 𝜎𝑆 = 𝜎𝑆̂ .

Proof. Writing out the definition for discrete standard deviation, and
expanding, we get:

𝜎2
𝑆̂
= 1

𝑁

𝑁−1
∑

𝑘=0

(

𝑆̂𝑘 − 𝜇𝑆̂
)2 = 1

𝑁

𝑁−1
∑

𝑘=0
(𝑆̂2

𝑘 − 2𝑆̂𝑘𝜇𝑆̂ + 𝜇2
𝑆̂
)

=
𝑁−1
∑

𝑘=0
𝑆̂2
𝑘 − 2𝜇2

𝑆̂
+ 𝜇2

𝑆̂
= 1

𝑁

𝑁−1
∑

𝑘=0

|

|

|

𝑆̂𝑘
|

|

|

2
− 𝜇2

𝑆̂

From Lemma 1, we know 𝜇𝑆 = 𝜇𝑆̂ . From Parseval’s Theorem, we get:
𝑁−1
∑

𝑘=0

|

|

|

𝑆̂𝑘
|

|

|

2
= 1

𝑁

𝑁−1
∑

𝜔=0
|𝜁𝜔|

2

Since the amplitudes are not changed during the process, 𝜌𝜔 = 𝜌̂𝜔, we
et:

|𝜁𝜔|
2 = |𝜁𝜔|

2

And so applying the identity from Parseval’s theorem twice:
𝑁−1
∑

𝑘=0

|

|

|

𝑆̂𝑘
|

|

|

2
= 1

𝑁

𝑁−1
∑

𝜔=0

|

|

|

𝜁𝜔
|

|

|

2
= 1

𝑁

𝑁−1
∑

𝜔=0

|

|

𝜁𝜔||
2 =

𝑁−1
∑

𝑘=0

|

|

𝑆𝑘
|

|

2

And so:

𝜎2
𝑆̂
= 1

𝑁

𝑁−1
∑

𝑘=0

|

|

|

𝑆̂𝑘
|

|

|

2
− 𝜇2

𝑆̂
= 1

𝑁

𝑁−1
∑

𝑘=0

|

|

𝑆𝑘
|

|

2 − 𝜇2
𝑆 = 𝜎2𝑆

⇒ 𝜎𝑆̂ = 𝜎𝑆 □

Lemma 3. 𝑆 and 𝑆̂ have the same autocorrelation functions.

Proof. As known by the Wiener–Khinchin Theorem,

𝐴𝑢𝑡𝑜𝑐 𝑜𝑟𝑟(𝑆) = −1{|𝜁 |2}

As mentioned before, since the amplitudes are unchanged, |𝜁𝜔|
2 = |𝜁𝜔|

2,
nd so:

𝐴𝑢𝑡𝑜𝑐 𝑜𝑟𝑟(𝑆̂) = −1{|𝜁 |2} = −1{|𝜁 |2} = 𝐴𝑢𝑡𝑜𝑐 𝑜𝑟𝑟(𝑆) □

2.3. Comparison

The above characteristics of the Fourier based method make it
asy and convenient to use. However, many synthetic signal genera-

tion methods have been presented in the literature. Here, we use the
ollowing for comparison.
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2.3.1. Auto Regressive Moving Average (ARMA)
The first method used for comparison is the Auto Regressive Mov-

ing Average (ARMA). While ARMA is typically used for time series
forecasting, it can also be used for generation. It combines an autore-
ressive model 𝐴𝑅(𝑝), with a moving average model 𝑀 𝐴(𝑞). Briefly,
n an 𝐴𝑅𝑀 𝐴(𝑝, 𝑞) model a given time step 𝑦𝑡 is calculated using the 𝑝

previous time steps, and 𝑞 past noise elements 𝜀𝑡, as such:

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 +⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜃1𝜀𝑡−1 +⋯ + 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡 (10)

Where 𝑐 , 𝜙1,…,𝑝, 𝜃1,…,𝑞 are the model’s parameters. See Hyndman and
thanasopoulos (2021) for more details. In our implementation we

used the Statsmodels python library (Seabold and Perktold, 2010) to
ind the model’s parameters given the hyperparameters 𝑝, 𝑞, and then
enerate time series accordingly.

