
Applied Animal Behaviour Science 236 (2021) 105260

Available online 13 February 2021
0168-1591/© 2021 Elsevier B.V. All rights reserved.

Towards on-site automatic detection of noxious events in dairy cows 

Yael Salzer a,*, Hen H. Honig b,1, Roy Shaked b, Elad Abeles c, Alona Kleinjan-Elazary b, 
Karin Berger d, Shamay Jacoby c, Barak Fishbain d, Shai Kendler d,2 

a Institute of Agricultural Engineering, Agricultural Research Organization – Volcani Center, Hamakabim Rd. 68, Rishon-Le’Zion, 7528809, Israel 
b Animal Science, Agricultural Research Organization – Volcani Center, Hamakabim Rd. 68, Rishon-Le’Zion, 7528809, Israel 
c Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Yehoshua Hankin St 21, Rehovot, 76100, Israel 
d Dept. of Environmental, Water and Agricultural Engineering, Faculty of Civil & Environmental Engineering, Technion – Israel Institute of Technology 616, Rabin Hall, 
Haifa, 32000, Israel   

A R T I C L E  I N F O   

Keywords: 
Pain assessment 
Dairy cow 
Machine learning 
Welfare 

A B S T R A C T   

Successful detection of pain in cows could circumscribe the therapeutic window for treatment before the cow’s 
condition deteriorates further. While severe clinical cases that are characterized as painful have clear behavioral 
and physiological manifestations, mild pain may go unnoticed in cows due to their stoic nature. This work 
presents the first step in developing a warning system that will enable the identification of mild pain in dairy 
cows. In a set of three experiments, a topical application of 10 % capsaicin cream was used to elicit a noxious 
sensation. Experiment 1 was aimed at establishing capsaicin as a noxious model for bovines (n = 11). Each cow 
was treated with neutral cream on day one and the noxious cream on day two. Since the duration of capsaicin 
effects on bovine skin is unknown, Experiment 2 was designed to evaluate capsaicin’s impact on bovines 30 min 
after application (n = 17). Physiological signs were collected in response to the capsaicin cream application and 
were compared to the application of the neutral cream. In Experiment 3 physiological signs and continuous 
behavioral data were recorded (n = 22, four cows participated in Experiment 1). Each cow was treated with 
neutral cream on day one and the noxious cream on days two and three, i.e., repeated exposure to the noxious 
stimulus. Heart and breathing rates were elevated soon after the noxious treatment but not for the neutral cream. 
Blood oxygen saturation was inconclusive. Changes in daily activity patterns consecutive to the noxious chal
lenge included a decrease in rumination time and an increase in lying bouts. These results are in line with what 
would be expected for physiological and behavioral effects of pain in cows. Additional data are required to rule 
out habituation or sensitization to the procedure. The resulting database was then used to develop a machine- 
learning algorithm to detect noxious sensations by applying random forest classifiers trained with two 
different approaches. The learning herd approach, in which a specialist labels a set of observations and uses them 
to derive a classifier for new observations from the same herd, achieved 82 % ±9% accuracy. The unlearning 
herd approach, in which a single database is used to train a classifier that can be applied to members of other 
herds, resulted in an accuracy of 86 %±18 %. The data discussed in this study meet the requirements of an 
automatic on-site noxious detection system; real-time on-farm measurements, informative of negative high- 
arousal states.   

1. Introduction 

Timely assessment of pain is an important aspect of dairy cow wel
fare and a major concern for livestock veterinarians (Mench, 2018). A 
cow in pain may manifest a negative affective state, which in itself is a 
key component of animal welfare (Ede et al., 2019). Modern intensive 

methods of dairy cattle rearing have contributed to the increase in the 
incidence of morbidity (i.e., lameness, mastitis) and economic losses, 
including decreased milk production, lower reproduction rates, and 
culling (von Keyserlingk et al., 2009; Warnick et al., 2010). Because of 
their stoic nature, detecting pain events in cattle is difficult, and 
measuring their threshold is more challenging still. Thus, cows are not 
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likely to exhibit visible signs of pain until their condition has escalated 
(Hudson et al., 2008), so that overall, cows are undertreated for pain 
(Adcock and Tucker, 2018). 

There is no gold standard for pain assessment in animals. An animal 
cannot report its subjective experience; hence, what remains are proxy 
indices of cow pain or distress, based on inferential reasoning (Carstens 
and Moberg, 2000). The main obstacle to utilizing physiological and 
behavioral signs in practical farming is their lack of specificity, which 
involves differentiating different situations with similar manifestations. 
Traditional on-farm approaches for assessing pain in cattle rely on the 
expertise and awareness of caregivers. Veterinarians or farmers, who are 
highly familiar with their animals, will notice changes in their cows’ 
normal behavior when they express pain. Accurate identification and 
management of pain are essential to ethically competent dairy farm care 
(Giovannini et al., 2017); in particular behavioral assessment facilitates 
pain recognition (as reviewed by Landa, 2012). Alterations in activity 
patterns, postural behavior, and feed intake are typical pain markers 
(Adcock and Tucker, 2018; Piñeiro et al., 2018). In order to improve 
farmers’ ability to correctly identify the clinical status of a cow in a short 
time, novel approaches for automatic detection have been presented. 
These methods rely on data collected via designated on-farm, non-in
vasive sensors. These factors include food and water intake (Heinrich 
et al., 2010; Sepulveda-Varas et al., 2016), rumination time and body 
weight gain (Fitzpatrick et al., 2013; Steensels et al., 2016), standing and 
lying time, lying bouts (Van Hertem et al., 2016), weight distribution 
between legs (Dyer et al., 2007), and back arching (Hansen et al., 2018; 
Thomsen et al., 2008), as well as eye temperature (Stewart et al., 2008). 
Other studies have explored the potential of milk cortisol (Giovannini 
et al., 2017) or the plasma concentration of cortisol, haptoglobin, 
norepinephrine, beta-endorphin, and substance P (Bustamante et al., 
2015) as biomarkers of pain. 

Pain is generally associated with increased sympathetic activity 
affecting physiological indices such as tissue oxygen saturation, as well 
as heart and breathing rates (Landa, 2012; Morton and Griffiths, 1985). 
However, pain assessment based on these physiological factors is 
commonly considered inapplicable on the farm (Gleerup et al., 2015a). 
One of the major limitations of pain assessment research has to do with 
problems differentiating between the expression of the pain stimulus 
and the symptoms of its cause, i.e., inflammation, injury, or disease. For 
adequate exploration of pain per se, the stimulation should not initiate a 
systemic inflammatory reaction or significant damage to the flesh. 

