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Abstract

Air pollution interpolation is crucial for civil management: it is used to transform limited
sensor data into comprehensive pollution maps. Various methods, including determinis-
tic, geostatistical, and Machine Learning (ML)-based techniques have been utilized for this
purpose. Deterministic methods rely on mathematical rules for estimation, whereas geo-
statistical techniques are based on spatial correlations. ML leverages historical data for
predictions. Each method has limitations: deterministic methods do not adequately model
environmental complexity, geostatistical methods struggle with small-scale areas, and ML
depends heavily on data availability. On the other hand, air pollution simulators, which are
driven by physicochemical dispersion models, capture intricate pollution dispersion patterns
but are unsuitable for real-time interpolation. However, recent advancements in ML may
offer potential solutions by integrating simulation data with ML methodologies to respond
to interpolation needs.

This study introduces an air pollution interpolation approach combining simulated air-
dispersion patterns through an educated machine that includes machine learning and envi-
ronmental modeling that considers boundaries, pollution sources, obstacles, wind dynamics,
and topography. Specifically, we present a combined ML-based linear regression model de-
signed to infer dense concentration maps from a sensor array using state-of-the-art simula-
tion methods. We dub this the Ridiculously Simple data-driven air pollution Interpolation
Method (RSIM). The RSIM method was evaluated on both synthetic and real-life-based
simulation models. The synthetic scenarios included an industrial area with point pollution
sources and an urban road surrounded by buildings simulating traffic-related pollution. The
real-world environment consisted of sensor data and simulations from Antwerp, Belgium.
The results indicate that this method outperforms standard techniques for reconstructing
dense pollution maps from sparse sensing, and demonstrates significant promise for other
real-world applications.

∗Corresponding Author: B. Fishbain - fishbain@technion.ac.il
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1. Introduction

Air pollution presents significant health risks that include respiratory diseases, cardiovas-
cular ailments, and premature mortality. As an environmental hazard, it is related to acid
rain and global warming, which adversely affect ecosystems and biodiversity (Molina and
Molina, 2004; Huttunen et al., 2012; Zhang et al., 2019). The first line of defense to air
pollution is air quality monitoring. However, monitoring is inherently spatially constrained
(Moltchanov et al., 2015; Castell et al., 2017). Interpolation methods are generally employed
to address these spatial limitations. These methods utilize sparse sensor data to generate
dense pollution maps. The complexity of interpolation increases in areas where pollution
levels fluctuate due to factors such as traffic density, industrial emissions, airflow boundaries,
and topography.

Broadly speaking, interpolation methods for air pollution can be classified into mathe-
matical, physical, geo-statistical, and Machine Learning (ML) models. Mathematical meth-
ods assume some smoothness or variation constraints. Physical methods build on Chemical
Transport Models (CTMs) that apply predefined rules to estimate pollutant levels in loca-
tions with no sensor (Terrenoire et al., 2015; Petetin et al., 2016; Menut et al., 2013; Deligiorgi
et al., 2011; Nebenzal and Fishbain, 2018; Nebenzal et al., 2020; Oettl, 2015). Geo-statistical
methods account for the spatial correlation of pollutant levels across different locations using
statistical techniques to model spatial variations and estimate levels in areas without sensors
(Chang, 2022; Berman et al., 2019; Wu et al., 2018). Machine Learning (ML) methods lever-
age algorithms that are trained on existing data and use them to estimate pollutant levels
in areas without measurements (Zhou et al., 2018; Hu et al., 2017; Ordieres et al., 2005).