2.3.2. GAN
As mentioned before, a much newer method for signal generation

s Generative Adversarial Networks (GAN). The general idea is to place
two neural networks in a zero sum game. The first model, the aptly
named Generator, is tasked with generating data. The second model,
he Discriminator, is attempting to distinguish between the synthetic

data and the original data set. The models are trained side by side,
with the generator training to ‘‘fool’’ the discriminator, which in turn
trains to improve at discerning fake data. A trained model can generate
a lot of synthetic data relatively quickly, and if the process converged
properly it should resemble the original dataset. It is important to note
that a major characteristic of GAN is that it acts as black box — no
direct control of the generator model is possible before or after training.
The architecture used for comparison is quantGAN (Wiese et al., 2020),
designed for modeling financial time series. Although intended for
a different field, it fits our use case. Using temporal convolutional
networks, it can capture both the distribution of the data, and the
autocorrelation in different lags. This is in contrast to GANs intended
for tabular data (Xu et al., 2019), that emulate the distribution but
ot the temporal dependencies. QuantGAN accepts a single series as
nput of any length, allowing us to train it on each dataset used for
omparison. The hyperparameters for each dataset were determined by
rial and error.

The main deviation from the methodology of the original quantGAN
s in the way our data was scaled in pre-processing. For proper perfor-
ance, the time series values fed into the GAN should be in the range

−1, 1). In the original paper, the scaling is done in a method that relies
on specific properties of the financial data used. To achieve this for any
time series, the MinMaxScaler function from Scikit-learn (Pedregosa
et al., 2011) was used, as it gave the best results of all scalers tested.
The original data was transformed in pre-processing, and the generated
series were transformed back to the original scale using the inverse
operation.

2.3.3. CoSMoS
CoSMoS (Papalexiou et al., 2021) is an R package for stochastic

generation of synthetic data, with a focus on hydroclimatic datasets.
One use case is generating synthetic data from scratch, by choosing a
robability distribution for the data, and an autocorrelation structure
ACS). However, it can also take an existing time series. One chooses
he type of distribution appropriate for the data type (Generalized
amma, Burr, etc.) and the type of ACS. Then the parameters of the
istribution and ACS are fitted to the given time series. This allows
eneration of new synthetic time series with the same probability
istribution and ACS as the original.
 t

4 
2.4. Data

A variety of environmental datasets were chosen as examples for
this paper. This was done to offer varying conditions for testing the
erformance of the suggested method. The data consists of domestic
ater demand, concentration of air pollutants, wave heights, and tur-
ulent air flow velocities. These signals differ in their length, the rate

of change (i.e. frequency components) and the typical observed values.
Some are inherently positive and fluctuate close to zero, while others
change sign often or have large positive values throughout.

For each dataset, 1,000 synthetic series were generated by each
method. This was done since all generation methods have a random
lement, so analyzing the signal’s properties over a large set provides
 more accurate insight.

2.4.1. Urban water demand
The urban water demand dataset contains hourly values of water

demand of a metropolitan in cubic meters, taken from the connection
etween the metro and the national water company. The metro has
bout 1 million residents, and is spanning over 126 squared kilometers.
verage height above sea level is 715 m. Temperature averages are
5 ◦C in the hottest months, July–August, and about 10◦ in the coldest,
anuary. The full data spans a year, from 1/1/2020 until 31/12/2020.
or clearer data visualization, only the month of July was used, giving
45 hourly time-steps.

2.4.2. Air pollution
Within the context of this study two types of air pollutants datasets

ave been investigated: urban ambient nitric oxide (NO) levels; and
ine Particulate Matter (PM 2.5) with a diameter of 2.5[μm] or less,
oth in [ μgm3 ]. The concentrations of both pollutants have been acquired
y the same AQM standard monitoring station. The station was posi-
ioned 20 meters above ground, and 235 meters above sea level. The
ity has approximately 300,000 residents, over an area of about 63.5
quared kilometers. The data contains daily averages, from 1/1/2023
o 31/12/2023. For the sake of brevity, the PM results are detailed in
he supplementary material.

2.4.3. Air flow velocity
Turbulent Air flow velocity, measured in an arbitrary location near

Nofit, 18 km east of Haifa, Israel, taken 179 meters above sea level.
The original files contain three orthogonal velocity field components
𝑉 = (𝑢(𝑡), 𝑣(𝑡), 𝑤(𝑡)), measured in [m∕s]. The measurements sampling
frequency was 2 kHz, and one minute of measurement was used. The
𝑢 component was arbitrarily selected to represent this set of measure-
ments.