Here, in a series of three experiments, short-lasting noxious topical 
stimuli were used to explore the indirect symptoms of mild somatic pain. 
In humans, capsaicin elicits a burning sensation; it selectively activates 
sensory neurons that convey information about noxious stimuli to the 
central nervous system (Piperine et al., 1997). Gleerup and colleagues, 
and Di Giminiani and colleagues (Di Giminiani et al., 2014; Gleerup 
et al., 2015b) applied topical 10 % capsaicin to horses’ and pigs’ skin, 
respectively. Similarly, in this study, a topical application of diluted 
capsaicin cream, the principal pungent ingredient in hot chili peppers, 
was used as the stimulus (Di Giminiani et al., 2014; Gleerup et al., 
2015b). 

This work deals with the challenge of detecting physiological and 
behavioral changes associated with mild pain, which generally go un
noticed due to the stoic nature of the cow. Machine learning methods, a 
branch of computer analysis techniques, are designed to classify large 
quantities of observation-based patterns from the input data. In super
vised learning, the program is trained on a set of observations from 
known classes, i.e., the training set. The result of this training process is a 
model that is then used for the classification of new observations. Two 
approaches to detect noxious events in cows are assessed here. The 
learning herd (LH) approach examines data from a herd of cows that are 
monitored and diagnosed by an expert. This generates a training set that 
contains observations from the entire herd. A new unlabeled observa
tion, which was not a part of the training set, is then classified using this 
classifier. The unlearning herd (UNLH) approach is based on deriving a 

classification model from a set of labeled observations from a herd of 
cows. This classifier is then used to classify noxious events in cows from 
herds that were not involved in the training process. The main difference 
between LH and UNLH is that in LH both the training and test sets of 
observations are taken from the same herd. Although the LH method is 
expected to be accurate, since the variation between the training set and 
the test set is relatively small, collecting a set of labeled observations for 
every herd is time consuming and labor-intensive. Note that the vali
dation set of observations is not used to derive the classifier. The UNLH 
approach is more streamlined since the classifier is computed once on a 
dedicated dataset and then is deployed to many herds. However, vari
ations between the training set and the test set may be large and unex
pected. Thus, each method has its advantages and shortcomings. 

The study’s protocol induced short-term discomfort, which dissi
pated in a short time, and was designed to temporarily impact the ani
mal’s welfare as reflected in transient, reversible behavioral changes. 
Overall, it was hypothesized that changes in sympathetic activity would 
occur in response to the noxious sensation inflicted by the application of 
capsaicin cream on dairy cows’ skin. This would be expressed in a rise in 
heart and breathing rates and a drop in the oxygen saturation level. The 
overarching goal was the development of a technique for the early 
detection of cow pain, which can lead to timely care. The experiments 
reported here contribute to establishing a methodology that defines 
reliable measurement, their time window, and a machine learning al
gorithm that analyses these signs to assess the noxious event. This 
method must be robust to the naturally occurring variations in farm 
animals’ physiological manifestations. 

2. Materials and methods 

This study was conducted at the Volcani Center’s Experimental Dairy 
Farm in Beit Dagan, Israel. The Volcani Center Animal Care Committee 
(approval numbers IL 774 /18 and IL 820/19) approved the protocols. 
Three experiments were conducted. Experiment 1 was aimed at estab
lishing capsaicin as a noxious model for bovines. It was hypothesized 
that topical capsaicin would elicit a noxious sensation on dairy cow skin, 
which would be reflected in immediate increased sympathetic activity; i. 
e., a rise in heart and breathing rates, and a drop in oxygen saturation 
level, among other physiological responses. Since there are no studies on 
the duration of capsaicin effects on bovine skin, Experiment 2 was 
designed to evaluate capsaicin’s impact on bovines 30 min after appli
cation. Physiological signs were collected in response to the application 
of the capsaicin vs. a neutral cream. Experiment 3 consisted of re
cordings of the immediate physiological responses and continuous 
behavioral data (number of steps, lying time, etc.) to the first as well as 
to repeated exposure to the noxious stimulus. The dataset acquired in 
these experiments was then used to provide a proof-of-concept that the 
automatic algorithm using these data could distinguish a healthy cow 
experiencing the noxious event from the neutral control condition. 
Throughout the experiments, blood samples were drawn. The blood 
analyses are beyond the scope of this article. 

2.1. Experiment 1 

2.1.1. Animals, housing and management 
The experiment was conducted in June 2018. Eleven healthy 

multiparous Israeli Holstein dairy cows that were not candidates for 
insemination with no clinical signs of any sort 14 days prior to the 
experiment were tested. The cows were housed together in a covered 
loose-housing pen with an adjacent continuous fenced outdoor yard. 
The cows could move freely between the two at all times. The feeding 
stations are aligned along the side of the open barn. Each cow was 
familiar with her individual station, which was controlled by an auto
matic RF recognition receiver. The cows are accustomed to being 
secured to their stations for up to an hour after milking during feeding. 
The cows’ routine was maintained throughout the experiments. Milking 
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took place three times a day (at 05:00 h, 13:00 h, and 20:00 h). DIM 
(days in milk) was not controlled for but averaged 204 DIM (range 
112–302) for 671 kg of BW (body weight), with standard deviations of 
67 and 85, respectively. The cows were fed a commercial TMR (total mix 
ratio) composed of 1.78 mega calories of NEL (net energy for lactation), 
16.5 % CP (crude protein), and 31.7 % crude NDF (neutral detergent 
fiber), and ad libitum access to water. 

2.1.2. Preparation 
A day before each individual cow’s test, a patch on the cow’s left side 

of the rump was tonsured. Core temperature was monitored to exclude 
the progression of inflammation or background disease. A bottom-type 
temperature logger (sampling rate 0.1 min-1, SL52T-A, Signatrol Ltd) 
attached to a plastic seeder holder with no hormones was inserted into 
place (Burdick et al., 2012; de Oliveira et al., 2019). The vaginal tem
perature was measured continuously until the device was removed, a 
day after the final noxious treatment was administered. 

