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H I G H L I G H T S  

• New metrics to assess the effect of air pollution sources/sensor array configurations on the accuracy of the source term estimation. 
• The estimation is based on sensors’ response to changes in the source term. 
• The source term is estimated for several cases using a multiobjective search algorithm combined with an atmospheric dispersion model.  
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A B S T R A C T   

Estimating the source term in the case of multiple leaks using a sparse sensor array is a challenging task. Here, 
the effect of sensor array/leak configurations on the reliability of the source term estimation is studied using two 
new measures. The first describes the overall change in the sensor array response to different source terms. The 
second represents the effect of the source term on the readout of each sensor in the array. These measures are 
subjected to several model cases differing in sensor array/leak configurations. Then, the source term is estimated 
using a self-adaptive multiobjective evolutionary (MOEA) search algorithm combined with a gas dispersion 
model. The method searches for a set of leaks, each one of which has a typical emission rate and location that 
results in a minimal difference between the sensors’ actual and computed pollution concentration. This objective, 
which is often used for source term estimation, is traded off against the second objective of maintaining a 
minimum number of active sources, which follows Occam’s razor principle of parsimony. Analysis of the results 
obtained for these model cases suggests that the measures can be implemented as a design tool using a com
bination of computer simulation and field experiments before operational deployment.   

1. Introduction 

Industrial activities involve the use of numerous chemicals which are 
often harmful to humans and the environment at large enough doses. 
Preventing chemical emissions into the atmosphere is the best way to 
address this critical issue but because there is no way to guarantee fail- 
safe operations, toxic gases and vapors may be accidently released into 
the environment (Dobor, 2017), due to accidents, terrorist attacks or 
even during routine operations. The first line of defense in the case of a 
chemical leak is the detection of the plume, and mapping the 

contamination level in the environment. Rohi et al. developed a sensing 
system that utilizes miniaturized CO2, NO2, CO, NH3, SO2, PM, O3 
sensors that are mounted on drones (Rohi et al., 2020). One of the 
motivations for this study was to provide a detailed mapping of the 
pollutant concentrations to attempt to mitigate the contamination by 
capitalizing on the portability of drones. However, the limited (15 min) 
flight time and the complexity involved in continuous 24/7 operation of 
a drone fleet emerge as shortcomings. Moltchanov et al. reported mea
surements of air pollutants with a network of six miniature wireless 
multi-sensors in three urban sites. This Wireless Distributed 
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Environmental Sensor Network (WDESN) can capture spatiotemporal 
concentration variations if properly calibrated. (Moltchanov et al., 
2015), (Fishbainet al., 2017) Optical systems such as the Light Detection 
and Ranging (LIDAR) monitor pollutant concentration by recording 
laser light scattering and absorption. (Slavov et al., 2019), (Aharoni 
et al., 2015) Potentially, LIDAR systems can provide detailed pollution 
mapping but this depends on having a clear line-of-sight, which may be 
infeasible in populated or industrial sites. An alternative approach is to 
locate the source of the leak and the mass emission rate (i.e., source 
term), and use this as input in an atmospheric dispersion model to 
generate spatial dense pollution maps (Danuso et al., 2015). Estimating 
the source term in the case of multiple leaks is important not only for 
assessing the environmental impact but also to prioritize the mitigating 
actions. This prioritization is critical in the case of a complex industrial 
site where access to the leak source might be dangerous and require 
trained personnel. 

Estimating a source term that consists of multiple leaks requires 
careful consideration of sensor placement to provide an accurate 
depiction of the contamination levels in the field. Lerner et al. (2019) 
formulated the deployment of a low-cost sensor network as an optimi
zation problem. In their work, the network was comprised of two types 
of micro-sensing units that monitored ozone, NO, and NO2 emissions. 
The optimal locations were found using an optimization process that 
identified the set of locations under resource constraints that maximized 
the overall utility of the sensor network. However, their method only 
evaluated land use and the topographic nature of the region of interest 
and disregarded temporal factors such as atmospheric conditions. To 
account for the temporal factors, Nebenzal and Fishbain (2017) devel
oped an interpolation method to find source locations based on the 
pollution concentrations measured using chemical sensors and a 
Gaussian Air Pollution Dispersion Model (GAPDM); Allen et al. (2007) 
described the use of a genetic search algorithm combined with a 
Second-Order Closure Integrated Puff (SCIPUFF) dispersion model. This 
algorithm was validated on synthetic and mesoscale (5–25 km) field 
experiment data (Dipole Pride 26 field). The model computes the source 
term in the case of a single leak that emits the tracer gas for a short 
period (2 s). Hirst et al. (2013) located and estimated sources of methane 
emission using a Markov chain Monte Carlo algorithm based sensor 
measurements and GAPDM. Performance was validated using real 
airborne data from a 1600 km2 area containing two landfills, and a 225 
km2 area containing a gas flare stack. Methane concentrations, together 
with atmospheric conditions, flight and GPS data, were continuously 
recorded. Pollution concentration is measured at 1 Hz at a ppb resolu
tion. It is worthwhile noting that such fine-grained measurement pro
vides valuable input for the source term estimation algorithm. Another 
approach to obtain detailed sensor data was described by Cui et al. 
(2004), who developed a fuzzy logic model implemented in a mobile 
sensor network. Their mobile sensor network was composed of a set of 
robots that monitor the pollution concentration and communicate using 
an ad-hoc wireless network. Each robot in this array chooses the next 
sampling point based on the information obtained by the other robots. 
This operation algorithm was designed to ensure that the sensors cover a 
large area; hence, providing detailed information needed to locate the 
source of the emission. Lamb et al. developed a mobile laser based 
system for source term estimation. This system measures the concen
tration of a tracer gas (SF6) released at a known mass flow rate from the 
same location as the interrogated site. The source term is estimated by 
measuring the tracer concentration at several locations and comparing it 
to the methane concentration emitted from the interrogated site. The 
accuracy, using this method, for a single point source was ±15% and 
±50% for a diffuse source with no need for meteorological information 
or an atmospheric dispersion model (Lambet al., 1995). Brantley et al. 
described a mobile sensing system to assess methane emissions from oil 
and gas production sites (Brantley et al., 2014). This system detects 
methane concentration in the air using an optical spectrometer. Since 
vast deployment of these instruments is impractical, the system is 

mounted on a vehicle that measures the gas concentration for 15–20 min 
at several locations, resulting in a detailed mapping of the gas concen
tration. The second stage consists of estimating the source term using the 
USEPA OTM33A method (EPA, 2015), which utilizes the measured gas 
concentration, wind speed and direction as input for a GAPDM to esti
mate the source properties. 