2.4.4. Wave height
Another environmental domain used here is wave field synthetic

data generation. To this end, wave height records from the gulf of
Eilat were used (Shani-Zerbib et al., 2017, 2018). Data was collected
continuously for over 50 h during June 2017, taken with an array
of 5 wavegauges, positioned in a circle. Measurements are statisti-
cally identical between the gauges, with variations in phase. Sampling
frequency was 80 Hz. The full set of measurements is available via
Mendeley (Shani-Zerbib and Liberzon, 2018).

2.5. Comparison of synthetic time series

Quantitative methods of comparison between the generated time
series are essential to understanding the differences between the gen-
eration methods. 4 statistical measures were chosen — mean, standard
deviation (SD), skewness, and kurtosis. The values were calculated for
each synthetic series, then averaged over all 1,000 samples.

However, statistical properties lack the ability to reflect seasonal
rends, and to describe how similar are a pair of compared time series
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in any specific point in time. A pair of time series may have a similar
ean and SD, and still have vastly different plots and distributions.
hus additional similarity measures, specific to time series analysis
ere used. Here, two metrics highlighted in Brophy et al. (2023) were
mployed — Dynamic Time Warping and the Wasserstein Distance.

Dynamic Time Warping (DTW) measures of the distance between
 pair of time series. DTW and its variants are often used for time
eries similarity analysis, and are considered to be a good metric for
omparison (Serrà and Arcos, 2014). Given two time series 𝑋 = {𝑥𝑖}𝑛𝑖=1

and 𝑌 = {𝑦𝑗}𝑚𝑗=1, one can create a path 𝜋 between them, matching
each element in 𝑋 to an element of 𝑌 , and vice versa. This matching
is not necessarily one-to-one, but all points should have a match. In
addition, 𝑥1 is always matched to 𝑦1, and 𝑥𝑛 to 𝑦𝑚. The matching needs
o respect order (the path cannot ‘‘cross’’ itself). Then DTW is computed

as a minimum of the Euclidean distance on all such paths:

𝐷 𝑇 𝑊 (𝑥, 𝑦) = min
𝜋

√

∑

(𝑖,𝑗)∈𝜋
𝑑
(

𝑥𝑖, 𝑦𝑗
)2 (11)

We compare all synthetic series generated to the original using DTW,
and then take the average and standard deviation (SD). The lowest
core represents the method generating synthetic signals that are the

most similar to the original series.
Wasserstein distance (WD, also known as Earth Mover distance),

easures the ‘‘cost’’ of turning one distribution into another, giv-
ng a way to quantitatively compare distributions. Here we refer to

asserstein-1. Given probability mass functions 𝑢, 𝑣 (corresponding to
ime series, in our case) the formula is:
𝑊1(𝑢, 𝑣) = inf

𝜋∈𝛤 (𝑢,𝑣)∫R×R
|𝑥 − 𝑦|d𝜋(𝑥, 𝑦) (12)

Where 𝛤 (𝑢, 𝑣) are the set of all joint probability measures on R×R with
marginal distributions 𝑢, 𝑣, respectively. Here as well, we compare all
synthetic series to the original, then take the average and SD of the re-
sults. The lowest WD score belongs to the method that generates series
with distributions that are the most similar to the original distribution.

Synthetic data should maintain characteristics of the original data it
is trying to replicate, so some similarity to the original data is desirable.
However, if it is too similar to the original data, it limits the range of
possible outcomes considered, and thus it will not be able to predict
cases differing substantially from the given original sample. Hence the
optimal similarity level is application dependant. The method in hand,
as described above, presents a mechanism to control the similarity
level.

Two other useful tools for time series analysis are the distribution
function, and the Autocorrelation Function (ACF) plot. Those were also
produced for a single series from each generation method for every
dataset, to give more insight about the temporal dependencies.

3. Results & discussion

3.1. Control similarity

One of the key features of the suggested method is the ability to
ontrol the synthetic generated signal’s similarity to the original signal.
his is done through the number of phase components that are random-

zed (see Eqs. (8) and (9)). The effect of randomized components is
illustrated in Fig. 1, where the original signal and a cohort of synthetic
signals are presented for all datasets in this study. The original signal
s presented in blue, and in the background a set of 100 synthetic

signals are plotted in light blue. The left column in Fig. 1 depicts
he original signal in front of a synthesized set, where only the first
hree phase components are preserved, while the rest are randomized.
he second column presents the same configuration with 40 preserved
hase coefficients. The right-hand column plots the original signal
n top of 100 synthetic signals that have been generated with 100
reserved phase coefficients. It is clear that the more coefficients are

reserved, the higher the similarity of the generated signals. This is also

5 
illustrated in . In particular, from .B and Figs. 2–5 we can discern that
he similarity between the original and the synthetic signals increases

with 𝑚, as evident by the decrease in DTW and WD. Yet, for any 𝑚
value, the mean and SD are preserved.