2.1.3. Stimuli 
A noxious stimulus (i.e., noxious treatment) was induced with 10 % 

capsaicin (Affix Scientific©) mixed with a universally used ambiphilic 
base cream from Deutscher Arzneimittel-Codex, DAC (Vetmarket©, 
Israel). A measured ~5 g teaspoon was applied on the tonsured patch of 
the cow’s left rump. For control, the base cream was applied in the same 
manner (i.e., neutral treatment). 

2.1.4. Design 
Treatment was considered a fixed within-subject factor (noxious, 

control), and cow as a random factor. The cows were randomly divided 
into three time groups: after the morning (n = 4), noon (n = 4), and 
evening (n = 3) milking. On the experimental days (noxious treatment 
day and control treatment day), the cow’s daily routine was interrupted 
for an hour after milking. The time of treatment was kept constant for 
each individual cow. 

Since the research team’s presence during the experimental days was 
interpreted as a threat to the cows, regardless of the treatment, it was 
expected that the cows’ state of arousal and stress level would be 
affected. Specifically, when a threat is encountered, the state of arousal 
increases, and the cow’s focus is oriented away from the stimulation, 

thus suppressing the experience of pain (Adcock and Tucker, 2018). On 
the other hand, a painful event may reverberate, leading to increased 
arousal and a negative affective state (Ede et al., 2019). To overcome 
this problem, the order of treatments was kept fixed, and each individual 
cow served as its own control. Specifically, the cows were treated with 
neutral cream on day one and the noxious cream on day two. This design 
allowed the cows to become familiarized with the research team and the 
procedure during the neutral treatment before forming conditional 
episodic memory linked with the noxious stimulus. 

2.1.5. Experimental procedure 
After milking, all the cows were led back to the cowshed. The cows 

were then guided to their individual feeding stations. The participating 
cows were kept secured in their stations and thus stood in one place 
throughout the experimental procedure for up to an hour. The experi
mental procedure (see Fig. 1) began with base-level measures that 
included five minutes of continuous measurements of heart and 
breathing rates, and blood oxygen saturation (SpO2) (i.e., physiological 
metrics). The pulse rate and SpO2 were monitored with a pulse oximeter 
device attached to the lips of the cow’s vulva (1 Hz sample rate, s500 
Handheld Pulse Oximeter, SINNOR Instruments, Inc.) (Grubb and 
Anderson, 2017; Peter and Peter, 2002). Breathing rates were measured 
by counting flank movements for 15 s, every minute, for five minutes 
(Stewart et al., 2008). A blood sample was then collected by veni
puncture from the tail vessels. Immediately afterward, the treatment 
was applied. A measured teaspoon containing ~5 g of cream was evenly 
spread within the boundaries of a 10 × 10 cm stencil on the tonsured 
patch (see Fig. 1). Immediately after the treatment, for the next five 
minutes, the physiological metrics were measured for the second time 
(Treister et al., 2012). A second blood sample was retaken 30 min after 
treatment. Then, without delay, a vegetable-based oil was applied to the 
tonsured patch to remove the cream (Gleerup et al., 2015b). 

2.2. Experiment 2 

Since there are no data on the duration of the effect of capsaicin on 
bovine skin, Experiment 2 followed a similar protocol as Experiment 1 
with one difference. Specifically, a second physiological measurement, i. 
e., after the treatment, was obtained 30-minutes after the cream was 

Fig. 1. Timeline of a single experimental session. Cream was applied on a tonsured patch on the left or right side of the cow’s rump, using a 10 cm × 10 cm stencil.  
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applied. 

2.2.1. Animals, housing and management 
This experiment was conducted in June 2018. Seventeen healthy 

multiparous Israeli Holstein dairy cows that did not participate in 
Experiment 1, were not candidates for insemination and had no clinical 
signs of any sort 14 days prior to the experiment, were included in the 
study. They averaged 185 DIM (range 104–285) for 654 kg of BW, with 
standard deviations of 60 and 68 respectively. 

2.2.2. Preparation, stimuli, and design 
The preparation, stimuli, and design were identical to Experiment 1. 

The cows were randomly divided into three time groups, after the 
morning (n = 7), noon (n = 4), and evening (n = 4) milking. Two other 
cows were treated with the neutral treatment after the noon milking and 
noxious treatment after the evening milking, on the same day (n = 2). 

2.2.3. Experimental procedure 
The experimental protocol was the same as in Experiment 1 with one 

modification. The second time physiological metrics were measured (see 
Fig. 1), i.e., after the treatment, was 30 min after the cream was applied. 

2.3. Experiment 3 

The assessment of the effects of a noxious event on general physio
logical measurements as conducted in Experiments 1 and 2 was a pre
requisite to the development of a machine-learning-based system. A 
real-time on-farm pain assessment tool should be able to detect the 
first as well as repeating occurrences of mild pain. However, it remained 
unclear whether the physiological response to a recurring noxious event 
would be the same as the first event. To this end, Experiment 3 examined 
the physiological response to the first as well as to repeated exposure to 
the noxious stimulus in an expanded dataset. Each cow was exposed 
once to the neutral treatment and twice to the noxious treatment, which 
was applied once on the left and once on the right side of the cow’s 
rump. The three exposures took place on three different days. 

The cows’ daily activity patterns, lying time, lying bouts, number of 
steps, and rumination are indicators of their comfort and welfare 
(Piñeiro et al., 2018). As such, they can reinforce the physiological 
findings. Although the topical acute noxious stimulus was transient, the 
impact on the animal’s welfare might be reflected in behavioral changes 
hours after the challenge was completed, when the animal was free to 
move around between the loose-housing pen and outdoor yards. Thus, 
behavioral data were also collected from the farm’s domestic system 
database. 

2.3.1. Animals, housing and management 
The experiment took place in March 2019. Four cows that partici

pated in Experiment 1 and 18 other healthy multiparous Israeli Holstein 
dairy cows that were not candidates for insemination and had no clinical 
signs of any sort 14 days prior to the experiment were included in the 
study. They averaged 83 DIM (range 61–103) for 652 kg of BW, with 
standard deviations of 13 and 59, respectively. 

2.3.2. Preparation and stimuli 
The preparation and stimuli were the same as in Experiment 1. 

Because the noxious treatment was applied to both the left and the right 
sides of the cow’s rump, patches were tonsured on both sites on the 
rump. 