Although they have been studied extensively, all these air pollution interpolation methods
suffer from inherent limitations. CTM methods assume some constraints on the observations,
such as the smoothness of the pollution field (Holmes and Morawska, 2006). To account for
some of these limitations, interpolation methods based on locating the pollution sources have
been suggested (Nebenzal and Fishbain, 2017; Nebenzal et al., 2020). In these methods, an
inverse CTM transform, inspired by the Hough transform (Ballard, 1981), finds the source
locations. Then, once these sources have been located, the same CTM is used to infer the
entire dense pollution map. All CTM-based models are accurate in simple environments
that contain no obstacles such as buildings, and in situations where the source configuration
is straightforward, such as a set of one or more point sources (i.e., factory) or a few line
sources (i.e., roads). By contrast, CTMs fall short in complex environments with non-trivial
emission patterns. Geo-statistical methods are excellent for large-scale coarse estimation,
but they fail to account for the variability of air pollution levels in small neighborhoods
(Terrenoire et al., 2015).The main drawback of ML methods is their need for large amounts
of data that must represent all possible states of the observed system (Nogueira et al., 2017).
This makes data availability a crucial element that often precludes the use of ML methods,
thus making it hard to assess the accuracy of these methods in real-world environments.

This paper presents a Ridiculously Simple data driven air pollution Interpolation Method
(RSIM) educated machine approach (Kendler et al., 2022; Geltman et al., 2024) to overcome
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these limitations that works by integrating ML algorithms with a Digital Twin (DT) that
emulates the observed environment. The integration of ML and DT alleviates the need for
large datasets, reduces the model’s training time as compared to classical ML methodologies,
and allows for simpler neural network architectures. In a DT, a virtual representation of a
system is modeled for both the experiments and the analysis (Thelen et al., 2022). DTs have
been used in various fields and industrial sectors including civil and environmental engineer-
ing (Todorov and Dimov, 2023). Running simulations on an environment’s digital twin can
compensate for the lack of available data because the interpolation is based on air pollution
patterns generated by the DT. Once the DT generates simulated data, a model is trained
to reconstruct the complete, dense pollution map from a set of sparse samples extracted
from the twin’s output. These sparse samples correspond to sensor measurements in the
real world. We demonstrate the applicability of this method in two synthetic and one real-
life environment. The synthetic environments were generated by GRAMM GRAL software
for air pollution and wind simulations (GRAL, 2024). The real-world application used real
sensor data and dense simulated air pollution maps of varying conditions in Antwerp, Bel-
gium that took hourly reported wind patterns, pollutant emissions and weather conditions
into consideration. The reconstructed pollution maps were better quality than several other
interpolation methods. The generated dense maps were also subjected to a Singular Value
Decomposition (SVD) of the weights matrix, which breaks down the pollution maps into an
orthogonal basis of pollution patterns. We examine the relationship between the number of
sensors, the magnitude of the sensing noise, and the overall performance of the method. The
results of the real-world setting show promising potential for applications.

2. Methods

2.1. Notation
The interpolation was cast as a signal reconstruction problem. The goal was to reconstruct
the entire signal over Ω, from a set of sparse measurements, where all the measurements
were considered to be the uncorrupted signal and all the missing data were the samples to
be reconstructed. This was done by learning the dependencies between variables as they
appeared in the dispersion models.

Let Ω be the region of interest and F be a set of scalar fields over Ω:

∀f ∈ F ; f : Ω → R, (1)

and let Ωs ⊂ Ω be a set of points in Ω, where sensors are located. The total number of
sensors is denoted as s = |Ωs|. The encoding function e(f) : F → Rs takes a pollution map
and returns a vector z⃗ of sensor readings.

∀ω ∈ Ωs; zω = e(f(ω)) (2)

The encoder e(f) describes a process of sensing air pollution via a sensor array. To enable
proper representation of the actual sensor’s mode of operation, e(f(ωi)) takes the value fωi

,
adds a Gaussian noise and the final number is rounded off. These represent the sensing noise
and accuracy:

∀ω ∈ Ωs zω = e(f(ω)) = round[f(ω) · (1 + ηω)]; ηω ∼ N (0, ϵ2) (3)
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where ηω is the sensor’s additive white Gaussian noise at ω ∈ Ω with a standard deviation
of ϵ. The number of sensors (s) and their precision as described by a noise factor (ϵ) could
vary. The sensitivity analysis for both of these parameters is described in the results section.