3.2. Urban water demand

For urban water demand we used 𝑚 = 3 for the DFT method. The
model parameters for ARMA were selected to be 𝑝 = 3, 𝑞 = 3, as
hose have provided the best results in terms of visual similarity to the
riginal. For CoSMoS, the distribution was set to Generalized Gamma,
nd the ACS was Pareto II. As seen in Fig. 2, the autocorrelation of the
riginal series contains negative correlations that cannot be obtained
y Pareto II. This is the case for the included ACSs, and our attempts
o create a custom ACS were unsuccessful.

Table 2 presents the mean, standard deviation (SD), skewness,
kurtosis, DTW and WD measures for the urban water demand time
series. Fourier retains the mean and SD, as expected. The skewness
is not retained on average, but the Fourier method does produce the
closest value to the skewness of the original series. Examining the
SD of the skewness suggests that the individual synthetic series have
similar skewness to the original, but with alternating signs. The average
kurtosis of the series generated by the Fourier method, presented here,
is closest to the original. Fourier also achieved the lowest DTW score,
10% lower than the next, ARMA, and 20% lower than the highest,
CoSMoS. Fourier was best in WD as well, 12% lower than ARMA. Note
owever the large variability, as the SD is 42% of the average score.

Fig. 2 takes the original series, as well as a random synthetic series
from each of the generation methods, and plots them together for
comparison. A histogram is plotted, using the same bins for all the plots
or easier assessment. The autocorrelation function (ACF) is plotted up

to 10 lags. Looking at Fig. 2, GAN has a similar autocorrelation shape,
and the plot is visually similar to the original. However, GAN received
the lowest WD score, 3.8 times larger than Fourier, and the second-
worst DTW score. This disparity might be explained by the average
mean, that is 6% lower than the original series. Numerous attempts
to train the GAN did not manage to achieve a closer mean value.
CoSMoS got a mean WD score of 275, implying greater distribution
similarity, compared to GAN. However, it’s DTW score is the worst,
and the example plot in Fig. 2 displays erratic behavior not found in
the original. This can be explained by the autocorrelation structure.

3.3. Air pollution

Clearly this data should have non-negative values only, yet the
ypical values were close to zero. For this reason the non-negative
mplementation described in Section 2.1 was used here. For Fourier
eneration, 𝑚 = 100 is used. A much higher number of coefficients was

kept here, since as visible in Fig. 1, even with 𝑚 = 100 the synthetic
series have a decent amount of deviation from the original. For ARMA,
𝑝 = 3, 𝑞 = 3, and in CoSMoS Generalized Gamma dist. was used, with
Weibull ACS.

Table 3 presents the statistical comparison between the methods
for the NO data. NO data was characterized by small values around
zero, while the time series physically cannot produce negative values.
Therefore the non-negative procedure was applied. That is why the
Fourier methodology did not conserve the mean and SD in this dataset.
In fact both the mean and SD stray the furthest from the original,
with deviations of 11.8% and 11.4%, respectively. ARMA reproduced
the mean and SD. CoSMoS has an avg. mean notably lower than
the original, with 6.5% difference, while it did reproduce the closest
skewness values to the original. The kurtosis is especially notable here
as it is orders of magnitude greater in this dataset, compared to the
others. CoSMoS did the best job on average reproducing the kurtsis.
31% difference from the original, compared to 106% in the next best
(GAN). However, the SD is larger than the value itself, indicating large
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Table 1
Statistics and metrics averaged over 100 samples for each specified 𝑚 value, using the Fourier method.

Table 1.A Mean, Standard Deviation (SD), Skewness, and Kurtosis for each 𝑚 value.