2.3.3. Design 
Each individual cow served as its own control. All the cows received 

the neutral treatment on day one, the noxious treatment on day two, and 
the second noxious treatment on day three, which was applied contra- 
laterally to the treatment’s location on the previous day. Experiment 3 
took place only in the mornings, after the 05:00 a.m. milking. 

2.3.4. Experimental procedure 
The experimental procedure was identical to Experiment 1. Behav

ioral data were collected from the farm’s domestic systems. Leg sensor 
tags (Pedometer Plus; S.A.E. Afikim) placed on the cows’ metatarsus 
accumulated the step count, lying bouts (number of recurring switches 
in position from lying to standing), and lying time (time in mins. spent 
lying down) every 15 min. The data were then entered into the farm’s 
management software (AfiFarm; S.A.E. Afikim). Rumination time (mi
nutes) was collected every two hours (HR-Tags, SCR Engineers Ltd., 
Hadarim, Netanya, Israel; Bar and Soloman, 2010). For the analysis, the 
behavioral counts were summed from the time the cow was released 
from the station, i.e., at the end of the experimental procedure, and for 
the next four hours. 

2.4. Statistical analyses 

For each cow, in each treatment condition (neutral, noxious), the 
arithmetic means for heart rate, reparation rate, and SpO2 were calcu
lated before treatment (i.e., base-level measures) and immediately after 
treatment. The arithmetic means for one hour of temperature recordings 
before treatment and one hour after treatment were calculated. The 
individual difference (ID) was obtained for each cow on each treatment 
by subtracting the before-treatment mean from the after-treatment 
mean. Heart rate, reparation rate, SpO2, and temperature IDs were 
then subjected to two-tailed paired sample t-tests with treatment 
(neutral, noxious) as a fixed within-subject factor in Experiments 1 and 
2, and a one-way ANOVA with treatment (neutral, noxious, noxious 
repeat) as the fixed within-subject factor in Experiment 3, and the cow as 
a random factor. For each cow in Experiment 3, rumination, the number 
of steps, lying time, and lying bouts accumulated over four hours from 
the offset of the experimental session were subjected to a one-way 
ANOVA with treatment (neutral, noxious, noxious repeat) as the 
within-subject factor, and the cow as a random factor. Since the 
experimental design was within-subject, Mauchly’s (1940) test for 
sphericity was conducted. The Greenhouse-Geisser correction was 
applied when sphericity assumptions were not met. See Fig. 2 and 
Table 1 for complete statistics. 

3. Results 

3.1. Experiment 1 

The cows’ standing movements (tail flicks, thumps, pelvic move
ments) led to occasional signal failures. Of the SpO2 recordings, 9.1 % 
were lower than 85 %, which was not clinically viable given the cows’ 
clinical condition, and thus were omitted from the dataset. The results 
indicated an immediate increase in heart rate of 16.4 beats per minute 
[BPM] after the noxious treatment but not after the neutral treatment 
(mean ID = 1.16 BPM with t(10) = − 4.28, p < 0.001). Similarly, the 
breathing rate increased by an average of 7.38 breaths/min immediately 
after the noxious treatment, but not after the neutral treatment (mean ID 
= 1.36 breaths/min with t(10) = − 2.58, p < 0.02). The cows’ temper
ature rose after the neutral treatment by a mean ID of 0.19 C, but not 
after the noxious treatment (t(10) = − 2.93, p < 0.014). Treatment had 
no significant effect on SpO2 (p = ns). 

3.2. Experiment 2 

One cow (no. 3650) moved restlessly following the noxious treat
ment; breathing rate readings were unavailable. Four cows’ heart rate 
and SpO2 data files were lost (no. 3637, no. 3690, no. 3701, no. 3730), 
and vaginal loggers were misplaced for four cows (no. 3626, no. 3637, 
no. 3701, no. 3603). Of the SpO2 recordings, 5 % were below 85 % and 
thus were omitted from the dataset. The results showed that 30 min after 
the noxious treatment, heart rate was still elevated by an average of 6.72 
BPM but was not significantly different from the smaller rise of 1.49 
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BPM after the neutral treatment (t(12) = − 2.0, p = 0.068). A similar rise 
in breathing rate was observed 30 min after both treatments (neutral: 
mean ID = 11.37 breaths/min; noxious: mean ID = 15.79 breaths/min 
with t(15) = − 1.61, p = 0.12). SpO2 decreased 30 min after the noxious 
treatment (mean ID = -1.23 %) but not in the neutral treatment (mean 
ID = 0.27 % with t(12) = 2.20, p < 0.04). Treatment had no significant 
effect on temperature (p = ns). 

Overall, in Experiments 1 and 2, there was an immediate rise in heart 
and breathing rates after the cows were exposed to the short-lasting 
noxious topical stimulus, whereas the decrease in SpO2 was only 
observed 30 min after the challenge. The heart rate trended down to 
baseline 30 min after the noxious stimulus was applied. Thirty minutes 
after the neutral and noxious challenges, the breathing rate increased, 
regardless of treatment. As expected, SpO2 decreased after the noxious 
treatment, but only after a lapse of 30 min. 

3.3. Experiment 3 

Heart rate and SpO2 noxious (cows no. 3578, no. 3798), and a 
noxious-repeat treatment data file was lost (cow no. 3388). Vaginal 
loggers were misplaced during noxious treatment (cows no. 3683, no. 
3821) and noxious-repeat (no. 3683, no. 3821, no. 3597, no. 3689, no. 
3814) treatments. Of the SpO2 recordings, 9.3 % (<85 %) were omitted 
from the dataset. Sphericity assumptions were not met for heart rate and 
breathing rate (Mauchly, 1940), for which the Greenhouse and Geisser 
(1959) correction was applied. Heart rate increased by 7.02 BPM after 
the noxious treatment, and 7.99 BPM after the noxious repeat treatment, 
but not after the neutral treatment (mean ID = − 1.48 BPM with F(2, 36) 
= 9.11, p < 0.002). Similarly, the breathing rate increased by an average 
of 4.07 breaths/min after the noxious treatment, and 5.16 breaths/min 
after the noxious repeat, but only by 1.07 breaths/min after the neutral 
treatment (F(2,42)=5.57, p < 0.015). Simple comparisons revealed that 
the heart and breathing rate differences between the noxious and 

