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Abstract5

Accurate feeding in marine aquaculture is essential for optimizing fish growth
while minimizing adverse impacts on the surrounding ecosystem. Previous stud-
ies have successfully used acoustic signals and neural network-based classifica-
tion models for monitoring feeding. This work builds on these efforts by ad-
dressing the continuous variability of fish behavior and enhancing sensitivity
to subtle changes, offering a complementary and efficient approach. In this
study, matched filtering and domain knowledge are applied to detect and quan-
tify feeding intensity using continuous numerical labels. A template from a
single gilthead seabream (Sparus aurata) bite acoustic signature was used, and
matched filter response detections were aggregated with a sliding window into
a continuous intensity label, advancing data reduction. To validate label values
based on environmental and biological variables, the analysis applies machine
learning regression models. eXtreme Gradient Boosting (XGBoost) and Ran-
dom Forest results indicate that the variables explain 98% and 96% of label
variation, respectively. The methodology presented in this paper provides a
simple, precise, and scalable tool for optimizing feeding using acoustic monitor-
ing. The use of domain knowledge paves the way for the further development
and application of data-driven methods to utilize acoustic signal monitoring for
improving marine aquaculture practices.
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1. Introduction9

Aquaculture is expanding rapidly, with mariculture emerging as a key sec-10

tor driven by the urgent need to meet the rising global demand for sustainable11

seafood (FAO, 2024). Its expansion presents new challenges and opportunities12

to improve efficiency and environmental monitoring, particularly in high-value13

species such as gilthead seabream (Mhalhel et al., 2023). Accurate monitoring14

of feeding is a key factor in optimizing growth while minimizing environmental15

impact (Price et al., 2015). Excess feed releases nutrients, creating anoxic con-16

ditions that support anaerobic processes. This nutrient loading degrades water17

quality and causes eutrophication, harmful algae blooms, and greenhouse gas18

emissions (Fadum et al., 2024). Thus, overfeeding remains a major challenge,19

with trials in seabream and seabass showing that up to half of the feed may go20

uneaten (Ballester-Moltó et al., 2017). In addition, a decrease in appetite and21

feed intake is common when fish are sick and often serves as an early indica-22

tor of disease (Roberts, 2012). With the intensification of aquaculture systems,23

disease outbreaks have become a major threat, leading to significant financial24

losses and severely affecting fish welfare (Naylor et al., 2021). Continuous feed-25

ing monitoring could enable early detection of disease onset, thereby minimizing26

economic losses and improving fish well-being.27

Acoustic signals are a promising tool for monitoring feeding behavior in28

aquaculture (Li et al., 2024). Passive acoustic methods capture characteristic29

sound patterns, providing a non-invasive approach to assess feeding behavior (Li30

et al., 2020). Recent studies have used passive acoustic monitoring to classify31

the intensity of fish feeding. Zeng et al. (2023) applied acoustic signals with an32

audio spectrum Swin Transformer to classify feeding intensity into four levels:33

strong, medium, weak, and none. Du et al. (2023) used Mel spectrograms and a34

lightweight network to group feeding sounds into three classes: strong, medium,35

and none. Ma et al. (2024) used six-axis inertial sensor data and also pro-36

posed a method for classifying feeding intensity across similar categorical levels.37

Although classification models have demonstrated high accuracy in identifying38

feeding levels, they can rely on manual labeling, which might introduce bias39

and inconsistency (Haliburton et al., 2025). More importantly, by forcing feed-40

ing behavior into fixed categories, they fail to reflect variance across different41

feeding events. The wide range of feeding intensities within a single class might42

lead to substantial errors in feeding estimation. By contrast, a regression ap-43

proach captures feeding intensities on a continuous scale, enabling more precise,44

data-driven decisions about feeding.45

One notable application of acoustic-based regression modeling in aquacul-46

ture is reported in studies of shrimp species such as Litopenaeus vannamei. Silva47

et al. (2019) studied the acoustic characteristics of feeding activity in Litope-48

naeus vannamei. In their research, a regression models based on feeding clicks49
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were sought. The underlying assumption was that these clicks were associated50

with mandible closures during feeding. However, in that study, click counts51

were obtained manually from audio recordings, making the process cumber-52

some and less efficient compared to an automated workflow. Building on this,53

Peixoto et al. (2020) examined the relationship between the number of clicks54

per pulse train and the signal duration, revealing a significant exponential cor-55