Mean SD Skewness Kurtosis

Water Demand [m3] 14 528 1915 −0.26 −0.34

𝑚 = 3 14528 ± 0 1916 ± 0 −0.02 ± 0.31 −0.43 ± 0.25

𝑚 = 40 14528 ± 0 1916 ± 0 −0.09 ± 0.28 −0.20 ± 0.33

𝑚 = 100 14528 ± 0 1916 ± 0 −0.25 ± 0 −0.35 ± 0.02

NO [μg∕m3] 0.64 0.65 4.58 34.25

𝑚 = 3 0.75 ± 0.01 0.52 ± 0.01 0.71 ± 0.12 0.08 ± 0.41

𝑚 = 40 0.74 ± 0.01 0.54 ± 0.01 0.92 ± 0.13 0.77 ± 0.6

𝑚 = 100 0.7 ± 0.01 0.59 ± 0.01 1.97 ± 0.17 6.8 ± 1.5

u [m/s] 1.47 0.33 0.003 −0.56

𝑚 = 3 1.47 ± 0 0.33 ± 0 −0.18 ± 0.22 −0.50 ± 0.35

𝑚 = 40 1.47 ± 0 0.33 ± 0 0.02 ± 0.02 −0.55 ± 0.06

𝑚 = 100 1.47 ± 0 0.33 ± 0 0.02 ± 0.01 −0.61 ± 0.01

Wave Height [m] −0.0092 0.04 −0.17 −0.63

𝑚 = 3 −0.0092 ± 0 0.04 ± 0 −0.009 ± 0.272 −0.273 ± 0.414

𝑚 = 40 −0.0092 ± 0 0.04 ± 0 −0.182 ± 0.007 −0.576 ± 0.026

𝑚 = 100 −0.0092 ± 0 0.04 ± 0 −0.172 ± 0.001 −0.621 ± 0.002

Table 1.B Metric values for both Dynamic Time Warping (DTW) and Wasserstein
Distance (WD), quantifying the similarity of the synthetic samples to the original
time series for each 𝑚 value. Lower scores indicate greater similarity.

DTW WD

Water Demand [m3] – –

𝑚 = 3 21866 ± 1868 230 ± 98

𝑚 = 40 13033 ± 1766 239 ± 104

𝑚 = 100 3621 ± 216 28 ± 2

NO [μg∕m3] – –

𝑚 = 3 9.2 ± 0.21 0.19 ± 0.01

𝑚 = 40 8.78 ± 0.23 0.17 ± 0.01

𝑚 = 100 7.54 ± 0.38 0.11 ± 0.01

u [m/s] – –

𝑚 = 3 5.41 ± 0.81 0.03 ± 0.01

𝑚 = 40 2.63 ± 0.15 0.01 ± 0.005

𝑚 = 100 1.65 ± 0.05 0.01 ± 0.005

Wave Height [m] – –

𝑚 = 3 0.687 ± 0.109 0.005 ± 0.002

𝑚 = 40 0.171 ± 0.001 0.001 ± 0.0001

𝑚 = 100 0.111 ± 0.003 0.0004 ± 0.0001
Table 2
Statistics and metrics for Urban Demand Dataset. Each value is the average of all 1,000 synthetic series produced with the same method, ± SD.
In bold are the scores indicating greatest similarity to the original series, meaning the closest mean, SD, Skewness and Kurtosis, and the lowest
DTW and WD scores.

m=3 Original Fourier ARMA GAN CoSMoS

Mean 14 528 14528 ± 0 14536 ± 160 13645 ± 41 14526 ± 217
SD 1916 1916 ± 0 1909 ± 123 1844 ± 161 1881 ± 108
Skewness −0.26 0 ± 0.31 −0.00 ± 0.19 −0.08 ± 0.17 −0.04 ± 0.19
Kurtosis −0.34 −0.43 ± 0.26 −0.05 ± 0.32 0.11 ± 0.31 0.16 ± 0.45
DTW – 22087 ± 1942 24518 ± 1783 26866 ± 1343 26894 ± 1796
WD – 236 ± 100 266 ± 62 894 ± 42 275 ± 82
6 
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Fig. 1. Comparing different 𝑚 values for each dataset.
Table 3
Statistics and metrics for NO dataset. Average values of the synthetic series ± SD. Closest statistics and lowest metric scores in bold.