Fig. 2. Experiments 1, 2, 3: Mean individual differences (ID) in heart rate, breathing rate, SpO2, and temperature by treatment (neutral, noxious and noxious-repeat). 
Experiment 3: Rumination time (minutes), no. of steps, no. of lying bouts and lying time (minutes) summed four hours after treatment. Error bars denote confidences 
intervals (CI). 
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noxious repeat treatments were non-significant (p = n.s. for both), thus 
suggesting that the noxious and noxious repeat treatments could not be 
differentiated based on these measurements. The effect of treatment on 
SpO2 and temperature did not reach significance (F(2, 39) < 1, and F(2, 
32) = 2.55, p = 0.09, respectively). Thus, Experiment 3 successfully 
replicated the results of Experiment 1, suggesting that both heart and 
breathing rates increased immediately after the noxious stimulation and 
the repetition of the noxious stimulation. Sphericity assumptions were 
not met for lying time, for which the Greenhouse-Geisser correction was 
applied. A significant difference was found for rumination time, with a 
mean rumination time of 123 min after the neutral treatment, 108 min 
after noxious treatment, and 84 min after noxious repeat treatment (F(2, 
42) = 5.347, p < 0.008). More lying bouts were observed after the 
noxious treatment (mean = 1.95) than the neutral (mean = 1.4) or 
noxious repeat (mean = 1.31) treatments (F(2,42) = 3.33, p = 0.045). 
The effect of treatment on the step count and lying time did not reach 
significance (F(2, 42) < 1, and F(2,42) = 2.11, p = 0.14, respectively). 

4. Supervised machine-learning classification of Experiments 
1–3 dataset 

Machine learning is a well-established branch of computer analysis 
techniques used to classify large numbers of observation-based patterns 
in the input data. Supervised machines (i.e., algorithms) are trained on a 
set of observations belonging to known classes, i.e., the training set. The 
output of this training process is a classifier. A key issue in classification 
is the right choice of the training set, which should include phenomena 
that are expected to be found in the validation set of unlabeled obser
vations. Random forest is a supervised multi-class classifier based on a 
collection of decision trees (Breiman, 2001; Breiman et al., 1984). The 
random forest classifier (RFC) uses voting between an ensemble of de
cision trees (hence "random forest"). Ensemble machine learning tech
niques consist of a combination of classifiers {f}. Once the set {f} is 
trained, each new data point is assigned a label with respect to all the 
outputs obtained from the set {f} by taking a vote of their predictions. 
Potentially, given their diversity, ensembles may be more accurate than 
an individual classifier (Hansen and Salamon, 1990) with a lower like
lihood of overfitting (Belgiu and Drăgu, 2016; Guan et al., 2013). 

During the RFC’s training stage, a random subset of the training set 
observations is chosen and is left unused (out-of-bag observations). The 
out-of-bag-observations are then employed during the derivation of the 
classifier to assess its performance and the effect of parameters, such as 
the number of trees, on the classification error. Similarly, each feature’s 
contribution (e.g., its importance) to classification accuracy can be 

evaluated (Friedman, 2001; Richter et al., 2020). This can simplify the 
measurement system if it is set to solely measure the system’s features 
deemed important. The features that were found to be potentially 
important can shed light on the phenomena under investigation 
(Huynh-Thu et al., 2012). 

4.1. Prior assumptions 

The results of Experiments 1, 2, and 3 suggested that the effects of the 
topical noxious stimulation on the sympathetic system were short- 
lasting. This assumption was tested by omitting observations from 
Experiment 2 during the classification and comparing the obtained 
classification accuracy to the case where the results from all three ex
periments were used. The first and repeated capsaicin applications 
resulted in an indistinguishable short-lived effect; hence, the noxious 
and repeated noxious events were pooled together in the classification 
process. 

4.2. Data pre-processing 

Similar to the experimental procedures described above, the obser
vations, O, acquired in the experiments, were used to develop the clas
sification process. Let oc

j(t) ∈ O be a specific physical measurement, j, 
acquired from cow c at time t. Then, oc

j(t = 0) ∈ O is the measurement 
taken at t = 0; i.e., before treatment, and oc

j(t > 0) ∈ O is the value of 
that feature after treatment. To focus on the changes putatively caused 
by the treatment, oc

j(t) ∈ O was modified, as follows (1): 

ôc
j(t) =

oc
j(t) − oc

j(t = 0)
oc

j(t = 0)
(1) 

The resulting normalized observation set, ôc j , was then used for the 
classification. Each feature, j, in the reduced dataset corresponded to a 
change from the baseline value of that feature normalized to the baseline 
value. The results reported here were obtained using the data available 
in all the experiments. These data were the median value and standard 
deviation of the breathing rate, the median and standard deviation of the 
pulse rate, and the median of SpO2; correlations were equal to or less 
than zero and were not correlated. The resulting database contained 86 
observations for 29 individual cows; 11 cows participated in Experiment 
1, four of which, along with additional 18 other cows, participated in 
Experiment 3. 

4.3. Classification accuracy assessment 

Distinguishing between a healthy cow experiencing a noxious event 
from the neutral control condition is defined as classification, where the 
two classes are neutral and noxious. The experimental protocol was 
designed to inflict uniform noxious sensation. The classification was 
performed using an algorithm that labeled an event according to its 
class. Several metrics were used to assess classification performance. A 
convenient way to examine the classifier’s performance is to examine a 
confusion matrix in which the diagonal elements are the number (or 
percentage) of accurate classifications (TP and TN), and the off-diagonal 
elements are FP and FN. The following numerical criteria can be 
deduced from the confusion matrix. The first is the positive predictive 
value (PPV), which is the ratio of the number of observations that were 
correctly classified as positive (true positive, TP) to all the positively 
classified observations, the sum of the TP and the false positives (FP), as 
follows (2): 

PPV =
TP

TP + FP
(2) 

Similarly, the negative predictive value (NPV) is expressed as (3): 

NPV =
TN

TN + FN
(3) 

Table 1 
Experiments 1, 2, 3: Statistical analysis (t-test or ANOVA) of mean individual 
differences (ID) in heart rate, breathing rate, SpO2, and temperature. Experiment 
3: ANOVA of rumination time (minutes), no. of steps, no. of lying bouts and lying 
time (minutes) summed four hours after treatment.   