Using this notation, the goal is to find a reconstruction function (decoder), d, that esti-
mates the pollution map f̂ :

d : Rs → F ; f̂ = d(z⃗) = d
(
e(f)

)
(4)

Figure 1 visualizes the concept of equation (4). The encoder in this scheme is the sensor
measurements, whereas the encoder is the process of creating the desired output; i.e., an
interpolation and extrapolation method that reconstructs the original pollution map based
on sparse measurements in space (equation 4).

Figure 1: Encoder - Decoder flow

Since there are infinite ways to choose d we observed a class of such functions D. Each
d ∈ D took a sensor vector z⃗ and returned an estimation of the air pollution map f̂ on ω.
For every d ∈ D we could thus estimate whether the reconstruction was satisfactory when
f̂ was compared to the ground-truth pollution map f by some distance measure, i.e., a loss
function l(f, f̂). The optimal decoding function, d∗ ∈ D, was the one that provided the
minimum loss over Ω.

Let us denote PF as the probability density of F as it appears on Ω. The probability
density captures the spatiotemporal dependencies,the physical bounds and the rules of fluid
dynamics of the pollution. Thus, to find an optimal reconstruction function d∗ ∈ D, we
need to minimize the expectancy of the loss function over the entire probability density
functionPF :

d∗ = argmin
d∈D

Ef∼PF [l(f, f̂)] (5)

To solve this optimization problem, a collection of m observed functions f1, ..., fm ∈ F was
used to analyze the probability density PF through either observation or simulation. The
underlying assumption was that the simulations captured the true distribution of the air
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pollutants in the region of interest. This shifted the interpolation problem to the generative
ML domain, where the database consisted of the m observed functions. The loss function was
set to the L2 norm, the Mean Squared Error (MSE). Therefore, the optimization problem
became:

d∗ = argmin
d∈D

1

m

m∑
j=1

∥fj − f̂j∥2 = argmin
d∈D

1

m

m∑
j=1

∥fj − d
(
e(fj)

)
∥2 (6)

2.2. Case studies
We used both synthetic and real-world data to develop and validate the method. The
synthetic data consisted of two different scenarios and the real-world data provide a practical
example.

2.2.1. Synthetic Scenarios
The synthetic scenarios were created to simulate different environmental conditions and
pollution source configurations. These scenarios allowed for controlled experimentation and
sensitivity analyses. These two simulations were presented in Mano et al. (2022), where the
original goal was to find an optimal set of sensor locations using information theory. The
main finding was that sensors should be located in locations with high entropy. In this work,
for the synthetic scenarios, the sensor locations were based on Mano et al. (2022). The
simulations were created using the Graz Lagrangian Model - GRAL (Berchet et al., 2017),
an atmospheric dispersion modeling tool developed by the Institute of Meteorology at the
University of Natural Resources and Life Sciences, Vienna (GRAL, 2024). The simulations
were conducted for the region of interest with a fixed geometry and included various typical
air pollution events. The following synthetic configurations were investigated:

• Setting 1: Industrial Area - This setting corresponds to a typical industrial en-
vironment with five point sources of pollution that appear as red circles on the map,
and a few buildings indicated by the red squares that act as obstacles. This scenario
is depicted in Figure 2a.

• Setting 2: Urban Road - This setting simulates an urban environment with lin-
ear pollution sources; i.e., roads indicated by the green lines between rows of dense
buildings. This configuration is depicted in Figure 2b.