The complexity involved in the process of source term estimation 
requires conducting field experiments in which the source properties are 
defined in advance, the meteorological conditions, and the sensors’- 
observed concentrations are recorded during the experiment. In order to 
account for the large variability involved in such measurements, these 
experiments must be repeated several times with different source term 
and sensor geometries. Platt et al. (2008), (Platt, 2009) carried out an 
elaborate experiment aimed at comparing different algorithms for 
source term estimation. The test was carried out by the US DOD and is 
referred to as the Fusing Sensor Information from Observing Networks 
(FUSION) Field Trial 2007. The experiment consisted of 81 trials 
involving a mixture of instantaneous and continuous releases from 1 to 4 
sources of a tracer gas (propylene). The source was located upstream at 
various distances (50 m, 150 m, and 250 m) from the main sensor grid 
comprised of 100 photoionization detectors and an additional 20 ul
traviolet ion collectors spread over a 500 m × 500 m square grid. The 
meteorological conditions, which are essential input for the source term 
estimation algorithm, were recorded during the experiments. The results 
of 104 different scenarios, including 40 cases with a single source, 40 
with two sources, 16 with three sources, and 8 with four sources, were 
used to test different source term estimation algorithms. The comparison 
was performed by eight algorithm developer teams that tested fourteen 
source term estimation methods. These tests were conducted using 
different portions of the meteorological and sensor information to 
simulate realistic scenarios in which some of the information might be 
missing. Source location accuracies at short distances are usually lower 
than at long distances, and the discrepancy in emission rate can be as 
high as an order of magnitude. More details on the findings of this 
comparative study were presented by Platt and DeRiggi. (Platt and 
Deriggi, 2012), (Platt and DeRiggi, 2012) The results obtained in such 
complex experiments can be further used to provide a standard platform 
for future developments of source term estimations methods based on 
standard databases and use consensual terminologies and methodolo
gies (“harmonization”) (Hanna and Young, 2017). 

Hutchinson et al. (2017) reviewed methods for source term estima
tion using static or mobile sensors. This review of over 150 references 
describes two main approaches to source term estimation: the first is 
based on optimization techniques and the second on probabilistic ap
proaches. The main difference between these two approaches is that 
probabilistic methods account for uncertainties in the input to the model 
that yield a probability density function. By contrast, optimization 
methods do not take these uncertainties into account and generate a 
deterministic source term estimation. 

Many of these statistical and optimization studies aim at minimizing 
the discrepancy between estimated and measured pollution concentra
tions. For example, Haupt et al. developed a single objective optimiza
tion technique based on a genetic algorithm for source term estimation. 
By adjusting meteorological data and the (single leak) source term, the 
algorithm minimizes the difference between the measured (using a 
chemical sensor) and computed (using an atmospheric dispersion 
model) pollution concentration (“cost function”). When the estimated 
source term is close to the real one, the cost function is at its minimum 
value since the measured and computed pollution concentration are 
similar (Haupt et al., 2011). 

The success of these techniques depends on the ability of the sensor 
array to provide unambiguous information on the pollutant concentra
tion in the air. In the case of multiple leaks, as the gas plumes propagate 
through the atmosphere, they expand and finally overlap. Hence, ac
curate source term estimation in such scenarios requires several sensors 
located close to the leaks, preferably at distances that are shorter than 
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the separation between leaks. However, in many cases, the locations, or 
even the possible locations of the leaks are unknown; hence, this type of 
sensor deployment is not possible, and dealing with such scenarios is 
likely to become a numerically intensive endeavor. An elegant backward 
estimation algorithm was proposed in a classic letter by Gifford (1959). 
The dosage at a given receptor point can be treated as an average of 
dosages weighted by the strength of different emission sources. There
fore, it is possible to treat this receptor as the point of origin and 
calculate the upwind directed concentrations according to the relative 
weight of the sources as a form of “backward estimation”. In so doing, 
the computational complexity is reduced since one can avoid computing 
the gas dispersion from numerous possible sources that may exist in 
urban areas. While Gifford used the GAPDM, which can be handled by 
modern computers even for large numbers of sources, more sophisti
cated dispersion models are significantly more numerically cumber
some; thus making the backward estimation technique still useful. For 
example, Bieringer et al. (Bieringeret al., 2015) developed a method for 
fast source term estimation based on an iterative computation process. 
In their method, the first guess of the source term is obtained by back
ward estimation using the SCIPUFF dispersion model. This guess and 
meteorological variables are then interactively refined by 
forward-estimation using a Gaussian puff dispersion model. This algo
rithm was tested on experimental data from the FFT07 experiment, 
(Platt et al., 2008), (Platt, 2009) and provided similar accuracy as the 
SCIPUFF model using fewer computation resources. Cantelli et al. 
(2015) developed and a genetic search algorithm for the identification of 
multiple leak scenarios. Their simulations were conducted in a 1000 m 
× 1000 m × 50 m computer-simulated test site using a point source and 
a steady-state Gaussian dispersion model. Due to the gas plumes overlap, 
the maximum number of sources that could be resolved was up to three. 

The study reported here describes two complementary measures to 
assess complexity arising from the existence of multiple leaks monitored 
with a sparse detector array and their effects on the source term esti
mation accuracy. The first estimates sensor array sensitivity to changes 
in the source term, i.e., the potential for detection. The second uses the 
variability between the sensor-observed concentrations in different 
cases to estimate the likelihood of identifying the nature of the change. 
The predictive power of these two measures is illustrated in several 
model cases using a self-adaptive evolutionary multiobjective search 
scheme for estimating the source term. Resolving this complex situation 
with a limited and fixed number of sensors may potentially result in 
more than one feasible solution where the number of leaks in each so
lution could be different. Solutions in which the number of leaks is low 
will be referred to as “simple” solutions. The search mechanism is 
designed to prefer the combination of accuracy and simplicity under
lying the law of parsimony (Blumer et al., 1987). The search component 
of this work was conducted using the hyper-heuristic and self-adaptive 
Borg multiobjective evolutionary algorithm (SA-MOEA) (Burkeet al., 
2013).– (Giuliani et al., 2018) The method’s efficacy was evaluated in 
these model cases assuming well-calibrated but noisy sensors. 