relation between these variables. The above regression models show that while56

these models may offer greater precision than classification for modeling feed-57

ing behavior, they are constrained by non-automated tools to quantify feeding58

intensity.59

Quantifying feeding intensity through regression holds strong potential, high-60

lighting the need for an efficient and automated approach. This paper addresses61

this need by applying matched filtering (MF) analysis to the processing of au-62

dio signals. MF is an optimized signal detection method to detect known signal63

patterns in Gaussian noise (Yaroslavsky, 2004), making it ideal for automated64

regression-based quantification of feeding intensity. The Stochastic Matched65

Filter (SMF) extends the standard matched filter to handle non-white noise66

in open ocean environments. Bouffaut et al. (2018) combined SMF with MF67

to improve passive detection of Antarctic blue whale calls. Caudal and Glotin68

(2008) used SMF to track multiple sperm whales in 3D with high accuracy using69

hydrophone arrays.70

Living organisms generate distinct acoustic signatures corresponding to spe-71

cific behaviors, which can serve as reliable templates for the automated detection72

and monitoring of such events. In aquaculture setups, gilthead seabream (Sparus73

aurata) are typically fed industrially processed sinking pellets, which produce a74

distinct cracking sound as they move during feeding. This consistent acoustic75

signature across individuals provides a reliable biological template, making it76

well-suited for use in matched filtering. This prior biological knowledge of the77

gilthead sea-bream is an example of domain knowledge, thus shifting from ma-78

chine learning to machine education (Kendler et al., 2022; Geltman et al., 2025),79

a method in Deep Learning (DL) and Machine Learning (ML) that uses expert,80

problem-specific information, beyond raw data (Barzamini et al., 2022). Do-81

main knowledge can improve the generalization of our method across real-world82

conditions (Kendler et al., 2022).83

This study presents a method for detecting and quantifying fish feeding in-84

tensity as a continuous numerical value, based on passive audio signals processed85

through matched filtering with knowledge domain approach. Given the distinct86

acoustic signature produced by gilthead seabream during feeding, this signal was87

used as a template for MF. To further validate this approach, machine learning88

regression models were applied using key environmental and biological variables,89

revealing strong alignment between predicted feeding intensity and these vari-90

ables. This study introduces a novel methodology that uses matched filtering to91

derive a continuous numerical label of fish feeding intensity from audio signals.92

The approach produces and leverages explainable domain knowledge, enabling93

a simple, scalable assessment of hunger levels. It also demonstrates strong94

alignment with environmental and biological variables, further enhancing the95
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reliability and interpretability of the feeding label.96

2. Methodology97

To monitor feeding behavior using audio signals, a 19-day audio recording of98

gilthead seabream was conducted under fixed feeding schedules. Audio signals99

were preprocessed in the frequency domain using spectral gating and high-pass100

filtering to reduce background noise and enhance relevant features. Feeding101

events were detected and quantified using a matched filter in combination with102

a sliding window technique. To evaluate the robustness of the resulting feeding103

intensity label, supervised machine learning models, Random Forest and eX-104

treme Gradient Boosting (XGBoost), were applied to explain the label based105

on environmental and biological variables. A schematic overview of the pro-106

cess is presented in Figure 1, where block (A) represents the data acquisition107

methodologies. ; (B) depicts signal preprocessing using STFT (Short-Time108

Fourier Transform), spectral gating, and high- pass filtering to reduce noise;109

(C) detects and quantifies feeding events using a matched filter; and (D) val-110

idates the methodology based on environmental and biological variables using111

regression machine learning models, XGBoost, and Random Forest.112

Figure 1. Methodology workflow: (A) represents data acquisition of a continuous audio signal
recorded over 19 days; (B) involves signal preprocessing using STFT (Short-Time Fourier
Transform), spectral gating and high-pass filtering to reduce noise; (C) detects and quantifies
feeding events using a matched filter combined with a sliding window; and (D) validates
the methodology based on environmental and biological variables using regression machine
learning models, XGBoost, and Random Forest.