Based on the above notation, Ω was divided into a regular grid of 100× 100 catchments;
i.e., {ω} ∈ Ω. The assumption was that the catchments were small enough for the pollution
to be constant all over the catchment, and that a single measurement at a given point in
time would represent the pollution level across the catchment. The pollution maps were
written as F = R100×100. The goal was to restore the full matrix f using the sensor array
z⃗. During training and the comparison to other methods, the number of sensors was set to
s = 30; however, for the sensitivity analysis s ranged from 1 to 30. Within each hypothetical
setting, a total of 30,000 pollution maps were generated, where for each realization, the
emission rates and wind speed and direction varied. More details are provided in Mano
et al. (2022). Figure 3 shows 9 different realizations of each GRAL configuration. The dense
pollution maps are color-coded with black as zero, through red to yellow. A color bar is
provided for each realization map since each had it own dynamic range.
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(a) Setting 1 - point sources with few buildings (Industrial
Area)

(b) Setting 2 - linear pollution sources between rows of
buildings (urban road)

Figure 2: GRAL synthetic air pollution configurations

(a) Industrial Setting - point sources with a few buildings
(b) Urban Setting - linear pollution sources between rows
of buildings

Figure 3: Examples of pollution maps generated by a simulator so that the ML model could mirror their
patterns.
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2.2.2. Real-world scenario
The application of the method to a real-world environment used the city of Antwerp, Bel-
gium, as an instance of a complex urban environment with diverse pollution sources and
considerable spatial variability in air quality. The city is characterized by a dense build-
ing infrastructure, a flat yet varied landscape, and a mix of roads, vegetation, and open
spaces. The major pollution sources in the city include vehicular emissions from its busy
road network, industrial activities concentrated in the port area, and residential heating.
These features influence pollutant dispersion, resulting in highly heterogeneous pollution
patterns (De Craemer et al., 2020). For purposes of analysis, high-resolution pollution maps
generated by ATMOSYS were utilized. This high-resolution air quality modeling system was
developed by the European LIFE program, and is known for its ability to simulate pollutant
concentrations based on emission inventories, meteorological data, and dispersion patterns.
These maps are displayed as a 1100 x 1200 grid, providing detailed spatial representations of
three key pollutants: PM2.5, PM10, and ozone. The pollution maps reflect the average hourly
concentrations and incorporate factors such as meteorology, urban morphology, and emis-
sions from traffic and industrial activities, thus making them a reliable dataset to validate
the method. Figure 4 depicts pollution maps from this dataset that have similar structural
patterns for different pollutants. This underscores the effectiveness of the method that can
leverage variations in pollutant concentrations in low-dimensional space. The ozone maps,
however, show the reverse pattern from PM2.5 and PM10 due to the inverse relationship
between ozone and particulate matter. This is due to chemical processes in the atmosphere,
where there is often less ozone formation in areas with high particulate concentrations, such
as near traffic or industrial zones. This further supports the value of the low-dimensional
nature of the data representation, and makes the interpolation approach particularly suitable
for these settings.

In addition to the simulated maps, the analysis incorporated real-world sensor readings
of PM2.5, PM10, and ozone concentrations from Antwerp’s air quality monitoring network.
In total there were 33 sensors s, and 1794, 1793 and 2257 samples m for PM2.5, PM10, and
ozone, respectively. Further details on the study design and measurement instruments can
be found in Van Poppel et al. (2023). The sensor dataset is publicly available at Yatkin et al.
(2022).

The domain of interest was defined as Ω = |1100 × 1200|, and the pollution maps took
the form of f ∈ R1100×1200. The aim was to restore the entire matrix f for each point in
time, using the sensor reading vector z⃗ at this time. Hence, the database consisted of pairs
∀j ∈ 1, · · · ,m; [z⃗j, fj]. Note that there was no encoding in this setting because the sensor
readings were not generated from the simulated data, but rather from a real sensor array.
Thus, the optimization function was as follows:

d∗ = argmin
d∈D

1

m

m∑
j=1

∥fj − d(z⃗j)∥2 (7)

2.3. The RSIM model
Here, for the class of functions D, a linear regression model was implemented because it
provided better results and had lower computational complexity. In this linear model, for a
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(a) PM2.5 (b) PM10