2. Methodology 

2.1. Definitions 

Let Ω be the region of interest. In the context of this study, Ω is the 
monitored industrial area. Let {S} be the set of possible leakage sources, 
where each source, s ∈ {S} is located in ωs ∈ Ω and for a specific time t, 
emits qs[kg/second]. Similarly, the set {R} is the set of sensors, where 
each sensor, r ∈ {R}, is located in ωr ∈ Ω and records a pollution con

centration of cr 

[
μg
m3

]
. The source locations, {ωs} and emission rates, {qs}

for all s ∈ {S} are unknown, whereas the sensor locations, {ωr} and 
recorded values, {cr}, for all r ∈ {R} are known. Let msr be the pollution 
transfer function of a dispersion model which associates sensor r’s 
observed concentration, cr, with the emissions of source s. Thus, the 

model’s estimated contribution of source s ∈ {S} to the pollution con
centration in ω ∈ Ω, is given by: 

ĉω =msω ⋅ qs | ∀ω∈Ω, ∀s ∈ {S} (1) 

For multiple source scenarios, each sensor’s observed concentration 
is the contribution of all sources; i.e.: 

ĉω =
∑

s
msω ⋅ qs

⃒
⃒
⃒
⃒
⃒
∀ω∈{Ω}, ∀s ∈ {S} (2) 

Since each leakage source has its own specific parameters and 
location with respect to the sensors, the values of msr for each source- 
sensor combination are determined by the dispersion model. For the 
sake of simplicity at this stage of the study, it is assumed that the 
dispersion model and the meteorological data are accurate. Accounting 
for real-life fluctuations and missing data requires additional study. 

Based on these notations, the goal is to find the optimal set {S*} that 
represents the most accurate characterization of the leak sources. The 
decision variables for this optimization problem are the emission rates, 
qω for all ω∈Ω. Thus, each location ω ∈ Ω can host a source. The algo
rithm is designed to find the minimum number of active sources (qω > 0) 
that can explain the sensor-observed concentration. In this work, 
pollution concentrations at a single time were considered with constant 
leak rates. 

2.2. Computer-simulated test site 

Computations were made in a computer-simulated 600 m × 600 m 
flat area, with a constant westerly wind and class C5 atmospheric sta
bility. Leak rates ranged from 0 to 1000 kg/s from 9 possible locations, 
in which the gas exits were located 5 m above ground level. Note that 
assuming the known gas exit height simplifies the problem and is only 
suited for specific applications. To gauge the air pollution, a sparse 
WDESN was assumed in several configurations relative to the leaks at 
ground level. Fig. 1 depicts several configurations used in this study. 
Leaks are marked by full red circles, and sensors by hollow black circles. 
Fig. 1a depicts a nine-sensor arrangement, where each sensor is located 
50 m downwind from a leak. We dub this configuration “Co9/9". The 
leaks are 50 m apart. Fig. 1b shows a similar configuration as Co9/9, but 
with only six sensors, dubbed “Co9/6”. Fig. 1c and d depict a line source, 
represented by a set of leaks in a straight line. In these configurations, six 
(Fig. 1c) and nine (Fig. 1d) sensors are located 50 and 65 m apart 50 m 
downwind, and are dubbed “l9/6′′ and “l9/9′′ respectively. The config
urations in the figure are the “base layouts”. To study the distance effect, 
the entire sensor array was shifted downwind (positive offset) or upwind 
(negative offset); zero offset was the “base layout". 

Note that while there were nine possible leaks, some could have a 
zero kg/s leak rate and be inactive. These synthetic configurations were 
selected to test the method’s capabilities and limitations. The applica
tion of this method to other sites will thus require adaptations, which are 
presented below. The assumed air-pollution contribution, cr, in location 
r in the region of interest (ROI), of leak s ∈ S, with a leak rate of qs, over 
the ROI, was computed using the GAPDM, assuming continuous release 
and a steady state (Ermak, 1977). More details on this model are pro
vided in the supplementary material. 

The computer-generated configurations presented in Fig. 1 depict 
well-defined situations. Studying these configurations by changing the 
sensor to leak distance, or the number of leaks may provide insights into 
other possible configurations. The ‘l9/9’ configuration at the base layout 
and nine leaking sources represent a case with some gas plume overlap 
since the leak separations (50 m) are equal to the leaks-to- sensors dis
tance. Increasing this distance also increases the gas plume overlap at 
the sensing points. On the other hand, reducing the number of active 
leaks reduces the gas plume overlap. The ‘l9/6’ is similar to the ‘l9/9’, 
but decreasing the number of sensors means they have to be placed off 
the central axis of the gas plume, which makes it a less favorable 
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situation. In the base layout, the ‘Co9/9’ is a relatively convenient 
configuration. Increasing the separation between the sensors and leaks 
complicates this situation, as does decreasing the number of sensors such 
that (the ‘Co9/6’ configuration) would be less optimal. 

In addition to these well-structured configurations, some computa
tions were performed in randomly generated sources-sensors setups. 
Each such configuration differs in one (or more) of the following pa
rameters: number of sensors, number of active leaks, the average dis
tance between two leaks (‘DL-L′), the distance between the sensor and 
leak (‘DS-L′) and the sensor offset from the center of the gas plume 
(‘offset’). In all randomly generated cases, the locations of the leaks are 
randomly selected. If one has some prior knowledge on the site he can 
improve his network’s performance by selecting sensors locations with 
reduced distances and offsets to the potential sources, i.e., leaks. 
Accordingly, situations in which one has some knowledge regarding the 
test site are stimulated by randomly selecting the reduced offsets and 
distances in a preferred small range. The absence of such knowledge is 
simulated by removing any constraint regarding the sensors’ locations. 

2.3. Measures of scenario complexity 

As discussed above, estimating the source term in the case of multiple 
leaks is problematic, especially when the resulting gas plumes overlap 
(Gifford, 1959).– (Cantelli et al., 2015) Resolving such overlaps requires 
a dense network of sensors. However, the operational complexity of 
large WDESNs increases with the size of the network (Kizelet al., 2018) 
so that reducing the number of sensors without sacrificing accurate 
estimation of the source term is important. Hence, two new criteria were 
derived to provide a quantitative measure of the complexity of a scene, 
as follows:  

1. Pairwise Euclidean Difference (PED) between the sensor network’s 
calculated pollution concentrations for two different source terms 

(different leak locations and mass flow rates) while keeping all other 
problem parameters constant. The PED values depend on the 
maximum possible leak rate assigned to each source. Hence, the PED 
values were normalized to the maximal gas leak rate and are pre
sented in ppm/kg/second. 

2. Sensor Array Reading Correlation (SARC); i.e., the Pearson correla
tion between the sensor network’s calculated pollution concentra
tions for two different source terms (different leak locations and mass 
flow rates). 