2.1. Data Acquisition113

The study was conducted in three identical flow-trough tanks (2.0 × 1.0 ×114

1.0 m) with constant aeration, each stocked with 30 gilthead seabream (Sparus115

aurata), as shown in Figure 2. All fish were 3 months old at the beginning116

of the experiment (estimated average weight 40 gr), collected from the same117

hatching batch. Each tank was equipped with two hydrophones (AS-1 hy-118

drophone, Aquarian Audio & Scientific, Anacortes, WA, USA) connected to119

phantom-powered preamplifiers (PA6, Aquarian Audio & Scientific, Anacortes,120

WA, USA). The fish were fed daily at consistent times and with fixed amounts121

of commercial 3 mm sinking pellets (Raanan Fish Feed LTD., Israel). Artifi-122

cial lighting simulated constant day-night cycles, with lights on at 06:00 and off123

at 17:00. Continuous acoustic signals were recorded to a memory card using124

a Zoom F8n Pro recorder (Zoom North America, Hauppauge, NY, USA) at125
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a sampling rate of 48 kHz and a bit depth of 24 bit, resulting in 19 days of126

recordings.127

Figure 2. Experimental system.

2.2. Audio Signal Prepossessing128

The recorded audio signal contained background noise from electronic equip-129

ment and the continuous inflow of water and oxygen into the tanks. As gilthead130

seabream feeding sounds occur in a specific frequency range, targeted signal131

processing was needed to extract the relevant information. The signal was first132

transformed into the frequency domain using the Short-Time Fourier Transform133

(STFT). Spectral gating reduces noise across all frequencies, followed by a high-134

pass filter to remove low-frequency components and enhance higher-frequency135

feeding signals.136

2.2.1. Short-Time Fourier Transform for Time-Frequency Analysis137

The Short-Time Fourier Transform (STFT) is a common method for con-138

verting time-domain signals into the frequency domain. It generates a spectro-139

gram by dividing the signal into overlapping windows and applying a Fourier140

Transform to each, showing how spectral energy changes over time. This repre-141

sentation enables the detection of short-duration acoustic events, such as feeding142

events. In this study, STFT was implemented using the Python scipy library.143

This transformation is formally expressed in Equation 2.144

Ŝ[f, t] = STFT[f, t] =

L−1∑
n=0

s[n] · w[n− t] e−j2πfn (1)

where s[n] is the input signal, w[t] the analysis window centered at time t,145

f the frequency bin, n the time index within the window, and L is the window146

length.147

The inverse transform is given by:148

s[t] = iSTFT[f, t] =

∑L−1
f=0 Ŝ[f, t] · e−j2πf(L−t)/L · w[L− t])∑

t w
2[L− t]

(2)
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2.2.2. Spectral Gating149

Spectral gating is a noise reduction technique that reduces noise in each150

frequency band. For each band, the signal’s amplitude standard deviation is151

calculated, and a threshold of three standard deviations filters out lower com-152

ponents. This thresholding operation is formally defined in Equation 3, where153

frequency bins below the threshold are set to zero, enhancing acoustic signal154

clarity while minimizing noise.155

X̂(f, t) =

{
X(f, t), if |X(f, t)| ≥ θ(f)

0, otherwise
(3)

where X̂(f, t) is the gated spectrogram, X(f, t) is the original spectrogram,156

and θ(f) is the threshold set to three standard deviations of the amplitude in157

each frequency band. This process was implemented using the Python library158

noisereduce (version 3.0.3), which applies spectral gating based on frequency-159

wise amplitude thresholds.160

2.2.3. High-pass Filter161

Following spectral gating, residual low-frequency noise remained, mostly162

from equipment and the tank’s surroundings. As feeding sounds for Gilt-163

head seabream occurred at higher frequencies, a high-pass filter at 2048 Hz164

was applied to further isolate the relevant signal. This removed irrelevant165

low-frequency components and enhanced the acoustic features linked to feed-166

ing events. The final preprocessing result, showing the enhanced signal after167

spectral gating and high-pass filtering, can be seen in Figure 3. The Mel spec-168

trogram, a visual representation of sound that captures how the intensity of169

different frequencies evolves over time, was used to represent the signal and was170

computed using a Python library. Librosa.171
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Figure 3. Mel-spectrograms of feeding event before (top) and after (bottom) noise reduction.
Spectral gating and high-pass filtering improve audio clarity by reducing background noise.