(c) Ozone

Figure 4: Examples of pollution maps generated by a simulator so that the ML model could mirror their
patterns.
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given location in ω ∈ Ω, the pollution level f̂(ω) was estimated using a weight vector Wω in
the following form:

f̂(ω) = ⟨Wω, z⃗⟩+ bω (8)

This resembles the mathematical logic of both the Inverse Distance Weights (IDW)
(Buteau et al., 2017) and Kriging (Jeong et al., 2005) methods. In IDW, the weights are
determined by distance, and in Kriging by statistical resemblance. In the current study the
weights were learned from the data. The training process was crafted to fit both linear and
non-linear models and used a neural network training scheme. For the linear model, the
network had a single layer without a non-linear activation function. This made it possible to
test many configurations, such as increased noise magnitude, different numbers of sensors,
shifts between the three settings, choice of hyper-parameters for training, and different model
architectures (for non-linear models such as deep neural networks).

2.3.1. RSIM model analysis with SVD
Because the reconstruction function can be represented as a linear regression model, it can
basically be seen as an affine transformation in a finite-dimensional space. This transfor-
mation can be characterized by a weight matrix W ∈ R|Ω|×s and a bias vector b̄ ∈ R|Ω|.
Analyzing the weight matrix W with linear algebraic methods generated significant insights.
Specifically, the i-th column of W corresponded to the transformation of the i-th standard
basis vector in Rs, which could be interpreted as a gradient map indicating the change in each
component of the input vector. This gradient map reflected the impact of a unit increase in
the value of a specific sensor on the resulting pollution map. Singular Value Decomposition
(SVD) on the matrix W , expressed as W = UΣV T , resulted in a unitary real matrix U and
a rectangular diagonal matrix Σ. The columns of U associated with the non-zero singular
values in Σ formed an orthogonal basis that defined the span of matrix W that provided
a visual representation of the distribution and directional characteristics of the pollution.
The singular values quantified the relative importance of these vectors in reconstructing the
pollution map. Thus overall, the columns of W and the corresponding non-zero columns of
U yielded distinct visual interpretations of the reconstruction process.

2.3.2. RSIM training
The model was trained in a MATLAB coding environment. Training in the framework of
a neural network employed the Adam optimizer (Kingma and Ba, 2015) as the gradient
descent optimization method. This process spanned 10 epochs, with a batch size set to 128.
The initial learning rate was established at 0.1, which was reduced tenfold after each epoch.
Regularization was applied with a coefficient value of 5. The datasets for training, validation,
and testing implemented a random split, allocating 70%, 10%, and 20% for training, testing
and validation respectively. For the sensitivity analysis (conducted solely with the synthetic
data), a multiplicative noise level of 0.1, 0.3, 0.5, 0.7, and 0.9 levels with respect to the mean
signal’s level were used. The analysis encompassed different numbers of sensors, from 1 to
30.
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2.4. Evaluation methods
To gauge the efficacy of the model and to compare it to various interpolation methods, a set
of benchmarks, which included both qualitative and quantitative assessments, was employed:

• Visualization: the outputs of the model and the interpolation methods were visually
represented as pollution maps.

• Mean Root Mean Square Error (MRMSE): the average magnitude of the differ-
ence between the predicted value and the ground truth. Low RMSE indicates better
agreement between predictions and actual values.

• Mean Correlation Coefficients (MCorr): the level of the two-dimensional linear
correlation between the predicted values and the ground truth. High MCorr signifies
a stronger alignment between predictions and ground truth.

The comparative analysis encompassed a range of interpolation methods, each evaluated
against the model’s performance. These interpolation techniques were chosen to assess the
model’s predictive capabilities against established benchmarks. The following interpolation
methods were employed for comparison:

• Linear Interpolation: estimates values by assuming a linear relationship between
known data points, resulting in a straight line interpolation.