Experiment df t/F-test p 

Heart rate [BPM] Exp. 1 10 t = − 4.28 0.001  
Exp. 2 12 t = − 2.00 0.068  
Exp. 3 2, 36 F = 9.11 0.002 

Breathing rate (per min.) Exp. 1 10 t = − 2.58 0.02  
Exp. 2 15 t = − 1.61 0.12  
Exp. 3 2, 42 F = 5.57 0.015 

SpO2 (%) Exp. 1 10 t = − 0.41 0.68  
Exp. 2 12 t = − 2.20 0.04  
Exp. 3 2, 39 F = 0.05 0.95 

Temperature (C) Exp. 1 10 t = − 2.93 0.014  
Exp. 2 12 t = − 0.50 0.62  
Exp. 3 232 F = 2.55 0.09 

Rumination (min.) 

Exp. 3 

2, 42 F = 5.347 0.008 
Steps 2, 42 F = 0.692 0.5 
Lying time (min.)  F = 2.118 0.14 
Lying bouts 2, 42 F = 3.33 0.045  
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where the TN is the number of true negative classifications, and FN is the 
number of false-negative classifications. The total accuracy is given in 
(4): 

Accuracy =
TN + TP

TN + TP + FP + FN
(4) 

The variability of the cows’ response to the noxious stimulus was 
high, making the machine learning method sensitive to selecting the 
training set since each selection could result in different classification 
performance. Hence, 4000 training and classification cycles were con
ducted; in each cycle, the training set was randomly selected from the set 

of observations, 
{

ôc
j(t)

}
. The mean classification performance, stan

dard deviations, and the distribution of PPV, NPV, and accuracy were 
calculated. The classification performance of the RFC was compared to 
nine other classifiers, including support vector machine (SVM) classi
fiers with different kernel functions (Suykens and Vandewalle, 1999), 
decision trees (Steensels et al., 2016), linear and quadratic discriminant 
(Singh et al., 2004), KNN (Hindman, 2015; Islam et al., 2008) and Naïve 
Bayes (Islam et al., 2008). 

4.4. Learning herd and unlearning herd classification approaches 

The random forest classification tested two different methodologies: 
the learning herd and the unlearning herd. In the learning herd (LH) 
classification approach, observations from a specific herd were collected 
and labeled by an expert. The resulting dataset was used to train a RFC. 
A new, unlabeled observation collected from a cow that was a member 
of the same herd was then classified using the obtained RFC. 

The unlearning herd (UNLH) classification model was trained on a set 

of labeled observations from one or more herds. The classifier was then 
used to classify noxious events from cows that were members of another 
herd that was not involved in the training process. In the current stage of 
this project, it was impractical to perform the experiments on several 
farms; therefore, this approach was simulated by using all the observa
tions from one specific cow as the test set. The remainder of the obser
vations were used as the training set that excluded any observations of 
the test cow. The UNLH method is very advantageous from a commercial 
point of view; once a database of observations obtained from a specific 
herd has been acquired, the RFC can be calculated in advance and then 
deployed as an operating system in any number of herds or farms. 
However, variations in the cows’ response to noxious events may affect 
accuracy. Here, the effects of specific responses were explored by 
repeating the UNLH process several times. Each time, all of the obser
vations of one cow were used as the test set, and the rest of the obser
vations were used as the training set. Comparing the accuracies obtained 
from different cows was considered an indication of the extent of vari
ation in the cows’ responses to noxious events. 

4.5. Classification results 

4.5.1. The learning herd classification approach 
Classification performance was explored by repeating the computa

tion more than 4000 times. In each repetition, a new training set was 
randomly selected, and the mean classification performance (NPV, PPV, 
and accuracy) was computed using the database from Experiments 1 and 
3 that employed an identical protocol. Fig. 3 presents the distribution of 
the performance, the means, and the standard deviations for the clas
sification performance, with NPV = 0.84 ± 0.14,PPV = 0.79 ± 0.16 and 
accuracy = 0.82 ± 0.09. Next, the performance was calculated again, 

Fig. 3. Distribution of classification performance metrics for the LH approach. Top: NPV, PPV. Bottom: Accuracy. Four thousand cycles were run using the database 
obtained in Experiments 1 and 3. 150 trees were used to derive the classifier. 
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including the dataset from Experiment 2, in which post-treatment 
measurements were delayed by 30 min, resulting in NPV = 0.79 ± 0.12,
PPV = 0.75 ± 0.13 and accuracy = 0.77 ± 0.08. The drop in perfor
mance obtained when including Experiment 2 can be attributed to the 
smaller observed changes in the cows’ physiological markers in Exper
iment 2 as compared to Experiments 1 and 3 (see Fig. 2 and Table 1). 
These findings suggest that the noxious effects elicited by capsaicin 
cream are short-lived. 

The classification performance of the RFC was compared to support 
vector machine (SVM) classifiers with different kernel functions, deci
sion trees, linear and quadratic discriminant, K-nearest neighbor (KNN), 
and Naïve Bayes. The findings, which indicated that the RFC was 8 %–20 
% more accurate than all the other classifiers (see Table 1 in the sup
plementary material), are consistent with Fodeh et al. (2019), who 
successfully implemented RFC for pain classification in humans. 

4.5.2. The unlearning herd classification approach 

The unlearning herd (UNLH) method was tested using 
{

ôc j
}

, that 

contained observations from 29 cows. Accordingly, the method was run 
29 times; in each run, all of the observations from a specific cow, C, (i.e., 

the test cow) were pulled out of 
{

ôc j
}

, resulting in 
{{

ôc j
}\{

̂oj
c=C

}}

. The RFC, which was computed with the set 
{{

ôc j
}\{

ôc=C
j
}}

, was applied to classify the observations of the test 

cow, 
{

ôc=C
j
}

. To verify that the result was unaffected by the random 

processes involved in the derivation of the RFC (for example the random 
selection of the out-of-bag observations), 100 classification models were 

calculated for each 
{

ôc=C
j
}

. 