m = 100 Original Fourier ARMA GAN CoSMoS

Mean 0.64 0.72 ± 0.01 0.64 ± 0.05 0.67 ± 0.01 0.60 ± 0.04
SD 0.65 0.58 ± 0.01 0.65 ± 0.03 0.64 ± 0.06 0.62 ± 0.13
Skewness 4.58 1.99 ± 0.17 0.00 ± 0.13 2.83 ± 0.30 3.52 ± 1.86
Kurtosis 34.25 7.09 ± 1.56 −0.03 ± 0.24 10.57 ± 2.82 24.96 ± 29.32
DTW – 7.49 ± 0.37 10.65 ± 0.35 8.84 ± 0.63 7.93 ± 1.15
WD – 0.12 ± 0.01 0.26 ± 0.02 0.085 ± 0.011 0.08 ± 0.017
differences in kurtosis between samples. Fourier has the lowest DTW,
but only 5.7% lower than CoSMoS. CoSMoS got the lowest WD score,
slightly lower than GAN.

A different approach for obtaining non-negative was tested. A syn-
thetic signal was generated, and then any negative values were simply
set to zero. This approach, with 𝑚 = 100, yielded a mean of 0.7 ± 0.07,
SD of 0.586 ± 0.009, skewness of 2 ± 0.2, kurtosis of 6.8 ± 1.4, DTW score
of 7.5 ± 1.4, and WD score of 0.11 ± 0.007. The averages were close to
the original non-negative implementation used. This indicates that this
alternative might be also viable in cases with few negative values.

Despite the fact ARMA reproduced the mean and SD, it has the
highest scores in both metrics, as well as averaging a negative kurtosis
value. The example series for ARMA in Fig. 3 shows negative values are
obtained, which is undesirable in this case. The other methods show
7 
similarity to the original, with non-negative values in the range [0, 2]
and occasional sharp peaks. This is also visible in the distribution.

3.4. Air flow velocity

𝑚 = 5 is used in Fourier, chosen by trial and error. For ARMA,
𝑝 = 2, 𝑞 = 4, and in CoSMoS Burr type XII was used for both the
distribution and the ACS.

Looking at Table 4, all methods managed to reproduce the mean
with up to 0.01 difference from the original series. Fourier was the
only method to reproduce the SD, with CoSMoS coming the closest,
with a 10% lower average. With regards to skewness, ARMA did best.
However, the SD of the skewness was 16 times larger than the average
value, indicating big variations between different generated series. GAN
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Fig. 2. The original time series (at the top) and a single time series produced by each method for the Urban Demand dataset, including distribution and ACF for each. Colored
area in ACF depicts the confidence interval of 95%.
did best with replicating kurtosis, followed by Fourier. Fourier again
scored lowest on both DTW and WD, with CoSMoS being the closest in
both. Average DTW for CoSMoS was 11% more than Fourier, and WD
was 103% greater. GAN and ARMA got similarly high scores in both
metrics. The GAN example series in Fig. 4 displays erratic behavior,
and ACF values that oscillate rather than decrease monotonically (as in
the original). The ARMA sample seems realistic, in terms of the range of
values and the distribution and ACF plots. The thing it does not seem to
replicate is the general trend of the series itself — in indices up to 1,000
the original signal gets values in the range [1, 2.25], and after it the
series presents lower values, in the range of [0.5, 1.75]. The CoSMoS
and Fourier samples show similar behavior, but ARMA does not, which
might explain the relatively high scores it got from the metrics.

3.5. Wave height

Here, 𝑚 = 5 is used. For ARMA, 𝑝 = 6, 𝑞 = 10, and in CoSMoS
Generalized Gamma is used for the distribution, with Burr type XII for
the ACS.

Table 5 details the results for the wave height dataset. As expected,
Fourier reproduced the mean and SD. ARMA came the closest with only
2.2% difference, and GAN the furthest, getting an average mean 26%
8 
smaller than the original. ARMA did the best in terms of reproducing
skewness, while CoSMoS did best in kurtosis, with large variability in
both. Fourier got the lowest scores in both metrics once again, with
ARMA second lowest in both. DTW was 24.3% higher in ARMA, while
WD was 46.5% higher.

Fig. 5 gives a similar assessment as to the performance of the meth-
ods. Fourier and ARMA have samples closely resembling the original.
In GAN, the general trends and the distribution appear similar, but
the series values change much more sharply than in the original. Also,
similar to the 𝑢 and PM 2.5 GAN samples, the ACF oscillates in a way
not present in the original, at least not to a visible degree. Note how
the CoSMoS sample receives a much smaller range of values than the
original and others, as evident in the distribution plot.