2.3. Matched Filter-Based Detection and Quantification of Feeding Events172

Feeding intensity was measured using a matched filter, a signal processing173

method optimized to detect known patterns with high accuracy. In this study,174

the pattern was defined as a single “click” bite sound produced by gilthead175

seabream during feeding, followed by a sliding window technique to aggregate176

bite detections into feeding events.177

2.3.1. Matched Filter178

The matched filter technique identifies signal patterns by optimally aligning179

a template with the signal input. The template, shown in the time domain in180

Figure 4, has a max power frequency of 4462 Hz and a spectral centroid of 5138181

Hz.182
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Figure 4. Time-domain waveform of a single bite sound produced by the gilthead seabream,
used as the template in the matched filter analysis.

Both the template and the signal are transformed into the frequency do-183

main using the STFT method (Equation 1), with a window sizes of 1024 and184

a hop size of 512, as described below in Section 2.2.1. The template in the fre-185

quency domain is then conjugated and element-wise multiplied with the signal’s186

frequnecy respond.187

The matched filter output, computed as shown in Equation 4, emphasizes188

segments of the signal that closely resemble the template.189

yout(t) = ||iSTFT{STFT{s[t]} · STFT{w[t]}∗}|| (4)

where s(t) is the input signal, w(t) is the matched filter template, STFT{w[t]}∗190

is the complex conjugate of the template. The norm applied in Equation 4191

ensures the output’s magnitude is returned.192

To convert segments of the signal that strongly resemble the template into193

meaningful feeding events, a sliding window approach was applied. This method194

aggregates peaks occurring within a defined time range, allowing isolated de-195

tections to be grouped into continuous feeding event. An example of a matched196

filter result during a feeding event is shown in Figure 5.197

Specificity of the matched filter template was assessed by comparing its198

performance to 20 randomly selected templates. For each template, the matched199

filter output was used to calculate the signal-to-noise ratio (SNR) as defined in200

Equation 5. The value of k = 48,000 corresponds to one second of signal at a201

48 kHz sampling rate.202

SNR =

(
µsig-top

µnoise

)
· σsig (5)
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Figure 5. Matched filter response showing peak values corresponding to the bite sound
template of the gilthead seabream.

where µsig-top is the mean of the top k values in the signal window, µnoise is203

the mean of the noise window, and σsig is the standard deviation of the signal204

window.205

Results showed that the selected bite template yielded up to 16 times higher206

SNR than random templates.207

2.3.2. Sliding Window208

Sliding window analysis is a common method for processing time series data,209

using a fixed-length window that slides over the signal with a defined step size.210

In this study, it was applied to the matched filter output. At each step, the211

algorithm sums the values within the window that exceed a defined threshold,212

producing aggregated values that reflect the intensity of feeding events, as de-213

fined in Equation 6. To enable continuous processing of the 19-day dataset,214

the signal was downsampled by averaging every 1,000 samples. Each daily time215

series was normalized by its maximum value to produce a relative measure of216

feeding intensity. Here, a 10-minute sliding window with a 6-second step size217

was used, with a threshold of 0.1. Thresholds from 0.05 to 0.2 were tested;218

lower values introduced excessive noise, while higher ones missed relevant activ-219

ity. The final output is a continuous quantitative label suitable for integration220

into regression-based machine learning models. An example of sliding window221

aggregation is shown in Figure 6.222

I(t) =

W−1∑
i=0

[M(t+ i) > θ] (6)

where I(t) is the feeding intensity score at time t, M(t+ i) is the matched filter223

output at time t+ i, W is the window length, and θ is the detection threshold.224
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The expression [M(t+ i) > θ] evaluates to 1 if true and 0 otherwise, effectively225

counting the number of matched filter values that exceed the threshold within226

the window.227

Figure 6. Sliding window aggregation of matched filter results, reflecting the temporal
distribution of feeding event.