In subsection 2.6, considerations regarding real-world sensing data 
are provided in detail. 

2.3.1. PED formulation 
For {S’} and {S’’}, two sets of active leaks; i.e., {S’} ∕= {S’’}, the PED 

as a function of {S}’,{S}" is given by (3): 

PED{S’},{S’’} =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑|R|

r=1

(
C{S’}

r − C{S’’}
r

)2

√
√
√
√ (3) 

In the case of a source comprised of multiple leaks, there are many 
possible combinations of individual leak rates. Hence, the distribution of 
the PED values obtained for 10,000–20,0000 randomly selected source 
terms is presented. Typically, PED values drop as the change in the 
number of active sources declines. Hence, cases where the following 
transitions may occur were examined: 

{S}’
8 → {S}˝8, {S}’

9→{S}˝9 , {S}’
9→{S}˝8, and {S}’

8→{S}˝9  

where {S}’
n represents a situation with ‘n’ active sources with different 

leak rates. Note that the PED value in the case of {S}’
n→{S}˝n is not equal 

to zero in most cases since the specific leak rates can vary. 

Fig. 1. Typical source (red dots and numbers) sensors 
(black circles and numbers) layouts. Note that the 
term “leak” refers to both active and non-active leaks; 
a) nine leaks/sensor pairs arranged in a compact 
group. Each sensor is located 50 m downwind from a 
source of emission; sources are 50 m apart (“Co9/9′′), 
b) similar to Co9/9 using six sensors (“Co9/6), c) nine 
sources deployed in a line 50 m apart and a line of six 
sensors 50 m downwind; sensors are 65 m apart (“L9/ 
6′′), d) same as L9/6 using nine sensors; each sensor is 
lined up with one of the sources (“L9/9′′). (For inter
pretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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2.3.2. SARC formulation 
Similarly, the SARC{S}’,{S}" is computed (4): 

SARC{S’},{S’’} = ρ
(

C→
{S}’

, C→
{S}’’)

(4)  

where C→
{S}’ 

is a vector of the sensors’-observed concentrations obtained 

for the source term {S}’ and C→
{S}’’ 

for {S}’’. 

2.3.3. Data obtained from the PED and SARC 
Computing the PED results in an estimate of the difference in the 

total pollutant concentration measured by the sensors for different 
source terms. This is useful when estimating the capability of the sensor 
array to detect this type of change (sensitivity). Consider for example the 
simplest case in which the sensors are placed upwind. In this case, all the 
sensors’-observed concentrations are equal to zero regardless of the 
nature of the source term. Similarly, in the L9/6 configuration the 
number of sensors (six) is lower than the number of possible leaks (nine); 
hence during the measurements the sensors are off the central axis of the 
pollution plumes. We will see later that this kind of sensor placement 
results in a low PED value compared to the L9/9. The SARC provides 
additional information regarding the observed concentration of each 
sensor in the array (specificity) for different source terms. If the corre
lation between the sensor-observed concentration for two different 
source terms is high, the information fed into the search algorithm may 
not suffice for reliable source term estimation. Fig. 2 shows the rela
tionship between the SARC value and the number of active leaks (leaks 
having a mass-flow rate greater than zero). The computation, in this 
case, was performed by randomly selecting {S}’

n and {S}˝n− 1 (n = 1–9) 

and calculating the distribution of the computed SARC value. It shows 
that decreasing the number of leaks shifted the SARC distribution to
wards lower values since, in these conditions, there is a relatively large 
separation between the leaks. As the leak separation relative to the 
sensor distance increases, the amount of overlap between the gas plumes 
is reduced, resulting in reduced SARC values. The largest effect was 
obtained for the L9/6 configuration but was considerably smaller for the 
L9/9 and Co9/9 configurations. Possible implementations are discussed 
in the section on optimization results. 

2.4. Optimization problem formulation 

Optimization was expressed through two formulations: a bi-objective 
formulation that traded off simplicity and accuracy, and a tri-objective 
formulation that traded off simplicity with the two accuracy objectives 
of under- and over-estimation. The tri-objective formulation is aimed at 
enhancing the search performance by providing additional input to the 
search algorithm in terms of both the magnitude of the error and its 
direction. 

2.4.1. Bi-objective formulation 
The bi-objective formulation was designed to solve the following 

minimization problem: 

{S∗} = ​ min
{S}

F (5)  

where 

F=

[
Ψerror⃒
⃒S*|0

]

(6) 

Fig. 2. The effect of the number of active leaks on the distribution of SARC values for various pollution source/sensor configurations. Number of counts for each 
SARC value are presented on the color scale. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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F is a vector-based objective function, {S∗} is the optimal set of 
sources (the source term), Ψerror is the accuracy of the source term 
estimation and 

⃒
⃒S*|0 is the number of active leaks in {S∗}. 

The minimization of the first objective, Ψerror, is achieved by mini
mizing the discrepancies between the actual values measured by the 
sensors and the estimated values of the model: 

Ψ error =
∑

r∈{R}

⃒
⃒
⃒
⃒
⃒
cr −

∑

s∈{S}

msr ⋅ qs

⃒
⃒
⃒
⃒
⃒

(7) 

This objective is counterbalanced by the second objective, which is 
formulated on the basis of Occam’s razor, and aims to find the minimal 
number of sources that can explain the recorded values, Cr∀r ∈ R; i.e., 
the minimum number of active leaks, and 

⃒
⃒S|0 symbols the number of 

active leaks (Donoho’s ℓ0-"norm"). 
Formulating the problem as a multiobjective optimization provides 

an additional dimension to conventional search algorithms that are only 
aimed at providing the most accurate solution; i.e., minimizing the 
discrepancy between the computed and observed concentration (Ψerror). 
This dimension needs to be added given the high number of possibilities 
in the case of multiple leaks. Cantelli et al. (2015) addressed this issue by 
using an inverse model and by assuming a known number of sources. 
The formulation presented here utilizes an alternative approach that 
prefers solutions that decrease the error by a significant value (“epsi
lons” – see subsection 2.6) that is defined by the user according to the 
application specifics. Hence, solutions that introduce a non-significant 
improvement in the error function by adding more sources are rejec
ted. The formulation presented here utilizes solutions with fewer active 
leaks (these solutions are referred to as “simple”). Consider, for example, 
a situation in which the sensors’ observed concentrations exhibit large 
fluctuations regardless of the source term. Clearly, decreasing the 
discrepancy between the computed and observed concentration below 
these naturally occurring fluctuations is impractical. During a search 
this means that there are two possible solutions: Sn - a solution with ‘n’ 
active leaks, and Sn+1 with ‘n+1′ active leaks, Sn+1 is accepted if it 
reduces (Ψerror) by a significant value (“epsilons” – see subsection 2.6), 
that is set by the user according to the application specifics, such as the 
pollution concentration fluctuations. 