The total unlearning herd accuracy was 86 %±18 %. Fig. 4 presents 

the resulting confusion matrices obtained using this method for each 
cow. It shows that the classification accuracy varied across cows. For 
example, the classification accuracy of cows 3743 and 3798 was 1, 
whereas the classifications for cows 3808 and 3821 were inaccurate. 
This suggests that each cow may have had a specific sensitivity to 
capsaicin, which resulted in different manifestations of physiological 
signs after being treated with the cream. The specific response to 
capsaicin may potentially indicate that, in general, cows may react in an 
idiosyncratic fashion to noxious stimuli. These variations may be chal
lenging for classification, especially in real cases in which classifier 
training is based on different herds in different conditions. The impli
cations are discussed below. 

5. Discussion 

Valid pain assessment is a prerequisite for ensuring the proper health 
and welfare of dairy cows. To contribute to this end, this study had two 
main goals. The first was to confirm that physiological parameters are 
informative of a noxious event and can be measured on-site on the farm. 
The second was to provide proof-of-concept that an automatic algorithm 
can differentiate healthy cows suffering from mild somatic pain from 
those that are not. For this purpose, a short-lasting noxious or a neutral 
topical stimulus was applied on consecutive days to explore the physi
ological and indirect behavioral indices of mild somatic pain. Heart and 
breathing rates were elevated soon after the noxious treatment but not 
for the neutral cream. SpO2 and vaginal temperature were inconclusive. 
The behavioral metrics demonstrated changes in daily activity patterns 
consecutive to the noxious challenge, including a decrease in rumination 
time and an increase in lying bouts, suggesting that the cows experi
enced stress or discomfort beyond the duration of the noxious manipu
lation (Leslie and Petersson-Wolfe, 2012; Piñeiro et al., 2018; Siivonen 
et al., 2011). 

Although the precise distinction between pain and distress, which 
undermine the animal’s welfare, is difficult to establish, an effort 

Fig. 4. The confusion matrices of 29 cows using the UNLH approach, f = 0.8, 100 cycles for each cow. Each confusion matrix is associated with an individual cow 

(ID, in teal). For each cow, the confusion matrix accuracy (in black) were obtained by excluding all the observations of an individual cow from ̂oj
c . The classifier was 

then computed using the remaining observations, excluding the individual cow. Classifier performance was tested on the observations for the individual cow. Y-axis 
denotes the true labels, and the X-axis indicates the predicted labels (N = neutral treatment, P = noxious treatment) (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.). 
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towards their detection, integrated with multiple inputs, may expedite 
disease detection (Maltz, 2020). If correctly identified, the pain and 
distress associated with a range of clinical states could facilitate clinical 
treatment and improve animal welfare in dairy cows. Pain assessment in 
animals is indirect in that it relies on the expert interpretation of 
behavioral, physiological, and clinical responses to pain. Signs of mild 
pain are easily masked, making them more difficult to identify than 
acute management events. 

Morton, Griffiths, and others (Leslie and Petersson-Wolfe, 2012; 
Morton and Griffiths, 1985) have argued that clinical metrics such as 
heart rate, pulse quality, peripheral circulation, and temperature should 
be included in efforts to improve early animal pain assessment. Lay and 
colleagues (Lay et al., 1992) reported a significant increase in heart rate 
after a freeze and hot iron banding. Increased heart rate and breathing 
rate were measured up to 48 h and 6 h, respectively, in response to 
induced oligofructose induced-lameness in dairy heifers (Bustamante 
et al., 2015). Kemp and colleagues (Kemp et al., 2008) associated the 
severity of mastitis in dairy cows with an increase in rectal temperatures 
and heart and breathing rates. In this work, there was a rise in heart and 
breathing rates soon after the cows were exposed to the short-lasting 
noxious topical stimulus. Heart rate slowed down 30 min after the 
noxious stimulus was applied. The breathing rate further increased 30 
min after treatment in both the noxious and neutral conditions (Exper
iment 2). The delayed rise in the neutral breathing rate may be due to 
the cows’ cumulative restlessness, since they were kept back at their 
feeding stations, and were waiting to be released to their group. In 
similar studies, Di Giminiani and colleagues applied capsaicin on a 4 cm2 

area on the pig’s flank region, whereas Gleerup and colleagues applied 
capsaicin on a 100 cm2 area on the horse’s hind limb or shoulder. 
Gleerup and colleagues reported no differences in heart and breathing 
rates before and 20 min after the noxious stimulus was applied. How
ever, they noted that soon after the noxious stimulus initiation, the heart 
rate increased for a few minutes before returning to baseline. The 
findings here are consistent with Gleerup and colleagues’ results and 
underscore the importance of heart and breathing rates as timely clinical 
metrics of transient topical pain. Moreover, significant behavioral 
changes were observed in horses but not in pigs. Perception of cutaneous 
sensation depends greatly on stimulus size, also known as spatial sum
mation, which defines the topographical variation of the receptors in the 
area (Green and Zaharchuk, 2001). It is likely that the summation area 
in the Gleerup’s study, which was 25 times larger than Di Giminaiani’s, 
played a crucial role in the robustness of the stimuli. 

Pulse oximetry is an essential monitoring tool in human and animal 
medicine and anesthesia; however, it is rarely implemented in farm 
animals (Kanz et al., 2018). It was hypothesized that, similar to humans 
(Worley et al., 2012), oxygen saturation would decrease after noxious 
stimulation. However, the findings failed to support this hypothesis. 
Carrying biotelemetry sensors can have negative impacts on the indi
vidual animal wearing the tag (Paci et al., 2019). It is possible that the 
application of the pulse-oximeter device, which was attached to the lips 
of the cow’s vulva, produced a concurrent noxious stimulation, which 
diminished the perceived intensity of the topical capsaicin applied to the 
cow’s rump (Adcock and Tucker, 2018). One way of overcoming these 
limitations would be to use a dedicated animal-center designed medical 
device, in which factors such as shape, materials, and position are 
considered to minimize the distress and discomfort of the animal (Paci 
et al., 2019). 

The metrics for the cardiovascular and respiratory systems have 
limitations because they may be indicative not only of pain but of 
another negative (e.g., fear-related) or positive (e.g., sexual stimulation) 
state of high arousal (Ede et al., 2019). Ede and colleagues criticized the 
use of physiological and behavioral signs and argued they might be 
valuable for estimating whether the cow’s arousal is high or low but are 
of less value in concluding as to the event’s valence. Here, this possible 
shortcoming was avoided by ensuring that the only difference between 
treatments was the ointment content. 