• Cubic Interpolation: uses a cubic polynomial to interpolate between data points,
providing continuous second derivatives, guaranteeing a physically smooth estimation
with reduced oscillations.

• Nearest Neighbor Interpolation: assigns the value of the nearest data point to an
unobserved location, resulting in a piecewise constant estimation.

• Inverse Distance Weighting (IDW): assigns weights to nearby data points based
on their inverse distances to the target location.

• Ordinary Kriging: a geostatistical method that considers both the spatial correlation
and the underlying trend of the data for interpolation.

• Universal Kriging: similar to ordinary Kriging, it also takes into account the trend
and spatial correlation but also considers external drift terms.

3. Results

3.1. Synthetic scenarios
3.1.1. Visualization
Figure 5 presents the reconstructed pollution maps from the sensor vectors (z(ω)) as de-
scribed by Equation (4). The maps are color-coded from black through red to yellow. Each
reconstructed dense pollution map is presented next to its corresponding original simulated
maps, which serve as the ground truth. Each row displays two separate reconstruction ex-
amples side by side. Each example presents (from left to right): the sensor vector from
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which the pollution map was reconstructed, the reconstructed pollution map, the ground
truth map, and a color bar with the pollution units. Note that each row presents a different
colormap scale.

(a) Setting 1 - Industrial area (b) Setting 2 - Urban road

Figure 5: Examples of pollution maps reconstructed by the model from sparse sensor readings. Each row
lists (from left to right): the sensor measurement vector, the reconstructed pollution map, the ground truth
pollution map, the color bar for pollution units

Figure 6 depicts one example of the dense pollution maps generated for each synthetic
environment with RSIM and the interpolation methods described in section 2.4. Figure
6 clearly shows that the RSIM method successfully inferred the spatial dependencies, as
compared to the-state-of-the-art used for comparison. In particular, RSIM was able to
preserve the intricate patterns present in the original map.

3.1.2. Benchmarks
Table 1 presents the benchmark scores for the entire set of synthetic datasets for each inter-
polation method. Note that each interpolation method read the same input; i.e., a sensor
vector, zω with added noise (Equation (3)) and created a pollution map.

3.1.3. Sensitivity Analysis
After the mathematical formulation of equations (3)–(6) the resulting encoding process had
two parameters: the number of sensors s, and the noise factor ηω. Both parameters capture
the resources available for monitoring; namely, the amount and the quality of the sensor
array. Figure 7 plots the MCorr and RMSE for different noise levels against the number
of sensors, s. Figure 7(a) and (c) present the MCorr for the industrial and urban synthetic
scenarios respectively. Figures (b) and (d) present the RMSE for these two scenarios. The
noise level is governed by the noise multiplier magnitude ϵ (see Equation (3).

As expected, as the number of sensors increased, their quality improved (i.e.,lower noise
factor), and the reconstruction performance improved. A knee point was observed at ap-
proximately 10 sensors in the industrial setting, and 5 sensors in the urban setting. Beyond
the knee point, the marginal benefit of adding more sensors was negligible. At that knee
point, high-quality sensors with up to a 0.1 noise factor yielded results comparable to 30 low-
quality sensors plagued by 0.9 noise. This insight has implications for monitoring policies
and resource allocation.
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(a) Setting 1 (b) Setting 2

Figure 6: Samples of pollution maps.