2.4.2. Tri-objective formulation 
A variant of the bi-objective function is the tri-objective function in 

which the error objective function, Ψerror, is divided into two parts: 
positive errors (over-estimation where-the computed concentration is 
higher than the observed one), and negative errors (under-estimation 
where the computed concentration is lower than the observed one). 
Note that these over- and underestimations are not a result of sensor 
operation (false negative or false positive alarms), but rather result from 
improper assignment of the mass-flow rate during the optimization. The 
purpose of this formulation is to guide the search algorithm towards the 
right solution by providing the Borg MOEA optimization algorithm with 
information on both the magnitude and direction of the error in its 
search for the optimal solution. The tri-objective minimization problem, 
in which Ψerror, is split into two error terms takes the following form: 

{S∗} = ​ min
{S}

F (8)  

F=

⎡

⎣
Ψ error<0
Ψ error>0⃒
⃒S|0

⎤

⎦ (9)  

where F is the vector-based objective function, {S} is the optimal set of 
sources, 

⃒
⃒S|0 is the number of active leaks in {S}, Ψerror<0 and Ψerror>0 are 

of the sum of the under- and over-estimation errors from set {S}: 

Ψerror<0 =
∑

r∈{R}

⃒
⃒
⃒
⃒
⃒
cr −

∑

s∈{S}

msr ⋅ qs

⃒
⃒
⃒
⃒
⃒
, ∀

(

cr −
∑

s∈{S}

msr ⋅ qs) < 0 (10a)  

Ψerror>0 =
∑

r∈{R}

⃒
⃒
⃒
⃒
⃒
cr −

∑

s∈{S}

msr ⋅ qs

⃒
⃒
⃒
⃒
⃒
, ∀

(

cr −
∑

s∈{S}

msr ⋅ qs) > 0 (10b)  

2.5. Multiobjective optimization 

Both formulations described in equation (3) -(10) depict NP-hard 
problems, where there is no polynomial time-efficient solution. This 
accounts for the use of the Borg MOEA (Donoho, 2006). The Borg 
framework is a hyper-heuristic global (Burkeet al., 2013), multiobjective 
search tool that uses internal feedback during the search to dynamically 
adapt an ensemble of search operators (or strategies) by rewarding those 
that maximize search progress (i.e., the dominance of newly generated 
solutions). 

The Borg MOEA initiates search for the optimal set {S} by starting 
with a uniform random generation of its initial population of candidate 
solutions. Then the algorithm projects the set {S} on Ω ; i.e., Eq (2), and 
evaluates the discrepancies from the measured values using the error 
function shown in Equation (7). Then, based on the two objectives (

⃒
⃒S|0 

and Ψerror), the Borg MOEA rewards those sets of decision variables {S}
that dominate the competing alternatives (i.e., those that are better on 
both objectives) until a high-quality approximation of the Pareto fron
tier is attained. Borg combines several algorithms: ε-dominance (Reed 
et al., 2007), ε-progress (Iwema et al., 2017), randomized restart (Martí 
et al., 2013), (White, 2018) and auto-adaptive multi-operator recom
bination (Gu et al., 2015), (Hadka and Reed, 2015) into a unified 
framework that has proven convergence (Hadka and Reed, 2013), 
(Laumanns, 1984), (Rudolph and Agapie, 2000). The approximate set, 
{S*}, in each iteration was refined using the following internally 
competing genetic mating and mutation operators: Simulated Binary 
(SBX) (Ercan and Goodall, 2016), Patent-Centric (PCX) (Bi et al., 2016), 
Unimodal Normal Distribution (UNDX) (Gu et al., 2015), and Simplex 
(SPX) (Jain and Srinivasulu, 2004), crossovers as well as Differential 
Evolution (DE) (Andrews et al., 2011), and Uniform Mutation (UM) 
(Pelletier et al., 2006). The Borg MOEA auto-adapts the probability of 
which genetic operators to use according to the operators’ offspring’s 
success rate in previous iterations. To avoid a convergence of the algo
rithm to a local minimum, a stochastic restart mechanism exploiting 
Uniform Mutation is built into the BORG MOEA to automatically detect 
and avoid premature convergence to a local optimum and to achieve a 
diverse set of solutions (Burkeet al., 2013). 

To account for the effects of the MOEA’s stochastically generated 
initial parameters, a multiobjective search was run 10 separate times, 
where each run contained a different random seed (sample of initial 
parameters). Each random seed was run for up to 500,000 function 
evaluations. The Borg MOEA performance has been found to be pri
marily controlled by the number of function evaluations (NFE) the al
gorithm executes (Hadka and Reed, 2012). Runtime diagnostics were 
performed on all seeds to ensure the 500,000 NFE used in this study was 
adequate to approximate the Pareto frontier. The runtime performance 
of each seed was measured using the hypervolume (Zitzler et al., 2003) 
(Knowles and Corne, 2002), a metric that computes the volume of the 
objective space dominated by a set of solutions which provides a mea
sure of both the diversity and proximity of the approximation set. The 
hypervolume was calculated every 100 function evaluations and tracked 
across the MOEA search. Runtime diagnostic results indicated that the 
NFE was sufficient (see supplementary information). The final Pareto 
approximate set reported here is the reference set of non-dominated 
solutions across all 10 random seeds. 

The significant precisions (“epsilons”) for Ψerror were 1 ppb (both for 
the bi- and tri-objectives error objective functions) and 0.5 for 

⃒
⃒S|0. 
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Borg’s default values were used for all other search and permutation 
parameters (see (Hadka and Reed, 2012) for further details). The typical 
runtime was less than a minute when using this set of execution pa
rameters. In cases where computation resources are limited, note that 
these parameters can be refined to meet the specific challenges and re
quirements of the problem at hand. 