2.3.3. Machine Learning for Feeding Intensity Label Validation228

To test the robustness of the feeding intensity label and its alignment with229

environmental and biological variables, machine learning algorithms XGBoost230

and Random Forest regression models were applied. The environmental and bi-231

ological variables used to explain the label were fish age, expressed as the num-232

ber of days since the start of the experiment, categorized feeding time (morning,233

noon, or evening), and time elapsed since the previous feeding.234

3. Results235

3.1. Detection and Quantification of Feeding Intensity236

An example of the results from a single experimental day, obtained using237

the proposed methodology, are shown in Figure 7. Feeding events are clearly238

marked by distinct peaks in the signal, showing more than a tenfold difference239

between feeding and non-feeding activity. These peaks closely correspond to the240

feeding times recorded in the experimental log.241

A statistical analysis of feeding events across tanks revealed clear variation242

in feeding intensity throughout the day, as shown in Figure 8. Morning feedings243

were most intense, with a mean value of 1.00 ± 0.01. Noon and evening feedings244

showed similar average values around 0.68 ± 0.20 and 0.62 ± 0.20, respectively.245

This pattern aligns with the environmental context, as morning feeding occurs246

after the longest fasting interval, likely reflecting increased hunger.247
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Figure 7. Sliding window aggregation showing the count of bins above the detection threshold
across a 24-hour period. Red vertical lines indicate the scheduled start times of feeding events.
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Figure 8. Feeding intensity across times of day, with labels normalized per day. Error bars
are also marked in the figure. Note that the daily results were normalized to the most intense
signal of that day—typically the morning feeding—so the error for the morning result is often
close to zero

3.2. Machine Learning Validation of Feeding Intensity Label248

Regression models using XGBoost and Random Forest examined the corre-249

spondence between the feeding intensity label and environmental and biological250

variables. Both showed strong predictive performance, as summarized in table251

1, with R² values of 0.9803 for XGBoost and 0.9664 for Random Forest. The252

prediction error was low, with RMSE (Root Mean Squared Error) and MAE253

(Mean Absolute Error) values of 0.0352 and 0.0194 for XGBoost, and 0.0460254

and 0.0236 for Random Forest, respectively. Models trained with 100 estimators255

using the Python Scikit-learn library.256

Table 1. Regression Performance Metrics for XGBoost and Random Forest

Model R2 RMSE MAE

XGBoost 0.9803 0.0352 0.0194
Random Forest 0.9664 0.0460 0.0236

Feature importance analysis showed that in the normalized daily data, the257

most influential variable was time since previous feeding, with importance scores258
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of 0.7160 and 0.6116 for XGBoost and Random Forest, respectively. In unnor-259

malized data, the age of the fish was the dominant feature, with scores of 0.6640260

and 0.4753 for XGBoost and Random Forest, respectively. These findings align261

with aquaculture practices, where feeding amounts increase with fish age, while262

within each day, feeding behavior is influenced by time since last feeding, as263

summarized in Table 2.264

Table 2. XGBoost Feature Importance Scores

Data Type Time from Feeding Days Passed Time of Day

Normalized 0.7160 0.1259 0.1580
Unnormalized 0.0208 0.6640 0.3152

4. Conclusion265

This study presents a simple and robust methodology for detecting and266

quantifying fish feeding intensity using audio signals and domain knowledge.267

A matched filter algorithm with a sliding window enables high sensitivity in268

detecting species-specific feeding events, using the bite sound of gilthead sea269

bream as a reliable template. ML regression models were used to evaluate how270

biological and environmental parameters explain variation in the feeding label,271

with feature importance ranking confirming a strong explanatory value.272

Our work demonstrates an advance in data reduction by transforming raw273

acoustic input on the order of 108 samples into a single representative value274

of feeding intensity. This serves as proof of concept, supporting the potential275

integration of our methodology into hardware-based data conversion which is276

highly desirable for field applications.277

The method presented in this study lays the groundwork for automated feed-278

ing monitoring based on audio signals. It supports the development of advanced279

artificial intelligence models by leveraging optimal data reduction techniques in-280

formed by domain knowledge.281

It is important to note that this study was conducted in a controlled envi-282

ronment, using a single species and a uniform fish age for a specific monitoring283

application. In contrast, real-world aquaculture—whether in land-based tanks284

or open-sea cages—presents greater complexity due to population diversity, en-285

vironmental variability, and dynamic feeding behaviors.286

Future work will focus on further developing the method and expanding287

its applications to more complex scenarios, including early disease detection288

and performance assessment across different species, age groups, environments,289

and feeding regimens. Ultimately, such approaches can help farmers optimize290

fish cultivation, increase yield, reduce overfeeding, and support environmental291

sustainability.292
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