12



Table 1: MRMSE and MCorr benchmark results for the synthetic scenarios in all interpolation methods

Method MRMSE MCorr

Industrial area

Linear 471.9 0.17
Cubic 470.4 0.17
Nearest neighbor 417.6 0.19
IDW 233.4 0.71
Universal Kriging 293.4 0.58
Ordinary Kriging 278.0 0.51
RSIM 156.5 0.86

Urban road

Linear 2604.1 0.08
Cubic 2595.4 0.09
Nearest neighbor 1857.7 0.03
IDW 1409.0 0.02
Universal Kriging 1326.0 0.07
Ordinary Kriging 1284.4 0.01
RSIM 520.2 0.87

(a) (b)

(c) (d)

Figure 7: Sensitivity Analysis of the mean correlation (MCorr), Figures (a) and (c), and the RMSE (b) and
(d), for the synthetic scenarios, industrial (a) and (b), and urban, (c) and (d) settings
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3.1.4. Weight matrix decomposition
As described in the Methods section, the reconstruction function was represented by a weight
matrix W ∈ R|Ω|×s and a bias vector b̄ ∈ R|Ω|. The i-th column of the weight matrix W
represented the image of the gradient map with respect to the i-th sensor. The typical
assumption was that for each
barω ∈ Ω, the effect on the pollution level at ω̄, f(ω̄), would decrease as the distance between
ω̄ and this specific sensor increased. Hence, the weight Wω̄,i would decrease with the distance
of ω̄ from the sensor. However, this was not always the case, since these sensors were not
statistically independent. Figure 8 shows these gradient maps with the same color coding as
above. The green dots indicate the sensor locations.

In the industrial setting, the sensor gradient maps presented Gaussian-like curves around
the sensors with edge effects around obstacles. This was expected since it resembles other air
pollution interpolation methods such as IDW. However, in the urban setting these gradient
maps emerged as less intuitive. Specifically, some sensors only monitored the inner part of
the street while others were impacted by the background, some were close to the affected
area while others were farther away. This was probably due to the complicated wind regime
in this setting.

Applying SVD to the weight matrix W = UΣV T , on the first s columns of U provided the
orthogonal basis of the pollution patterns. Their significance in descending order matched
the singular values σi = (Σ)ii. Figure 9 depicts these values for each synthetic scenario. The
maps that correspond to higher singular values provide a striking depiction of the pollution
sources. In both settings, as the singular value decreased, the patterns exhibited greater
variance. This can be ascribed to variations in finer details across the pollution maps.
However, there were overarching pollution patterns that remained representative across all
the data. Each restored pollution map consisted of a linear combination of these patterns,
with both positive and negative scalars; as shown by the inverse color scheme.

3.2. Real-world Environment
To evaluate the performance in a real-world setting, a series of visualizations is presented in
Figure 10 comparing the reconstructed pollution maps generated by the model to the ground
truth maps. These visualizations include examples for the three types of pollutants PM2.5,
PM10, and ozone, thus providing a clear comparison of the model’s outputs as compared
to the reference maps. The reconstructed maps demonstrate the model’s ability to repli-
cate the spatial distribution of pollutants with high fidelity by capturing areas of elevated
concentrations and regions with lower pollution levels.

3.2.1. Benchmarks
For the real-world data, the benchmarks were calculated and averaged in a similar fashion
as for the synthetic scenarios. The mean performance scores for the models are summarized
in Table 2.

4. Discussion

The outcomes of this investigation underscore the benefits and potential applications of
incorporating simulated data into machine learning techniques for air pollution interpolation.
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Table 2: Results

Pollutant MRMSE MCorr

PM2.5 6.33 0.77
PM10 6.16 0.76
Ozone 12.43 0.77
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(a) Industrial Area

(b) Urban area

Figure 8: Gradient maps for each sensor
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(a) Idustrial Setting

(b) Urban Setting

Figure 9: SVD basis of pollution patterns

17



(a) PM2.5 (b) PM10

(c) Ozone

Figure 10: Samples of the test set results. Left to right: sensor vector input, model prediction, true map,
color bar.
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State-of-the-art methodologies are constrained in their ability to accurately capture the
complex spatial variability of pollutant dispersion, particularly in urban settings with diverse
sources of pollution and obstacles such as buildings. By employing high-resolution digital
twin simulations of the environment, the methodology proposed here was shown to overcome
these limitations by effectively reconstructing pollution maps with heightened accuracy and
detail.