2.6. Methodology for real-world applications 

The method presented in this work is based on a Gaussian dispersion 
model which requires minimal computing resources compared to other 
models such as for example the Lagrangian, (Oettl et al., 2005), (Shai 
kendler) computational fluid dynamic (CFD) (Li et al., 2006), CALPUFF 
(Levy et al., 2002), and AERMOD, (Cimorelliet al., 2005). However, 
these models may provide better accuracy for specific applications. 
Using the method presented here with another dispersion model re
quires additional research and perhaps some modifications. Choosing 
the best dispersion model should take the terrain topography, size, 
number of possible leaks, number of available sensors, required accu
racy, and available computing resources into account. An example ap
pears in Park and Seok who developed a methodology for selecting an 
appropriate dispersion model using several fuzzy inferential statistical 
measures that were integrated into a single index to evaluate dispersion 
models to predict ground-level SO2 concentration in coastal areas (Park 
and Seok, 2007). 

Sensors of various types are also available that differ in terms of their 
specificity with respect to the material of interest, the minimum 
detectable level (MDL) and dynamic range (DyR). Once the pollutant 
dispersion in the target site has been modeled, the expected pollutant 
concentrations in different scenarios can be estimated. Using these data, 
the efficacy of a specific sensor to provide an accurate estimation of the 
pollutant concentration in the air can be evaluated. The number of 
sensors and their placement are also critical factors that should be taken 
into consideration. 

Although increasing the number of sensors will have a positive 
impact on the accuracy of the results (Thomaset al., 2018), it will also 
increase the operational cost. Hence this work focused on the case of a 
constant small number of sensors that were placed downwind. In real 
cases, more sensors need to be deployed to account for wind variations. 
Another issue to consider is the measurement noise in an outdoor 
environment, such as an industrial site. Somov et al. developed gas 
sensors for industrial sites, but even these ruggedized sensors must be 
calibrated periodically (Somov et al., 2013). Nodop et al. conducted 
atmospheric experiments involving the controlled release of Perfluoro
carbon tracers (PFC) into the atmosphere. By measuring the PFC con
centration, dispersion through the atmosphere was studied (Nodop 
et al., 1998). They showed that when using a calibrated gas chromato
graph, the concentration of the tracer could be measured at an accuracy 
of 2.7–14.2%. For the current study, a photoionization detector (PID) 
was used to compare our theoretical findings to possible real-life sensing 
performance. This detector’s MDL was sub-PPM, and its DyR spanned 
three orders of magnitude, which enabled the study of a wide range of 
emission rates. After calibration, the detector was found to be accurate 
(R2 = 0.982) and responded to pollution in real time (seconds) (Gol
babaei et al., 2012). Hence, it possible to obtain a 1–2 min average of the 
sensor-observed concentration to reduce the fluctuations. Thus, an 
overall noise level of 15% of the entire sensor array is a fair estimate for 
assessing the performance of this method. It is worth noting that such 
meticulous calibration and maintenance are highly demanding. Hence, 
studying the trade-offs between sensor performance and source term 
estimation accuracy is essential. 

Once the problem is characterized in detail, the PED and SARC 
values can be computed for several configurations in order to select the 
most favorable one. The performance can be then tested in this config
uration by simulating several scenarios, as described in the next 
sections. 

3. Results 

3.1. Scenario complexity estimation 

Fig. 2 shows the Pairwise Euclidean Difference between the sensor 
network’s calculated pollution concentrations (PED - see section 2.3) 
value distribution for several sensor/leak-source configurations in the 
“base layout”. Fig. 4 shows the PED value distribution for several 
sensor/leak source configurations as a function of the offset from the 
base layout as shown in Fig. 1. For the Co9/9, L9/9, and L9/6 ar
rangements, the PED values peaked at the base layout. The PED values 
for the Co9/9 and L9/9 were similar and higher than for the L9/6 and 
Co9/6 layouts. In the Co9/6, in the base layout, the sensors were placed 
off the central axis of the gas plume; hence, the PED values increased 
with the offset as the gas plumes expanded. At high offset values, the 
PED values converged to a similar value in all cases (~40–80 ppm/kg/ 
second) indicating that the gas plume was almost homogeneous at this 
distance, and that the sensor-observed concentrations were independent 
of the leak configuration. Hence, the preferred location to compute the 
source term was at short distances. From the perspective of using the 
PED as a design tool, if one takes the Co9/9 base layout configuration at 
a leak rate that varies from 0 to 1 kg/s, the most probable PED value is 
1200 ppm/kg/second. If using a PID sensor array having a sub-ppm 
detection limit with a wide linear range, this assessment shows that 
such detectors may provide reliable input to the search algorithm. A 
trickier question is how specific these changes are to the nature of the 
source. One measure of this specificity is the SARC, since a low SARC 
value indicates that the sensor-observed concentrations are specific to 
each situation and can provide a sound basis for the source term esti
mation. Fig. 5 shows the computed Sensor Array Reading Correlation 
(SARC – see section 2.3) values obtained at different configurations as a 
function of the offset from the base layout. It shows that in the base 
layout, the SARC values for the L9/9 configuration were low in most 
cases, and the most probable SARC value was zero. Only 26% of the 
SARC values exceeded zero. The Co9/9 configuration appeared to be 
similar to the L9/9, and 36% of the SARC values exceeded zero due to 
the overlap of gas plumes. Increasing the offset of the sensor array up to 
225 m in the case of the L9/9 configuration only had a slight effect on 
the SARC values. The SARC values in the Co9/9 were very sensitive to 
the offset. Once the detectors were placed outside the leak area, the 
overlapping of the gas plumes resulted in high SARC values. The SARC 
values for the Co9/6 configuration were high for all offset values due to 
the mismatch between the sensor and gas plume locations. Similarly, the 
SARC values for the L9/6 configuration were high in the base layout due 
to the mismatch between the sensor locations and the gas plumes. As the 
offset increases, the pollution plumes expand and can be detected by the 
sensors, resulting in the shifting of the SARC value distribution towards 
lower values. 

Using the PED and SARC values shows that the L9/9 configuration 
was the simplest case to resolve, and that the Co9/9 would be slightly 
more challenging. Resolving the Co9/6 configuration was the most 
challenging. The data from the L9/6 configuration were mixed: the most 
probable PED value was 400 ppm/kg/second, which was twenty times 
higher than that of the Co9/6 and three times lower than that of the L9/9 
configuration. The SARC values closer to the base layout were close to 
one. This made it hard to predict whether determining the source term in 
this configuration was possible. Hence, studying this configuration can 
shed light on the relationships between the SARC and PED measures; i. 
e., which of these measures can provide more information to determine 
the source term in different configurations. The results depicted in 
Figs. 2–5 were obtained for well-defined configurations, but exploring 
more scattered configurations resulted in similar conclusions as to the 
effect of gas plume overlap, the number of sensors and the leak-to- 
sensor distance on the PED and SARC values. 
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Fig. 3. Pairwise Euclidean Difference value distributions for several sensor/leak configurations (indicated in each figure).  