The Volcani Center’s Dairy Farm is an experimental farm. Cows are 
familiar with their feeding stations and are accustomed to being secured 
with headgate for up to an hour after milking during feeding. However, 
two aspects of the study protocol should be noted. First, the time the 
cows were secured may have prevented them from moving freely during 
the treatment. Therefore, the behavioral measures were only obtained 
after the cows were released back with their group. Second, although the 
cows are accustomed to the headgate, it is reasonable that the whole 
procedure was stressful and directly affected the physiological mea
surements. These conditions induced a similar baseline level of 
discomfort in both the neutral and noxious conditions. Hence, the sig
nificant differences in the physiological parameters are likely to be the 
capsaicin challenge’s outcome. 

The treatment sequence was fixed, such that the neutral treatment 
was administered on day one and the noxious cream on day two. The 
treatment sequence allowed the cows to become familiarized with the 
research team and procedure during the neutral treatment before 
forming conditional episodic memory linked with the noxious stimulus. 
Similar reasoning prompted Gleerup and colleagues (Gleerup et al., 
2015b) to subject all their horses to the same treatment sequence, i.e., 
the first two days constituted the control treatment, which was followed 
by four days of noxious treatment. However, this design’s weakness is 
that the order effect could not be completely ruled out in accounting for 
the observed differences. However, since the results here were in line 
with the expected effects of noxious treatment, it is less likely that the 
cows habituated to the testing procedure itself. 

Changes in the animal’s behavior may indicate an attempt on the 
part of the animal to avoid an unpleasant experience, protect parts or all 
of its body, minimize pain, and favor healing (Aubert, 1999; Molony and 
Kent, 1997). For instance, cows infected with clinical metritis and 
lameness tended to be less active and spend more time lying than 
non-infected cows (Piñeiro et al., 2018). Conversely, mastitis infected 
cows stood longer (Cyples et al., 2012; Siivonen et al., 2011), exhibited 
increased postural changes to minimize the discomfort experienced 
when lying down (de Boyer des Roches et al., 2017) and decreased food 
intake (Sepulveda-Varas et al., 2016). A decrease in ruminal cycles was 
also recorded following oligofructose induced-lameness (Bustamante 
et al., 2015). These behavioral and digestive patterns are pain indicators 
in the study of visceral and deep pain. In the present study, to confirm 
that the somatic noxious stimulus was transient, the cows’ daily activity 
pattern after the experimental treatment was monitored and examined. 
In line with expectations, the noxious topical stimuli did not appear to 
affect lying time or the number of steps; however, lying bouts increased 
after the first exposure to the noxious stimulus, but not the second. 

Interestingly, rumination time decreased after the first noxious 
treatment and even more after the second treatment. It is possible that 
the acute phase of the topical treatment diminished in minutes but that 
the general discomfort lasted beyond the experimental session. Future 
work should attempt to improve further the sensitivity and selectivity of 
dairy cow pain’s indirect metrics. The magnitude of changes in the an
imal’s behavioral activity patterns and physiological signs, rate of 
appearance, and decline may be indicative of the cow’s condition and 
are probably more specific than measurement at a single point in time. 

This work aimed at providing proof-of-concept that an automatic 
algorithm can distinguish between healthy cows suffering from mild 
somatic pain and those that are not. A learning herd (LH) and an 
unlearning herd (UNLH) approach were tested. The two methods 
differed in the population that was used to derive the classifier. In the LH 
approach, a classifier was derived from labeled observations of the herd. 
The LH classifier was used to classify new unlabeled observations of 
cows from the same herd it was trained on. This approach was expected 
to be highly accurate since each cow’s characteristics were accounted 
for when the classifier was run. As anticipated, a mean classification 
accuracy of 82 % was achieved using this technique. It is reasonable to 
assume that performance could be further improved with a broader 
dataset. However, the LH technique requires having an expert label the 
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training set observations each time the system is implemented on a new 
farm or a new herd. This problem is avoided when applying the UNLH 
approach. 

The UNLH approach is broadly applicable since the classifier is 
trained once and can be deployed on numerous farms. The UNLH 
approach was simulated in this work by excluding the observations of a 
single cow, as though it belonged to a different herd. The UNLH ach
ieved an average accuracy of 86 %±18 %. Noxious detection of about 25 
% of the cows results in a classification accuracy below 70 %. This may 
be a result of the cows’ specific response to the noxious stimulus or pain. 
The cows’ current age, as well as their neonatal pain and experiences of 
stress, may account for some of the inter-individual variability (Adcock 
and Tucker, 2018). Real-life applications of the UNLH method might 
involve greater variation between the training set and the test sets 
(Shalev-Shwartz and Ben-David, 2013), resulting in lower accuracy than 
seen in the simulated case reported here. A straightforward step to 
improve accuracy would be to generate a larger training set from several 
farms. Another alternative would be to use the transfer learning tech
nique (Daumé III, 2010; Segev et al., 2017; Tan et al., 2018), in which a 
classifier is computed from a large set of observations. The resulting 
classifier is expected to be accurate in the source domain but less ac
curate in the target domain. The accuracy is then improved by refining 
the classifier using a relatively small set of labeled observations obtained 
from the target domain. This type of fine-tuning might be cost-effective. 

6. Conclusion 

Acute pain related to management procedures (e.g., castration and 
disbudding) or controlled and spontaneous pathogenic infections are 
manifested clearly on both the behavioral and physiological levels. The 
present work contributes to a better understanding of the signs of mild 
pain by suggesting an algorithm that can detect covert noxious events 
that may be less noticeable due to the cow’s stoic nature. In this work, 
the mild pain model involved the topical application of capsaicin cream 
that elicited a short-term noxious event. Cardiovascular and respiratory 
changes were observed immediately after the stimulus was applied, 
along with changes in the cows’ daily activity patterns. However, since 
none of these changes by themselves was event-specific, a systematic 
collection of on-farm event-related data is imperative for improved 
specificity. This work provides a proof-of-concept that an automatic 
algorithm has the potential to distinguish cows suffering from a noxious 
event that might go unnoticed from those who are not. Future work 
should involve finding improved techniques that will allow for contin
uous measurements over long durations, adding the time domain to the 
diagnostic process. This will enable researchers to accurately monitor 
cows’ responses to temporally defined events and explore deviations 
from the norm. 
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