The empirical experiment utilizing data from Antwerp illustrates the practicality of this
approach. The concordance between the reconstructed maps and the ground truth simula-
tions indicates that the model can capture fine-grained patterns of pollutant dispersion, even
when hampered by noisy and sparse sensor data. This capability is paramount for urban air
quality management, where access to dense and accurate pollution maps directly impacts
public health policies and mitigation strategies.

In this study, an innovative encoder-decoder methodology was utilized to address the
challenge of reconstructing detailed pollution maps from sparse sensor data. In this case,
the encoding process corresponded to the sensing process itself, where the available sen-
sor measurements, typically sparse and noisy, served as the input. These sensor readings,
although limited, captured essential environmental information. The decoder then recon-
structed the comprehensive pollution map, using this encoded information to generate a
detailed distribution of pollutants across the entire area.

The work presented here underscores the adaptability and efficiency of the Kendler et al.
(2022) Educated Machine framework. Unlike traditional approaches that rely on labor-
intensive labeling of large datasets for each scenario, the EM leverages a physical model
and measurable information to deliver accurate solutions across various domains. These two
foundational components eliminate the need for extensive memorization, thus aligning with
the features of human cognition. For instance, a skilled mechanic can repair a range of
tools by applying general mechanical knowledge—analogous to the physical model—and by
analyzing the specific characteristics of each instrument; i.e., the measurable information.
Kendler and Fishbain demonstrated the EM’s capabilities in the case of the non-linear mixing
of reflectance spectra between target and background materials. In that context, the proper-
ties of the mixing model and the reflectance spectrum of the target material were embedded
within the EM as part of its physical model and parameters. The reflectance spectra of the
background materials, which exhibited substantial variability and were unpredictable up to
that point, were treated as measurable information, facilitating the creation of a training
dataset.

In this work, a similar approach was applied. The Lagrangian gas transport model served
as the physical model, with its parameters defined by terrain properties such as buildings,
roads, and topography. The measurable information comprised the chemical sensor readings
for a specific case. This combination permitted the resulting EM to accurately interpolate
gas concentrations across the terrains, even in areas lacking labeled measurements.

However, this approach also has shortcomings. The reliance on accurate and detailed
simulations means that the quality of the results is contingent on the fidelity of the digital
twin and the simulation model. Any discrepancies between the simulated environment and
the actual urban landscape, such as missing sources or inaccuracies in boundary conditions,
can affect the performance of the interpolation model. Furthermore, the methodology as-
sumes static conditions during the interpolation process, which may not fully capture the
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dynamic nature of air pollution in rapidly changing environments.

5. Conclusion

This study introduced a data-driven approach for interpolating air pollution levels that
leveraged simulated data generated from a digital environmental twin. The findings demon-
strated its efficacy in both synthetic and real-world scenarios by addressing the limitations
inherent to traditional interpolation techniques. By integrating the complex spatial and
temporal patterns of pollutant dispersion captured in simulations, the proposed approach
successfully generated accurate reconstructions of high-resolution pollution maps from sparse
sensor data. The real-world evaluation further validated the method’s applicability in prac-
tical urban environments. By conceptualizing the sensing process as encoding, the model
demonstrated its ability to learn from limited data and fill in the gaps, thereby providing a
robust solution for air pollution interpolation in urban settings.

Future research can build on these findings by exploring additional pollutant types and
applying this method to other cities or regions to further generalize its applicability. Whereas
this study utilized settings within a two-dimensional space, future work could expand to
vertical spatial and temporal dimensions. Successful interpolation and extrapolation in such
spaces would have significant value: vertical pollution patterns are typically unaddressed
and unknown, and extrapolation along the temporal axis serves as a forecast. Although
the current study focused on air pollution, the concepts presented here are likely to be
applicable to other domains where simulated data are more readily available than real-world
measurements.
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