Fig. 4. Pairwise Euclidean Difference (PED) value distributions for several configurations (indicated in each figure) as a function of the offset distance from the base 
layout as presented in Fig. 1. Number of counts for each PED value are presented using the color scale where high values are depicted in warm yellows and low counts 
are in cold blues. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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3.2. Source term estimation using Bi-objective function 

Fig. 6 shows the Pareto frontiers calculated by the Borg for the Co9/9 
configuration in the base layout for increasing numbers of leaks, 

⃒
⃒S|0 =

{1,⋯,9}. The x-axes in each of the graphs depict the calculated value of 
Ψerror. The y-axes represent the number of active sources for a given 
solution. The x-axis error bars represent 15% noise in the sensor- 
observed concentration. The minimum Ψerror was achieved for the cor
rect number of leaks in each scenario. However, in real cases, even with 
meticulously calibrated sensors, the observed concentration noise is 
likely to bias the search process. This effect is expected to influence the 
search outcome if |S|0>6, since the improvement in Ψerror above this 
value is comparable to the error induced by sensor noise. Thus esti
mating a source with ‘n’ active leaks requires ‘n’ ideal sensors with zero 
noise that are located close to the leaks downwind. Adding even a small 
amount of noise reduces the performance. In this case, assuming a ±15% 
level limits the number of resolvable leaks to six when using nine sen
sors. Further increases in sensor noise level or wind fluctuations will 
require adding more sensors. If adding more sensors is impossible, one 
should consider repeating the search several times. In each search a 
slightly different sensor-observed concentration is be fed into the search 
algorithm, which may result in a different |S|0 value. In this fuzzy sit
uation, the decision-maker needs to implement a predetermined policy. 
The safest plan is to act under the assumption that the maximal 
computed |S|0 value is the actual one (“Safety Driven Policy” SDP). If 
resources to respond to many leaks are limited, responding to the lowest 
computed |S|0 value (“Resource Driven Policy” RDP) makes sense. 
Clearly in such a complicated situation, the situation will not be resolved 
in one step. Regardless of the decision-maker’s policy, the efforts to 
estimate should continue after some of the leaks have been fixed. In this 
case repeating the estimation will be simpler since repaired leaks can be 

ignored in the search process. This approach might provide a more ac
curate source term estimation especially in cases in which reducing the 
number of active leaks reduces the SARC value, as shown in Fig. 2. 

These results can be further analyzed by investigating the leak rates 
generated by Borg and comparing them to the preset leak rates. Fig. 7 
compares the preset leak rates (on the x axis) to the calculated leak rates 
(on the y axis) having the minimal Ψerror in several configurations with 
different |S|0. The plots show that the calculated and actual leak rates 
were in excellent agreement. In realistic cases, this level of accuracy may 
not be feasible and probably not required. The decision-maker can best 
take advantage of this calculation if, instead of the exact numerical value 
for the leak rate, a three-level system is implemented that provides 
categories such as ‘high’ (leak rate = 1000-500 kg/s), ‘medium’ (leak 
rate = 500-100 kg/s) and ‘low’ (leak rate = 100-0 kg/s). This type of 
approach can serve to prioritize the response to the leaks. Analyzing the 
L9/9 configuration yielded similar results. 

The case for the Co9/6 configuration (Fig. 1b), is more complicated, 
as predicted by both the PED and SARC values. In this configuration, 
minimizing Ψerror did not result in an accurate estimation of |S|0 or the 
leak rates (Fig. 8). Examining the results more closely revealed that the 
estimate of the leak rates from sources located on the west side of the 
tested area (1–3) was accurate (marked by arrows in Fig. 8b). 

Thus far, the results have supported the hypothesis that determina
tion of the source term is possible in sensor/leak configurations having 
large PED values and low SARC values such as the Co9/9 and the L9/9 
configurations. In configurations such as the Co9/6, the sensors are 
placed off the central gas plume axis, resulting in low PED and high 
SARC values which make the estimation of the source term impossible. 
Similarly, configurations such as the L9/9 and the Co9/9 may be 
resolved if the sensors are placed close to the base layout, as can be seen 
from the PED that depended on the offset values (Figs. 4 and 5). The L9/ 

Fig. 5. Sensor Array Reading Correlation (SARC) values for various configurations (indicated in each figure) as a function of the offset. SARC values are presented 
using the color scale - high values are depicted in warm yellows and low counts in cold blues. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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6 configuration was particularly interesting in that the indications ob
tained from the SARC and the PED measure were contradictory (see next 
section). 

3.3. Improved search strategy using a tri-objective function 

Several computations were carried out in the L9/6 configuration for 
different sets of 

⃒
⃒S|0 values. The accuracy of the computation for 

⃒
⃒S|0 > 4 

was poor. Therefore, an alternative search strategy was used that 
implemented the tri-objective function. Fig. 9 shows a comparison of the 

Fig. 6. Pareto frontiers calculated for the Co9/9 layout for several |S|0 using the bi-objective function. The x-axis error bars represent 15% noise in the sensor 
observed concentration. 

Fig. 7. Comparison of the calculated vs. actual mass flow rates for source terms 
with a different number of leaks with a mass flow greater than zero (“active 
leaks” – “AL”). The number of active leaks used in each calculation is presented 
with different symbols – see graph legend. 

Fig. 8. a) Pareto frontier and b) comparison of the calculated vs. actual leak 
rate in the Co9/6 configuration for |S|0 = 9. The x-axis error bars represent 15% 
noise in the sensor-observed concentration. 
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actual 
⃒
⃒S|0 to the calculated 

⃒
⃒S|0 at a minimal value of the Ψ_error 

(
⃒
⃒
⃒S|Calc

0 ), using both the bi-objective and tri-objective functions. It in

dicates that in most cases, using the tri-objective function resulted in a 
more accurate estimation of 

⃒
⃒S|0, compared to the bi-objective function. 

Out of nine cases, the tri-objective function estimated 
⃒
⃒S|0 accurately in 

eight cases, compared to five cases successfully resolved by the bi- 
objective function. 

Similar attempts to use the tri-objective formulation with the com
plex Co9/6 configuration were unsuccessful. The improvement in the 
L9/6 configuration was due to the fact that the search algorithm 
exploited feedback on both the direction and the magnitude of the error. 
This additional information guided the search algorithm to a more ac
curate result in most cases. These findings suggest that resolving a 
configuration having large SARC values is problematic even with high 
PED values. Limited success is obtained by enhancing the search process. 
It is worth noting that increasing the distance between the sensors and 
the leaks further decreased the accuracy for both the bi-objective and tri- 
objective formulation due to gas plumes overlap at larger distances. 
Resolving a configuration having both large SARC and low PED values 
such as the Co9/6 configuration is impossible regardless of the search 
process. 