4. Conclusions

In 4 out of 5 datasets, Fourier did a superior job in reproducing
both the mean and SD, and got the lowest WD scores. It got the
lowest DTW score in all 5. This shows the capability of this method to
take a single sample and produce thousands of different synthetic time
series with similar statistical properties, visual shape, autocorrelation,
and distribution. The ability of the method to set the similarity level
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Fig. 3. NO — original time series and a single time series produced by each method, including distribution and ACF.
Table 4
Statistics and metrics for the 𝑢 dataset (turbulent air flow velocity component). Average values of the synthetic series ± SD. Closest statistics
and lowest metric scores in bold.

m=5 Original Fourier ARMA GAN CoSMoS

Mean [m/s] 1.47 1.47 ± 0 1.47 ± 0.09 1.46 ± 0.06 1.46 ± 0.06
SD [m/s] 0.33 0.33 ± 0 0.28 ± 0.04 0.26 ± 0.03 0.30 ± 0.04
skewness 0.003 0.07 ± 0.16 0.02 ± 0.32 −0.09 ± 0.24 −0.25 ± 0.31
Kurtosis −0.56 −0.45 ± 0.26 −0.18 ± 0.47 −0.63 ± 0.31 −0.41 ± 0.65
DTW – 4.69 ± 0.47 8.79 ± 2.66 8.90 ± 2.27 5.24 ± 1.04
WD – 0.023 ± 0.005 0.089 ± 0.04 0.077 ± 0.03 0.072 ± 0.03
Table 5
Statistics and metrics for the wave height dataset ± SD. Closest statistics and lowest metric scores in bold.

m=5 Original Fourier ARMA GAN CoSMoS

Mean −0.0092 −0.0092 ± 0 −0.009 ± 0.006 −0.012 ± 0.006 −0.01 ± 0.018
SD 0.04 0.0404 ± 0 0.041 ± 0.005 0.047 ± 0.004 0.031 ± 0.007
skewness −0.17 0.009 ± 0.27 −0.0029 ± 0.31 −0.079 ± 0.185 −0.043 ± 0.43
Kurtosis −0.63 −0.26 ± 0.42 −0.15 ± 0.51 −0.95 ± 0.22 −0.35 ± 0.58
DTW – 0.65 ± 0.1 0.83 ± 0.13 0.86 ± 0.12 1.12 ± 0.14
WD – 0.005 ± 0.002 0.008 ± 0.003 0.009 ± 0.004 0.018 ± 0.009
9 
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Fig. 4. 𝑢 - The original time series (at the top) and a single time series produced by each method.
allows for a great flexibility that is not available in all other methods.
The method is also simple to implement and computationally efficient,
which make it scalable. The various examples clearly show that the
method is also versatile, and robust to the temporal resolution of the
original signal.

A straightforward direction for future research is to expand this idea
to higher dimensions, using the multi-dimensional Fourier transform.
Another possibility is to use this method for data augmentation of
a machine-learning algorithm - i.e. to use this method to generate
synthetic series for training a GAN. Finally, this method currently uses
only a single instance of time series data. If, for example, the same set
of data from different years is available, this method may be further
developed so it could leverage this additional information to produce
a wider range of synthetic series.
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Fig. 5. Wave Height — The original time series (at the top) and a single time series produced by each method.
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.envsoft.2024.106283.

Software and data availability

∙ Name of software: Random Environmental Time Series Generator

∙ Developer: Ofek Aloni
∙ Contact: ofek.aloni@campus.technion.ac.il
∙ Date first available: Oct. 15th, 2024.
∙ Program language: Python
∙ Source code at: https://github.com/Al-Ofek/stsg
11 
∙ Documentation: Detailed documentation for application, data, testing,
and deployment can be found at https://github.com/Al-Ofek/stsg/blo
b/main/README.md
∙ Data required for local installation and use of software can be found
under https://github.com/Al-Ofek/stsg.
∙ Software Required: QuantGAN model was implemented using Py-
torch. Since training a GAN is computationally intensive, a virtual
machine was used for training. The file used for training is included, as
well as a variety of generator models pre-trained on the used datasets,
and can be found under ‘‘GAN Generator’’ subdirectory. For this reason
the work files only import a model, then use it for generating synthetic
series. CoSMoS is available only as an R package, the synthetic data
was generated using R, then imported into Python. Working files can
be found in the cosmos directory. For more on CoSMoS, see https://C
RAN.R-project.org/package=CoSMoS.
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