3.4. Method evaluation in randomly-computer-generated test sites 

The method has been evaluated using the tri-objective function in 
randomly-computer-generated sources-sensors test configurations. The 
two main parameters studied are the accuracy of the total mass flow rate 

and the probability of accurately determining the number of active 
leaks. 

Fig. 10, shows the effect of the number of sensors, placed at a zero 
offset and 25–50 m downwind from nine active leaks (reduced distance 
= 0.5–3), on the method’s accuracy. Note that each data point reflects 
the average of the computation results of over 100 tests configurations in 
which the leaks’ locations are randomly selected. It shows that 
decreasing the number of sensors while keeping nine active leaks re
duces the method’s performance. The best situation is when the number 
of sensors is equal to the number of active leaks. In such a case, the 
average error is ~12%, and the probability to accurately determine the 
number of active leaks is 80%. 

Reducing the number of sensors significantly decreases the method’s 
performance; for example, when using eight sensors, the probability to 
accurately determine the number of active leaks is only 35%, and the 
error of the computed mass-flow rate is 50%. Hence it is concluded that 
the number of sensors should be equal or higher than the number of 
active leaks. Similar computations were performed when keeping the 
number of sensors constant (nine) and randomly choosing the number of 
active leaks and their locations. The method’s performance improves as 
the number of active leaks is reduced. The average computed mass flow 
error was below 5% when the number of active leaks is lower than five. 

The effect of the reduced offset and distance has been estimated in 
randomly generated configurations, having nine active leaks and nine 
sensors (Fig. 11). 

It shows that moving away from the center of the gas plume has a 
significant effect on the accuracy of the mass flow rate at the extreme the 
computed mass-flow rate error varies between 25 and 250% (Fig. 11a). 
In this range of reduced offset values, the probability to accurately 
determine the number of active leaks varies between 80 and 100% 
(Fig. 11b). Keeping the reduced offset at zero and increasing the reduced 
distance decreases the method’s performance due to the overlap of the 
gas plumes. In this range of reduced distances, the mass flow rate esti
mation error varies between 20% and 120% (Fig. 11c) and the proba
bility of accurately determine the number of active leaks decreases from 
1, in short distances, to 0, in longer distances (Fig. 11d). 

The above computations describe situations in which the leaks are 
randomly placed in the computer-generated test site, and the sensors are 
placed using some knowledge regarding the possible locations of the 
leaks and the wind direction. The method is robust to changes in the 
sensor-leak distance as long as the reduced distance is 0.5–1 provided 
that the offset values are small, i.e., the locations of the sensors are close 
to the center of the gas plume. Such knowledge regarding the interro
gated site may be limited in some cases. The performance of the method 
under these situations, were performed without using any prior 
knowledge. These computations showed that the source term estimation 
accuracy in such situations is low. For example, the probability to 
accurately estimate S0 is 0.6 and 0.48 when the number of active leaks is 

Fig. 9. Comparison of the actual (
⃒
⃒S|0) vs. the calculated (

⃒
⃒
⃒S|Calc

0 ) number of 
leaks using the bi-objective and tri-objective functions for the L9/6 configura
tion in the base layout. 

Fig. 10. The effect of number of sensors on the calculated mass flow rate accuracy (a) and the probability to accurately estimate the number of active leaks (b). 
Number of active leaks is 9, reduced distance is 0.5–3, and offset = 0, total number of randomly-computer generated-test sites is n = 850. 
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one and two, respectively. The error in mass flow rate estimation is over 
100%. Therefore, it is concluded that if one wants to utilize a sparse 
sensor array, some prior knowledge regarding the interrogated site is 
required. In the absence of such knowledge, one must deploy more 
sensors or to mount them on a moving platform. 

4. Summary and conclusions 

Detection of chemical leak locations and rates are crucial when 
attempting to define the appropriate mitigating response and when 
assessing the environmental impact. These objectives become more 
complex as the number of leaks increases, especially when the sensor 
network is sparse. The primary reason for this complexity is that as gas 
plumes propagate through the atmosphere, they expand and overlap. 
Two new measures were put forward here to estimate the likelihood of 
resolving a specific configuration of sensors/leaks. The first measure is 
the Pairwise Euclidean Difference between the observed pollution con
centrations obtained with different source terms (PED). High PED values 
indicate that changes in the source term will result in a high change in 
the sensor-observed concentrations. The second measure, the Sensor 
Array Reading Correlation (SARC), accounts for the specific response of 
each sensor in the array. If for a certain source/sensor array configura
tion, the SARC value is low, the sensor observed concentrations are 
specific to every source term. In this case the information obtained from 
the sensors provide useful input to the source term estimation algorithm. 
Several distinct configurations were generated by computer simulations 
with different SARC and PED values, and were analyzed using a multi
objective optimization search. The optimization traded off two objec
tives: the error in gas concentration estimation, while minimizing the 
number of active leaks. Solutions having a low number of active leaks 

were considered “simple” solutions. Using simplicity as an objective 
adheres to Occam’s razor principle of parsimony, which states that the 
simplest solution is most likely the right one. A variant of this formu
lation consists of three objectives: simplicity and the two error terms of 
over- and under-estimation. The resulting tri-objective formulation 
emerged as more successful than the bi-objective formulation in chal
lenging configurations having high SARC and medium PED values. The 
method was also challenged with randomly-computer-generated con
figurations. It shows that the method is effective if the number of leaks is 
equal or lower than the number of active leaks and prior knowledge 
regarding possible leak location and wind direction is available. 
Resolving such a complex situation without such prior knowledge might 
be possible using more sensors or mounting them on a moving platform. 
The method is comprised of two modules: an optimization and an air 
pollution dispersion model. In the current work, the Gaussian atmo
spheric dispersion model was used. Future work will involve adapting a 
non-steady-state dispersion model, the Lagrangian model, to the method 
presented in this paper. A detailed study of the effect of sensor array 
attributes; i.e., the number of sensors, their minimum detectable level 
and dynamic range, quality of the calibration, noise, and placement. The 
methods developed in this study will then be validated using real data 
obtained in controlled experiments. 
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Fig. 11. The effect of the reduced-offset on the calculated mass flow rate accuracy (a) and the probability to accurately estimate the number of active leaks (b) at 
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